
Cache-Oblivious Ray Reordering
Bochang Moon, Yongyoung Byun, Tae-Joon Kim, Pio Claudio
KAIST
Hye-sun Kim, Yun-ji Ban, Seung Woo Nam
Electronics and Telecommunications Research Institute (ETRI)
and
Sung-eui Yoon
KAIST

We present a cache-oblivious ray reordering method for ray tracing. Many
global illumination methods such as path tracing and photon mapping use
ray tracing and generate lots of rays to simulate various realistic visual ef-
fects. However, these rays tend to be very incoherent and show lower cache
utilizations during ray tracing of models. In order to address this prob-
lem and improve the ray coherence, we propose a novel hit point heuristic
(HPH) to compute a coherent ordering of rays. The HPH uses the hit points
between rays and the scene as a ray reordering measure. We reorder rays by
using a space-filling curve based on their hit points. Since a hit point of a ray
is available only after performing the ray intersection test with the scene, we
compute an approximate hit point for the ray by performing an intersection
test between the ray and simplified representations of the original models.
Our method is a highly modular approach, since our reordering method
is decoupled from other components of common ray tracing systems. We
apply our method to photon mapping and path tracing and achieve more
than an order of magnitude performance improvement for massive models
that cannot fit into main memory, compared to rendering without reordering
rays. Also, our method shows a performance improvement even for ray trac-
ing small models that can fit into main memory. This performance improve-
ment for small and massive models is caused by reducing cache misses oc-
curring between different memory levels including the L1/L2 caches, main
memory, and disk. This result demonstrates the cache-oblivious nature of
our method, which works for various kinds of cache parameters. Because of
the cache-obliviousness and the high modularity, our method can be widely
applied to many existing ray tracing systems and show performance im-
provements with various models and machines that have different cache
parameters.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Raytracing

General Terms: Performnace, Algorithms

Additional Key Words and Phrases: ray coherence, reordering, cache uti-
lization, ray tracing

1. INTRODUCTION

Ray tracing has been widely used as the main rendering engine
of various global illumination methods (e.g., path tracing and pho-
ton mapping). Typically, ray tracing generates lots of primary, sec-
ondary, and shadow rays, in order to simulate realistic rendering
effects (e.g., soft shadows, reflections, caustics, motion blur, etc.).
However, ray tracing has been still known to be slow to provide
these realistic visual effects.

In order to improve the performance of ray tracing, a lot of
studies have been done on designing efficient intersection tests,
constructing efficient acceleration hierarchies, and exploiting data-
level parallelism using the SIMD functionality and GPUs [Shirley

and Morley 2003; Pharr and Humphreys 2004; Wald et al. 2007].
Most research has focused on improving the performance of ray
tracing with primary rays. However, the focus has been recently
shifted towards efficiently handling secondary rays that can pro-
vide realistic visual effects.

It has been widely known that secondary rays generated for sim-
ulating realistic visual effects show a low ray coherence and thus
low cache utilizations during processing of these rays with meshes
and their acceleration hierarchies. One of the main challenges to the
efficient handling of secondary rays, therefore, is to achieve a high
ray coherence and cache utilizations during processing of rays. This
problem of achieving high cache utilizations is becoming more im-
portant, since there is the widening gap between the data access
speed and the data processing speed [Hennessy et al. 2007].

In order to achieve a high cache coherence for ray tracing,
two orthogonal and complementary approaches, layout reordering
and ray reordering, have been studied. Layout reordering meth-
ods [Sagan 1994; Yoon et al. 2008] aim to compute cache-coherent
layouts of meshes and hierarchies such that data elements (e.g., ver-
tices, triangles, and nodes) that are close in meshes and hierarchies
are also closely stored in their one dimensional data layouts in main
memory and external drive.

Although meshes and hierarchies are stored coherently in their
layouts, the data access pattern on these layouts should be coher-
ent as well, in order to design cache coherent ray tracing. A few
ray reordering techniques [Pharr et al. 1997; Navratil et al. 2007;
Budge et al. 2009] have been proposed. The seminal ray reordering
method proposed by Pharr et al. [1997] does not process each ray
as it is generated. Instead, the method queues rays into ray buffers
associated with regions of the mesh and processes these regions in
a coherent manner to reduce the number of expensive disk I/O ac-
cesses. Most other ray reordering methods are based on variations
of this ray reordering framework. The original method proposed
by Pharr et al. uses a scheduling grid and sorts rays into each grid
cell during the scene traversal. Other techniques have extended this
method to use an acceleration hierarchy and sort rays into nodes
of the hierarchy during the hierarchy traversal, while considering
available cache information.

These methods essentially exploit the information about whether
a data is cached or not given a cache and sort rays depending on
the data access pattern during the scene or hierarchy traversal. Al-
though this kind of approaches can achieve high cache utilizations
during ray tracing of models, it complicates the ray tracing system
by coupling the traversal and the ray reordering algorithm. Further-
more, all of these prior methods focused only on either reducing
L1/L2 caches for small models or reducing the disk I/O accesses

ACM Transactions on Graphics, Vol. 29, No. 3, Article 28, Publication date: June 2010.

2 • B. Moon et al.

1: The left image shows the result of our method applied to path tracing of a Sponza model with a St. Matthew model, two Lucy, and
two David models. This Sponza scene consists of 104 million triangles, requiring 12.8 GB for the original meshes and their acceleration
hierarchies. The middle and right images show photon mapping results of a transparent St. Matthew model consisting of 128 M triangles in
the Cornell box with two transparent dragon models, and a furry squirrel modeled with 32 million hair strands in the Cornell box. The St.
Matthew and squirrel scenes take 15.7 GB and 8.2 GB respectively. These two global illumination methods generate many incoherent rays
to render these images. By reordering such rays, we achieve more than one order of magnitude performance improvement in a machine with
4 GB main memory, compared to without reordering rays. This performance improvement is caused by the improved ray coherence.

for massive models that cannot fit into main memory, because of
the cache-aware nature of these methods.
Main contributions: In this paper, we present a cache-oblivious
ray reordering method to achieve high cache utilizations during ray
tracing of models for global illumination methods. Our approach
decouples the ray reordering method from the hierarchy traversal
to achieve high modularity. In order to reorder rays, we propose a
novel hit point heuristic, which uses hit points between rays and
the scene as a ray reordering measure (Sec. 4). Since the hit point
of a ray is only available once the ray is processed by traversing
the hierarchy, we approximate the hit point by using a simplified
model of the original model. We then use a space-filling curve to
reorder rays based on their approximate hit points. This enables
our method to work with different cache parameters and to achieve
high cache utilizations for various memory levels. We apply our ray
reordering method to path tracing and photon mapping (Sec. 5).
By reordering rays, we achieve more than an order of magnitude
performance improvement compared to rendering without reorder-
ing rays for massive models that cannot fit into main memory.
Moreover, our method shows a performance improvement for small
models that fit into main memory. We verify that the reduced L1/L2
cache misses result in the performance improvement, by simulating
L1/L2 caches and measuring L1/L2 cache misses. These results
demonstrate the benefits of the cache-oblivious nature of our ray
reordering method. We also discuss various factors affecting the
performance of our algorithm and compare our method with prior
methods (Sec. 6). We conclude in Sec. 7 with future work.

2. RELATED WORK

Ray tracing and global illumination methods have been well stud-
ied. Also, good surveys and books are available [Shirley and Mor-
ley 2003; Pharr and Humphreys 2004; Wald et al. 2007]. In this
section, we review prior work related directly to our problem.

2.1 Computation Reordering

Computation reordering strives to achieve a cache-coherent order
of runtime operations in order to improve program locality and re-
duce the number of cache misses. Computation reordering meth-
ods can be classified into either cache-aware or cache-oblivious.
Cache-aware algorithms utilize the knowledge of cache parame-
ters, such as cache block size [Vitter 2001]. On the other hand,
cache-oblivious algorithms do not assume any knowledge of cache
parameters [Frigo et al. 1999]. There is a considerable amount of
literature on developing cache-efficient computation reordering al-
gorithms for specific problems and applications [Arge et al. 2005;
Vitter 2001]. In computer graphics, out-of-core algorithms [Silva
et al. 2002], which are cache-aware methods, have been designed
to handle massive models.

2.2 Cache-Coherent Ray Tracing

There has been extensive research on exploiting the coherence in
ray tracing. These can be classified into packet methods, layout re-
ordering, and ray reordering methods.
Packet ray tracing: Neighboring rays can exhibit spatial coher-
ence and utilizing this coherence can improve the performance of
ray tracing. Earlier attempts include beam tracing [Heckbert and
Hanrahan 1984]. Wald et al. [2001] exploited the coherence of
primary and shadow rays by grouping rays into packets and uti-
lizing the SIMD functionality of modern processors. Reshetov et
al. [2005] proposed an algorithm to integrate beam tracing with the
kd-tree spatial structure and were able to further exploit coherence
of primary and shadow rays. There have been a few ray reorder-
ing methods that can utilize the SIMD functionality for secondary
rays [Boulos et al. 2008; Gribble and Ramani 2008]. These ray re-
ordering methods for the SIMD utilization can be performed on
rays reordered by our method.
Layout reordering: The order of data stored in memory or ex-
ternal drives can affect the performance of ray tracing, given the
widely used block-fetching caching scheme [Yoon et al. 2008]. In

ACM Transactions on Graphics, Vol. 29, No. 3, Article 28, Publication date: June 2010.

Cache-Oblivious Ray Reordering • 3

this caching scheme, blocking related nodes in a cluster can re-
duce the number of cache misses. The van Emde Boas layouts of
trees [van Emde Boas 1977] are constructed by performing a recur-
sive blocking to nodes. Havran analyzes various layouts of hierar-
chies in the context of ray tracing and improves the performance
by using a compact layout representation of hierarchies [Havran
1997]. Yoon and Manocha [2006] developed cache-efficient lay-
outs of hierarchies for ray tracing. Also, there are a few cache-
coherent mesh layouts [Yoon et al. 2005; Yoon and Lindstrom
2006; Sagan 1994].
Ray reordering: To reorder primary rays, space-filling curves
like Z-curves [Sagan 1994] have been used. Mansson et al. [2007]
showed coherence among secondary rays based on their proposed
ray coherence measures. However, it was not demonstrated to
achieve a higher runtime performance based on their proposed ray
reordering heuristics. Pharr et al. [1997] proposed a ray reorder-
ing method for ray tracing massive models that cannot fit into
main memory. Their method uses a scheduling grid for queueing
rays and processes rays in a coherent manner, while considering
the available cache information. Steinhurst et al. [2005] reorder
kNN searches of photon mapping to reduce the memory bandwidth.
Navratil et al. [2007] presented a ray scheduling approach that im-
proves a cache utilization and reduces DRAM-to-cache bandwidth
usage. Budge et al. [2009] employed a ray reordering method to
utilize hybrid resources such as multiple CPUs and GPUs. These
techniques are based on Pharr et al.’s ray reordering method, which
couples the ray reordering and the scene traversal. By doing so,
these methods can easily know which parts of meshes and hierar-
chies are accessed and cached during processing of rays. A down-
side of these techniques is that by coupling the ray reordering and
scene traversal, the modularity of these methods is lowered.

2.3 Ray Tracing Massive Models

Ray tracing massive models has been studied well. In-core tech-
niques exist to perform the ray tracing of massive datasets [De-
Marle et al. 2004; Stephens et al. 2006] by using large, shared
memory systems. There are also out-of-core techniques including
latency hiding [Wald et al. 2004]. There are different approaches
aiming at designing compact representations, by applying the quan-
tization on acceleration hierarchies [Cline et al. 2006], reducing
costs of representing meshes and hierarchies [Lauterbach et al.
2008; Kim et al. 2010], or efficient culling techniques [Reshetov
2007]. These methods can be combined with our proposed method
to further improve the performance of ray tracing massive models.

3. OVERVIEW

In this section, we discuss the ray coherence of different types of
rays and briefly explain the overall approach of our method.

3.1 Ray Coherence

Ray tracing generates a lot of rays to simulate various visual effects.
These rays can be classified as primary, shadow, and secondary
rays. Primary rays are known to show a high coherence during the
hierarchy traversal and mesh accesses. Space-filling curves such
as Z-curves have been used to reorder primary rays [Pharr et al.
1997], based on positions of primary rays in the image plane. Once
a primary ray has intersected with an object, shadow rays to lights
and secondary rays (e.g., reflection rays), depending on the mate-
rial property of the intersected object, are generated. Since light
positions can be arbitrary and the intersected geometry can have
an arbitrary normal, shadow and secondary rays generally have a

C R R

Hit points and material information

R
Caches

Camera

information

Ray

generation

Ray

reordering

Ray

processing
L1

Main memory

Ray buffer
Disk Scene

information

2: This figure shows different modules of our ray reordering frame-
work. Our main contribution is the hit point heuristic (HPH) based
ray reordering method employed in the ray reordering module.

lower coherence than primary rays. If rays are incoherent, then the
data access pattern on the acceleration hierarchies and meshes can
be incoherent. This incoherence may result in a high number of
cache misses in various memory levels and lower the runtime per-
formance. Therefore, processing rays in a cache-coherent manner
is critical to design cache-coherent ray tracers.

3.2 Ray Reordering Framework

In order to reorder rays, we use a ray reordering framework (see
Fig. 2) extended from typical ray tracing systems. This framework
consists of ray generation, ray reordering, and ray processing mod-
ules. The ray generation module constructs rays including primary,
secondary, and shadow rays. The ray processing module takes each
ray and finds a hit point between the ray and the scene by accessing
acceleration hierarchies and the meshes of the scene. Also, the ray
processing module performs shading based on the hit point and its
corresponding material information. If we have to generate shadow
and secondary rays, the ray processing module sends the hit points
and material information to the ray generation module. Typical ray
tracing systems consist of only these two modules and process rays
as they are generated without reordering rays.

In addition to these modules, we also use the ray reordering mod-
ule. The ray reordering module maintains a ray buffer that can hold
a user defined number of rays. Once the ray generation module
constructs rays, these rays are stored in the ray buffer and then re-
ordered in a way such that meshes and hierarchies are accessed
in a cache-coherent manner during processing of reordered rays in
the ray processing module. Note that our ray reordering framework
is similar to previous ray reordering methods [Pharr et al. 1997;
Navratil et al. 2007; Budge et al. 2009]. The main difference of
our framework over these prior methods is that we decouple the
ray reordering module from other modules, thereby achieving high
modularity.

Given this ray reordering framework, the key component that
governs the performance improvement is the ray reordering
method. To maximize the benefits of the reordering method, the
overhead of reordering should be kept small. We propose a simple
cache-oblivious reordering method that has a low reordering over-
head, increases the cache coherence, and improves the performance
of ray tracing models that have different model complexities.
Cache-coherent layouts of meshes and hierarchies: Our ray re-
ordering method works on the assumption that geometrically close
mesh data (e.g., vertices or triangles) and topologically close hierar-
chy data (e.g., nodes) are also stored closely in their corresponding
mesh and hierarchy layouts respectively. There are many layouts
satisfying such a property for meshes [Sagan 1994; Diaz-Gutierrez
et al. 2005; Yoon and Lindstrom 2006] and for hierarchies [van
Emde Boas 1977; Havran 1997; Yoon and Manocha 2006]. In our
implementation, we use cache-oblivious layouts of meshes and hi-
erarchies [Yoon and Lindstrom 2006; Yoon and Manocha 2006]

ACM Transactions on Graphics, Vol. 29, No. 3, Article 28, Publication date: June 2010.

4 • B. Moon et al.

Ray2

(a) (b)

Ray1

y2

… … … …
… … … …

Ray1 Ray2

4: These two figures show data access patterns on the hierarchy
during processing of two different rays, whose hit points are close
to each other. The difference between the left and right figures is
that two rays’ directions are similar in the left, but different in the
right.

4. CACHE-OBLIVIOUS RAY REORDERING

In this section we introduce our cache-oblivious ray reordering
method.

4.1 Hit Point Heuristic

To reorder rays, we propose a hit point heuristic (HPH). A hit point
of a ray is defined as the first intersection point computed between
the ray and the scene, starting from the ray’s origin. The main idea
of the HPH method is to reorder rays based on their hit points using
a space-filling curve (e.g., Z-curve).

The rationale why we use the hit point of a ray as a reordering
measure is twofold. First, if the hit points of rays are geometrically
close to each other, then the mesh regions accessed during process-
ing of these rays are likely to be close too. Second, suppose that a
hierarchy is decomposed into lower and upper regions. Lower re-
gions of the hierarchy are closer to leaf nodes and upper regions of
the hierarchy are closer to the root node of the hierarchy. Then, the
lower regions of the hierarchy accessed during processing of rays
whose hit points are close are likely to be close too because of the
same reason that were for meshes (see Fig. 4). Although hit points
of rays are close to each other, these rays’ directions may be very
different. In this case, their access patterns on upper regions of the
hierarchy may be very different (see Fig. 4-(b)). However, the size
of these upper regions of the hierarchy is relatively small compared
to those of lower regions of the hierarchy. Also, the upper regions
of the hierarchy are accessed by almost all the rays and thus are
unlikely to be unloaded from the cache. Therefore, we may not get
additional cache misses during processing of rays with the upper
regions of the hierarchy.

3: Photon mapping of an
Armadillo (346 K triangles
and 43.5 MB) in the Cornell
box.

To empirically verify the
second rationale, we simulate
a 6MB wide 24-way set-
associative L2 cache of our test
machine and measure L2 cache
misses that occur in the upper
and lower regions of a hierarchy
during photon mapping of the
Armadillo model in the Cornell
box scene (Fig. 3). The number
of L2 cache misses occurring in
the lower regions of the hierar-
chy is significantly higher (e.g.,
141.4 times higher than that
occurring in the upper region
of the hierarchy. As a result, we
conclude that hit points between
rays and the scene are equally
or more important features to our problem than ray directions
and ray origins, which have been widely considered as reordering
measures in most prior works.

4.2 Approximate Hit Points

An issue of the HPH method is that it requires hit points between
rays and the scene to reorder rays. However, computing these hit
points requires processing of rays by traversing the hierarchy and
accessing the mesh, which may cause a high number of cache
misses that we attempted to avoid by reordering. To address this
problem, we compute approximate hit points efficiently by per-
forming the intersection tests between rays and simplified repre-
sentations of the original models.

We compute a simplified representation of the original model us-
ing an out-of-core mesh simplification method [Yoon et al. 2008].
This simplification method decomposes an input model into a set
of clusters, each of which can be stored in main memory. Then,
we simplify each cluster one by one. In order to compute approxi-
mate hit points that are close to the exact hit points, the simplified
model should be geometrically similar to the original model. We
use quadrics and choose edge collapses in an increasing order of
simplification errors for each cluster by using a heap [Garland and
Heckbert 1997] within each cluster. While simplifying each cluster,
we also allow simplifying edges that span multiple clusters. For a
simplified representation, we set the bounding box of the simplified
model to be the bounding box of the original model. Therefore, if
a ray does not intersect with the bounding box, it is guaranteed that
the ray does not intersect with the original model.

Although simplification techniques including ours that rely on
quadrics and edge collapses have been known to work well for var-
ious polygonal models [Luebke et al. 2002], we found that it does
not work well with models with lots of small objects including a
furry squirrel model (shown in the right image of Fig. 1) in our
benchmark models. Fortunately, we found that a recent stochas-
tic simplification technique [Cook et al. 2007] works quite well
for such models that have aggregate detail. We use this stochastic
simplification method only for the furry squirrel model, given our
out-of-core simplification framework described above.

For each simplified representation, we build a hierarchy in the
same manner as building the hierarchy for the original model. In
order to reduce the overhead of computing hit points with the sim-
plified representations at runtime, we drastically simplify the mod-
els. In our tests, we use simplified models consisting of 2% of the
complexity of the original models. We found that this strikes a good
balance between the overhead of our method and the approxima-
tion quality and thus achieves the best performance improvement
of using our ray reordering method (see Sec. 5.3).

To compute approximate hit points of rays, we perform intersec-
tion tests between the rays and the simplified models of the scene. If
a ray intersects with one primitive of the simplified models, we use
the hit point for the ray reordering. If the ray does not intersect with
any primitives of simplified models, but one of the bounding boxes
of the original models, we use the intersection point between the
ray and the bounding boxes as a virtual hit point and use it for the
ray reordering. For other rays that do not intersect with any of the
bounding boxes, we terminate the processing of these rays, since
it is guaranteed that they do not intersect with the original models
of the scene. We use the computed approximate hit points only for
reordering, not for other computations (e.g., shading).

One may consider to use virtual hit points as approximate hit
points even for rays intersected with the scene, instead of using
high quality simplified representations. However, we found that us-
ing only virtual hit points produces rather low-quality approxima-
tion results and using high quality simplified representations shows
much higher (e.g., up to 12.1 times) performance improvements in
our benchmark scenes.

ACM Transactions on Graphics, Vol. 29, No. 3, Article 28, Publication date: June 2010.

Cache-Oblivious Ray Reordering • 5

Z-curve order keys :

p1 p2 p3 p4

12 0 14 1

Reordering

Sorted hit points : p2 p4 p1 p3

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

p4p2

p1

p3

Hit points :

00 01 10 11

00

Axis y:

Axis x:

01

10

11

5: This figure shows an ordering of hit points with the Z-curve
ordering of cells in the uniform grid.

4.3 Space-Filling Curve based Reordering

Once we compute approximate hit points for rays stored in the ray
buffer, we reorder these rays by using a Z-curve, a simple space-
filling curve. Since a Z-curve is defined in a uniform structure, we
place hit points in a grid and compute ordering keys for these hit
points by using a Z-curve ordering of cells in the grid structure.

We define the grid to enclose the bounding volume of the scene
and to have 2k × 2k × 2k cells. Then, we quantize each of three
coordinates of a hit point into a k-bit integer. It has been known
that the z-curve ordering key of such a point is computed by simply
interleaving bits of three k-bit integers of the quantized three coor-
dinates of the point [Lauterbach et al. 2009]. For example, suppose
that xk · · ·x1, yk · · · y1, and zk · · · z1 are three k-bit integers of the
quantized three coordinates. Then, the z-curve ordering key of such
point is defined by a 3k-bit integer of xkykzk · · ·x1y1z1. An exam-
ple of the Z-curve ordering keys of hit points is shown in Fig. 5.

In our current implementation, we choose k to be 20. There-
fore, the ordering key for each hit point is represented with 60 bits
that can be stored in an 8-byte integer. Also, our grid structure de-
composes the bounding volume of the scene into 260 uniform-sized
cells. Therefore, most final ordering keys computed from rays are
likely to be unique with models that we can have in practice. We
also tried Hilbert-curves [Sagan 1994], but found that Z-curves are
easier to implement and have less computations, while having only
minor performance degradation (e.g., 2%) over Hilbert-curves.

Once we compute the ordering keys for rays, we sort rays based
on the ordering keys. We use the 2-way merge sort due to its sim-
plicity. After sorting rays using their associated approximate hit
points, sorted rays are processed in the ray processing module.

5. IMPLEMENTATIONS AND RESULTS

We have implemented and integrated our ray reordering module in
a CPU-based out-of-core ray tracing system. Our ray tracing sys-
tem uses bounding volume hierarchies (BVHs) with axis-aligned
bounding volumes for models [Wald et al. 2007; Lauterbach et al.
2006]. Also, to design an out-of-core ray tracing system, we em-
ploy an out-of-core data access framework for meshes and hier-
archies [Kim et al. 2010]. This framework maintains a memory
pool that consists of pages, each of which holds 4 MB of data.
The size of the memory pool is determined by the available main
memory. We also employ a simple memory management method
based on the least-recently used (LRU) replacement policy. To im-
plement the LRU replacement policy, we maintain a LRU list con-
taining pages that have been accessed during the mesh and hierar-
chy traversal for ray tracing.

We use 512 by 512 image resolutions and perform various tests
with a 32 bit Windows machine consisting of a 3.0 GHz processor,
a disk that supports a sequential reading performance of 101 MB
per second, and 4 GB memory, unless mentioned otherwise. Al-
though the machine has 4 GB main memory, all the programs in

Sponza scene St. Matthew scene Squirrel scene
0

100

200

R
e
n
d
e
ri
n
g
 t
im

e
 (

h
o
u
r)

Without reordering

With reordering

Sponza scene St. Matthew scene Squirrel scene
0

100

200

N
u
m

b
e
r

o
f
d
is

k
I/
O

 a
c
c
e
s
s
e
s
 (

M
)

Without reordering

With reordering

6: These figures show the overall rendering time and the number of
the disk I/O accesses that occurred during rendering of the Sponza,
the St. Matthew, and the squirrel scenes.

the 32 bit Windows can use only up to 3.25 GB. Also, the Win-
dows OS in our test machine uses about 0.2 GB. Therefore, our ray
tracer can use up to about 3.05 GB and we use this as the maximum
size of the memory pool for our out-of-core data access framework.
Ray processing throughputs: Our out-of-core ray tracer does not
have a high ray processing throughput that is comparable to those of
the-state-of-the-art ray tracers. When we test our ray tracer generat-
ing only primary rays with small models (e.g., Stanford bunny) that
fit into main memory, our single-threaded ray tracer can process 1
million rays per second. Also, when we test our ray tracer for path
tracing the Sponza scene with enough main memory (e.g., 16 GB)
that can hold all the data, our ray tracer can process 82.3 K rays per
second; detailed rendering configurations will be given in Sec. 5.1.
Our method uses out-of-core abstractions, which have high over-
heads. Also, our method does not use any packet tracing methods;
if we implement recent packet tracing methods, we expect that our
ray tracer can have higher ray processing throughputs.
Ray buffer: Our ray buffer consists of in-core and out-of-core
parts. We allocate only 88 MB of the main memory space to an in-
core ray buffer. Once the in-core buffer is full, we push these rays
into an out-of-core ray buffer on the disk and then store the next
rays in the in-core ray buffer. We do not pose any restriction on the
size of the out-of-core ray buffer. If there are no more rays that we
can generate, we sort the rays stored in the in-core and out-of-core
ray buffers.

We test our method with two global illumination methods: path
tracing and photon mapping, both of which generate many inco-
herent rays to produce realistic visual effects. We generate primary
rays in Z-curves for all the tests.

5.1 Path Tracing

The left image of Fig. 1 shows an unbiased rendering image of the
St. Matthew, two Lucy, and two David models in the Sponza scene
using a path tracing method [Shirley and Morley 2003; Pharr and
Humphreys 2004]. This scene consists of 104 M triangles; we do
not use any instancing for duplicate models. BVHs and meshes of
models in the scene take 12.8 GB. Since our ray tracer with the
32 bit test machine can use only 3.05 GB, main memory of the
machine can cache 23.8% of all the data for our out-of-core ray
tracer. To illuminate the scene, we use 8 area lights. We generate
100 primary rays (i.e., paths) per pixel and use simple importance
sampling by generating shadow rays to the lights. In this config-
uration, we generate 361 M rays at each frame; 309 M and 26 M
rays among all the generated rays are shadow and secondary rays
respectively. We use the Russian roulette method to determine the
path length.

ACM Transactions on Graphics, Vol. 29, No. 3, Article 28, Publication date: June 2010.

6 • B. Moon et al.

In-core ray buffer size 22MB 44MB 88MB 176MB

Rendering time (sec.) 10,541 10,460 10,314 10,459
Overhead (sec.) 1,039 879 754 693

I: This table shows the overall rendering time and the total over-
head of our method as a function of the in-core ray buffer size in
the Sponza benchmark with 4 GB main memory.

In this scene, our method achieves a 16.83 times performance
improvement over rendering without reordering rays. We also mea-
sure the number of the disk I/O accesses occurring during the ac-
cess of meshes and BVHs (Fig. 6), by using the Windows built-in
performance monitor tool, perfmon. By reordering rays, we reduce
the number of the disk I/O accesses that occurred without reorder-
ing rays by 93.6%. We also measure the average disk I/O access
performance (MB/sec.) per disk I/O access. We found that reorder-
ing rays improves the disk I/O access performance by 208.5%. This
is because the disk I/O accesses become more coherent and the disk
can process these I/O accesses with a higher reading performance
during the random accesses on BVHs and meshes. Because of these
two factors, the reduction of disk I/O accesses and the improvement
of disk I/O performance, we achieve more than an order of magni-
tude performance improvement when caching only 23.8% of all the
data in main memory.

5.2 Photon Mapping

The middle image of Fig. 1 shows a rendering of the transparent
St. Matthew and two transparent dragon models in the Cornell box
scene using the photon mapping method [Jensen 2005]. This St.
Matthew scene consists of 128 M triangles and takes 15.7 GB for
its meshes and BVHs; therefore, the machine can cache only 19%
of the total model size. We use 4 area lights, generate 25 primary
rays per pixel and 10 final gathering rays, and use 100 samples for
the irradiance estimation; 26 M shadow and 91 M secondary rays
are generated among all the generated 124 M rays at each frame. In
this configuration, our method achieves a 12.28 times improvement
compared to rendering without reordering rays. By reordering rays,
we reduce 88% of the disk I/O accesses and improve the disk I/O
performance by 141%.

We also test a furry squirrel model that has 32 M hair strands.
Each hair strand is represented as 8 cylinders. This model, shown
in the right image of Fig. 1, consists of 256 M cylinders and takes
8.2 GB for its cylinders and BVHs. This model has lots of small
hairs and thus is considered as a difficult benchmark for comput-
ing a high-quality simplification. Moreover, since there are a lot of
complex occlusion among furs, our approximation method for hit
points using simplified representations may not work well in this
squirrel scene. Also, we have to recursively generate many sec-
ondary rays until the accumulated opacity is higher than a thresh-
old (e.g., 0.9), because of the semi-transparent property of furs. We
use a single point light, generate 25 primary rays per pixel, and
10 final gathering with 300 samples for the irradiance estimation;
8 M shadow and 67 M secondary rays are generated among all the
generated 81 M rays.

In this configuration, our method that uses HPH achieves
3.77 times performance improvement and reduces 85% of the disk
I/O accesses over rendering without reordering rays. Note that re-
ordering rays based on HPH shows a relatively low performance
improvement in this scene, compared to other scenes. Although
there are small differences among the approximate hit points com-
puted from the simplified fur model, there can be big differences
among the exact hit points, lowering the ray coherence in the sorted
rays. However, we found that considering ray origins or direc-

Complexity of simplified model 0.0125% 0.05% 2% 8%

Rendering time (sec.) 10,644 10,342 10,314 13,789
Overhead (sec.) 637 648 754 964

II: This table shows the overall rendering time and the total over-
head of our method as a function of model complexity of simplified
models, represented in the percentage of the original model com-
plexity, in the Sponza benchmark.

tions in addition to approximate hit points can further improve
the performance. For example, when we consider approximate hit
points as well as ray directions within our ray reordering method, it
achieves a higher improvement, 5.9 times improvement, over ren-
dering without reordering rays.

5.3 Analysis

We discuss various factors that affect the performance of our
method with the path tracing benchmark of the Sponza scene in
this section, unless mentioned otherwise.
Performance vs. complexity of simplified models: The complex-
ity of simplified models can affect the performance improvement
of our ray reordering method. We measure the performance im-
provement caused by our reordering method with different com-
plexities of simplified models (Table II). We achieve the highest
performance when we use simplified models whose model com-
plexities are 2% of original models. Moreover, we also found that
the performance of our method does not decrease much as we use
drastically simplified models (e.g., 0.0125% of the original models
for the simplified models).
Overhead: We also measure the total overhead of our method,
which consists of computing approximate hit points and sorting
rays stored in the ray buffer. We found that the total overhead of
our method is 7% of the total rendering time when we use 2% of
the original model complexity for the simplified models; sorting
rays takes 65% of the total overhead. Also, about 55% of the total
rendering time with reordering rays is spent on reading data from
the disk, compared to 98% of the total rendering time measured
without reordering rays.
Performance vs. ray buffer size: The performance improvement
can be affected by the size of the in-core ray buffer. We measure
the rendering time as a function of the size of the in-core ray buffer
(Table I). As the size is increased, we found that the overhead of
our method is decreased. However, as we allocate more memory
space for the in-core ray buffer, less memory space is used for other
data such as meshes and BVHs. Therefore, we achieve the highest
performance when we allocate 88 MB for the in-core ray buffer.
However, the performance variation is rather minor in the tested
range of the buffer size.
Cache-oblivious nature of our method: Our method uses Z-
curves for reordering rays and has the cache-oblivious property
caused by using the space-filling curve [Yoon and Lindstrom 2006]
that works with different cache parameters. Therefore, it can reduce
cache misses occurring between different memory levels including
L1/L2 caches, main memory, and disk. To demonstrate the cache-
oblivious property of our method, we test our method with photon
mapping of the Armadillo model consisting of 346 K triangles in
the Cornell box (Fig. 3). The whole data of this small scene takes
43.5 MB, which fits into main memory. In this scene, we reorder
rays when our in-core ray buffer is full, instead of dumping rays
stored in the ray buffer to the out-of-core ray buffer. In this case, our
method shows a 21% overall performance improvement by reorder-
ing rays. This improvement is caused by the improved ray process-

ACM Transactions on Graphics, Vol. 29, No. 3, Article 28, Publication date: June 2010.

Cache-Oblivious Ray Reordering • 7

0 1 2 4 8 16
1

2
3
5

10

20

40
60

Main memory size (GB)

R
e

n
d

e
ri
n

g
 t

im
e

 (
h

o
u

r)
 −

−
 l
o

g
 s

c
a

le

Without reordering

Ori.+Dir.

HPH

7: This graph shows the rendering time of path tracing in the
Sponza scene with different physical main memory sizes, when we
use our method or not. We also show the rendering time measured
with a reordering method that considers ray origins as well as ray
directions together (Ori.+Dir.).

ing throughput, although our method has an overhead of computing
approximate hit points and sorting rays, which take about 14% of
the overall rendering time. The ray processing throughputs is im-
proved from 135 K rays per second (RPS) to 164 K RPS. We also
measure the L2 cache miss ratios by simulating the 6MB wide 24-
way set-associative L2 cache of our test machine. We observe more
than two times cache miss reduction by reordering rays compared
to without reordering rays.
Performance vs. cache size: The performance improvement of
our method depends on how much portion of the data of a scene
can be stored by different caches. To shed light on this factor, we
measure the overall rendering time, as a function of the available
memory size with and without using our ray reordering method
(Fig 7). For this test, we use a 64 bit machine; note that the OS
uses 0.2 GB space from the physical main memory. When we use
16 GB main memory, the whole data of the scene can be uploaded
into main memory. Even in this case, our method improves the per-
formance by 31% over rendering without reordering rays, because
our method improves the cache utilizations of L1/L2 caches. As
we decrease the memory size, the performance of ray tracing also
decreases. Nonetheless, the performance with our ray reordering
method decreases more gracefully. When caching 1.8 GB, 14.1%
of the whole data, in main memory, our method shows a 17.8 times
improvement. Even when the available memory size is 0.8 GB,
6.2% of the whole data, our method can render the Sponza scene
without I/O thrashing. Also, as we reduce the memory size, the per-
formance improvement of our method increases, since data access
time takes a larger portion in the whole rendering time, which gives
more room for improvements to our method.
Performance vs. layout: We have used cache-efficient layouts for
meshes and hierarchies in this paper, to maximize the benefits of
our ray reordering method. Also, the depth-first layout of a BVH
has been also widely used in many ray tracers [Yoon and Manocha
2006]. We also measure the performance of our ray tracer with the
depth-first layout, to see how much performance degradation our
method can have. Even if we use the depth-first layout, we observe
only 14% performance degradation over using the cache-efficient
layout.
Multi-core architectures: We also test our method in the 32 bit
machine with a quad-core CPU. Our reordering method can be eas-
ily parallelized since ordering keys of hit points is easily computed
by a few simple bit operations. Also, the 2-way merge sort method
that we used for sorting rays is easily parallelized. We measure the
performance improvement by reordering rays when we use four
threads for ray tracing and our reordering method. By reordering

Scene HPH Ori. Ori.+Dir. HPH+Ori. HPH+Dir. Pharr97
Sponza scene 16.65 5.16 5.19 7.97 6.36 13.69

St. Matthew scene 12.28 1.7 2.29 4.03 5.36 28.61
Squirrel scene 3.77 0.89 3.49 4.35 5.91 N/A
Small scene 1.21 0.97 1.23 1.18 1.17 N/A

III: This table shows performance improvements (times) of tested
sorting measures over the overall rendering time without reorder-
ing rays in our benchmark scenes. Ori., Ori.+Dir., HPH+Ori.,
HPH+Dir., and Pharr97 represent sorting rays based on ray ori-
gins, ray origins combined with ray directions, hit points combined
with ray origins, hit points with ray directions, and using the cache-
aware method of Pharr et al. [1997] respectively.

rays, we achieve 10.5 times improvement over without reordering
rays when we use four threads in the quad-core CPU machine.

6. COMPARISONS AND DISCUSSIONS

We compare the performance of our method (HPH) with those
of other reordering methods that include a seminal ray reordering
method (Pharr97) proposed by Pharr et al. [1997] and simple ray
reordering methods that sort rays based on ray origins (Ori.) and
ray origins with ray directions (Ori.+Dir.). We also test two varia-
tions of our method that sort rays based on hit points with ray ori-
gins (HPH+Ori.) and hit points with ray directions (HPH+Dir.).
Note that Pharr97 is a cache-aware method, while all the other
methods including ours are cache-oblivious.

All the techniques except for Pharr97 are implemented within
our space-filling curve based reordering framework described in
Sec. 4.3; we use 5 dimensional grids with k = 12 for Ori.+Dir.
and HPH+Dir., and use 6 dimensional grids with k = 10 for
HPH+Ori.. For Pharr97, we divide the scene into to a set of
chunks, each of which takes about 32 MB and has its own ray
queue. We also construct a higher level kd-tree whose leaf node
contains a single chunk. We choose to use the kd-tree for the higher
level hierarchy instead of a BVH, since the kd-tree can provide
early terminations of rays. Then, we construct a low-level BVH for
each chunk, to perform a fair comparison with our method that uses
BVHs. We follow the scheduling method for chunks as proposed by
Pharr et al. [1997].

Reordering methods based on HPH show higher performance
improvements over simple cache-oblivious ray reordering meth-
ods based on ray origins or ray directions (see Table III). HPH
shows higher performances over Ori. and Ori.+Dir. in all the tested
scenes, except for the small Armadillo scene (Fig. 3). Even in the
small scene, HPH has a shorter traversal time than Ori.+Dir.. How-
ever, the overhead of HPH, especially computing approximate hit
points, is higher than that of Ori.+Dir.. As a result, HPH shows a
slightly lower performance than Ori.+Dir.. HPH also shows higher
performances than other sorting methods that consider HPH as
well as Ori. (or Dir.) in all the tested scenes, except for the squirrel
scene that has complex occlusions.

Our method shows about two times slower performance than
Pharr97 in the St. Matthew scene. However, our method shows
a slightly higher (e.g., 23%) performance improvement than
Pharr97 in the Sponza scene. Pharr97 like most previous cache-
aware methods [Navratil et al. 2007; Budge et al. 2009] reorders
rays as they traverse their scenes or acceleration hierarchies, be-
cause the data access patterns of rays are known during the scene
or hierarchy traversal. The main benefit of these methods is that
since the data access patterns of rays to the hierarchies and meshes
are known during the traversal, sorting rays with this information

ACM Transactions on Graphics, Vol. 29, No. 3, Article 28, Publication date: June 2010.

8 • B. Moon et al.

can result in a low number of cache misses and even higher per-
formances than our method, as demonstrated in the St. Matthew
scene. However, this approach requires a tight integration between
the ray reordering module and the ray processing module, caus-
ing a complication to the overall ray tracing system and a major
restructuring of existing systems in order to use these reordering
methods. Although our method shows a lower performance over
Pharr97 in the St. Matthew scene, our method did not show a dras-
tically lower performance and shows even higher performance in
the Sponza scene. Therefore, we argue that our method can be use-
ful and widly applied to many existing ray tracing system, since
it is simple to implement, highly modular, and cache-oblivious in
addition to showing comparable performances with Pharr97.
Multi-resolution subdivision techniques: Some of the tested
scanned models in our benchmark scenes are highly tessellated.
One can simplify these highly tessellated models and render them
by using multi-resolution subdivision techniques [Christensen et al.
2003; Tabellion and Lamorlette 2004; Djeu et al. 2007] without sig-
nificant image quality degradations. We would like to point out that
our ray reordering can further improve the performance of these
multi-resolution methods. More specifically speaking, even though
multi-resolution approaches can reduce the number of triangles that
have to be processed, we usually have to deal with a huge number of
subdivided triangles to provide high quality rendering. Therefore,
typical multi-resolution approaches rely heavily on smart caching
schemes. Our ray reordering method can maximize the benefits of
these kinds of caching schemes by improving the ray coherence.
Therefore, our method is not competing with the multi-resolution
methods, but complementary to each other.
Optimized ray tracers: Our ray tracer does not have a high ray
processing throughput. However, we would like to point out that
the performance improvement caused by reducing the number of
cache misses can be higher with more highly optimized ray trac-
ing systems. This is because in these optimized systems, the data
access time caused by cache misses will take relatively higher por-
tions in the overall ray tracing time. Therefore, our method that re-
duces this data access time can achieve higher improvements with
more optimized ray tracers. To support this argument, we imple-
ment multi-BVHs [Ernst and Greiner 2008] that provide an efficient
SIMD-based triangle packet and thus improve the ray processing
throughput, especially for incoherent secondary rays. We choose to
have four child nodes for an intermediate node and four triangles in
the leaf node of the multi-BVH. Also, in the 32 bit machine, only
39% of the whole data of the Sponza scene is cached in main mem-
ory. Given the multi-BVH, we use a single-ray and single-triangle
traversal by disabling to use the SIMD-based triangle packet, as a
lower performance ray tracer. In this ray tracer, the ray process-
ing throughputs is improved from 5.49 K rays per second (RPS) to
27.4 K RPS, resulting in a 4.99 times improvement, by reordering
rays. Then, we enable the SIMD-based triangle packet traversal for
a higher performance ray tracer. In this case, by reordering rays, the
ray processing throughput is improved from 5.5 K RPS to 28.92 K
RPS, leading to a 5.26 times improvement, a higher improvement
than that with the lower performance ray tracer.
Limitations: Our method has certain limitations. Our method in-
herits drawbacks of existing reordering methods: to use our re-
ordering method in a ray tracer, the ray tracer should be decom-
posed into separate ray generation and processing modules, and
processing rays are performed iteratively by using these modules.
Also, our ray reordering method like other ray reordering meth-
ods may not work with shaders that do not allow deferred shad-
ing, though most general shaders work with the deferred shading.

Although we have demonstrated performance improvements over
other cache-oblivious reordering methods that use ray origins or ray
directions with all the tested benchmarks, there is no guarantee that
our method will improve the performance of ray tracing because of
the overhead of our method. Also, our reordering method requires
simplified representations of original models. Computing such sim-
plified representations require extra implementation efforts. More-
over, for certain class of models such as forest scenes and furry
models, computing high-quality simplified representations may be
very difficult, thus lowering the performance benefits of our method
in such scenes. Also, as demonstrated in the St. Matthew scene, our
method can show a lower performance than optimized cache-aware
ray reordering methods.

7. CONCLUSION AND FUTURE WORK

We have presented a cache-oblivious ray reordering method that
achieves the performance improvement for various models. Our
method reorders rays by computing approximate hit points and
efficiently sorting them with the Z-curve. We have demonstrated
the performance benefits and the high modularity of our method
with path tracing and photon mapping, both of which require lots
of incoherent rays to generate realistic visual images. By reorder-
ing these rays, we have achieved significant performance improve-
ments over other simple cache-oblivious ray reordering methods
that use ray origins or ray directions for massive models. Moreover,
our method shows a performance improvement for small models
that can fit into main memory. This performance improvement is
caused by reducing the cache misses of the L1/L2 caches. Also, our
method shows comparable performances even with the optimized
cache-aware ray reordering method proposed by Pharr el al. [1997].

There are many exciting future directions lying ahead. Currently,
we have tested our ray reordering method only with the CPU archi-
tecture. It will be very interesting to see how our method can be
extended to handle incoherent rays and improve GPU cache uti-
lizations in GPU-based global illumination methods. It will be also
interesting to apply our method to hybrid ray tracers that run on
both CPUs and GPUs. Finally, although we have presented a cache-
oblivious computational reordering method for ray tracing, its idea
can be applied to many different applications whose main bottle-
neck is in the data access time. Therefore, we would like to extend
our current method to different computer graphics applications.

Acknowledgements

We would like to thank Brian Budge for the discussion on im-
plementing the cache-aware method. We also thank Stanford
University and Marko Dabrovic for providing scanned mod-
els and Sponza Atrium model. We are thankful to Christian
Lauterbach, the members of SGLab., and the anonymous re-
viewers for their helpful feedbacks. In particular, we appreci-
ate one of reviewers who suggested to combine the HPH with
other ray information (e.g., ray origins) for ray reordering. This
work was supported in part by MKE/IITA u-Learning, KRF-
2008-313-D00922, MKE/MCST/IITA[2008-F-033-02], MKE dig-
ital mask control, MCST/KOCCA-CTR&DP-2009, KMCC, DA-
PA/ADD (UD080042AD), and the MKE project of semi-realtime
renderer.

REFERENCES

ARGE, L., BRODAL, G. S., AND FAGERBERG, R. 2005. Cache-Oblivious
Data Structures in Handbook of Data Structures. CRC Press.

ACM Transactions on Graphics, Vol. 29, No. 3, Article 28, Publication date: June 2010.

Cache-Oblivious Ray Reordering • 9

BOULOS, S., WALD, I., AND BENTHIN, C. 2008. Adaptive ray packet
reordering. In IEEE Symp. on Interactive Ray Tracing. 131–138.

BUDGE, B., BERNARDIN, T., STUART, J. A., SENGUPTA, S., JOY, K. I.,
AND OWENS, J. D. 2009. Out-of-core data management for path tracing
on hybrid resources. Computer Graphics Forum (EG) 28, 2, 385–396.

CHRISTENSEN, P. H., LAUR, D. M., FONG, J., WOOTEN, W. L., AND

BATALI, D. 2003. Ray differentials and multiresolution geometry
caching for distribution ray tracing in complex scenes. Computer Graph-
ics Forum 22, 3 (Sept.), 543–552.

CLINE, D., STEELE, K., AND EGBERT, P. K. 2006. Lightweight bounding
volumes for ray tracing. Journal of Graphics Tools 11, 4, 61–71.

COOK, R. L., HALSTEAD, J., PLANCK, M., AND RYU, D. 2007. Stochas-
tic simplification of aggregate detail. ACM Trans. Graph. 26, 3, 79.

DEMARLE, D. E., GRIBBLE, C. P., AND PARKER, S. G. 2004. Memory-
savvy distributed interactive ray tracing. In EGPGV. 93–100.

DIAZ-GUTIERREZ, P., BHUSHAN, A., GOPI, M., AND PAJAROLA, R.
2005. Constrained Strip Generation and Management for Efficient In-
teractive 3D Rendering. In Computer Graphics International. 115–121.

DJEU, P., HUNT, W., WANG, R., ELHASSAN, I., STOLL, G., AND MARK,
W. R. 2007. Razor: An architecture for dynamic multiresolution ray
tracing. Tech. Rep. TR-07-52, The Univ. of Texas at Austin, Dept. of
Computer Sciences. January 24.

ERNST, M. AND GREINER, G. 2008. Multi bounding volume hierarchies.
In Interactive Ray Tracing. IEEE Symp. on. 35–40.

FRIGO, M., LEISERSON, C., PROKOP, H., AND RAMACHANDRAN, S.
1999. Cache-oblivious algorithms. In Foundations of Computer Science.
285–297.

GARLAND, M. AND HECKBERT, P. 1997. Surface simplification using
quadric error metrics. In SIGGRAPH 97 Proceedings. 209–216.

GRIBBLE, C. P. AND RAMANI, K. 2008. Coherent ray tracing via stream
filtering. In IEEE Symposium on Interactive Ray Tracing. 59–66.

HAVRAN, V. 1997. Cache sensitive representation for the bsp tree. In Proc.
of Compugraphics.

HECKBERT, P. S. AND HANRAHAN, P. 1984. Beam tracing polygonal
objects. In SIGGRAPH. ACM Press, New York, NY, USA, 119–127.

HENNESSY, J. L., PATTERSON, D. A., AND GOLDBERG, D. 2007. Com-
puter Architecture, A Quantitative Approach. Morgan Kaufmann.

JENSEN, H. W. 2005. Realistic Image Synthesis Using Photon Mapping.
AK Peters.

KIM, T.-J., BYUN, Y., KIM, Y., MOON, B., LEE, S., AND YOON, S.-
E. 2010. HCCMeshes: Hierarchical-culling oriented compact meshes.
Computer Graphics Forum (Eurographics) 29, 2. To appear.

KIM, T.-J., MOON, B., KIM, D., AND YOON, S.-E. 2010. RACBVHs:
Random-accessible compressed bounding volume hierarchies. IEEE
Trans. on Visualization and Computer Graphics 16, 2, 273–286.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D., AND

MANOCHA, D. 2009. Fast bvh construction on gpus. Computer Graphics
Forum (EG) 28, 2, 375–384.

LAUTERBACH, C., YOON, S.-E., TANG, M., AND MANOCHA, D. 2008.
ReduceM: Interactive and memory efficient ray tracing of large models.
Computer Graphics Forum (EG Symp. on Rendering) 27, 4, 1313–1321.

LAUTERBACH, C., YOON, S.-E., TUFT, D., AND MANOCHA, D. 2006.
RT-DEFORM: Interactive ray tracing of dynamic scenes using bvhs. In
IEEE Symp. on Interactive Ray Tracing. 39–46.

LUEBKE, D., REDDY, M., COHEN, J., VARSHNEY, A., WATSON, B.,
AND HUEBNER, R. 2002. Level of Detail for 3D Graphics. Morgan-
Kaufmann.

MANSSON, E., MUNKBERG, J., AND AKENINE-MOLLER, T. 2007. Deep
coherent ray tracing. In IEEE Symp. on Interactive Ray Tracing. 79–85.

NAVRATIL, P., FUSSELL, D., LIN, C., AND MARK, W. 2007. Dynamic
ray scheduling to improve ray coherence and bandwidth utilization. In
IEEE Symposium on Interactive Ray Tracing. 95–104.

PHARR, M. AND HUMPHREYS, G. 2004. Physically Based Rendering:
From Theory to Implementation. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

PHARR, M., KOLB, C., GERSHBEIN, R., AND HANRAHAN, P. 1997. Ren-
dering complex scenes with memory-coherent ray tracing. In ACM SIG-
GRAPH. 101–108.

RESHETOV, A. 2007. Faster ray packets - triangle intersection through
vertex culling. In IEEE Symp. on Interactive Ray Tracing. 105–112.

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-level ray
tracing algorithm. ACM Trans. Graph. 24, 3, 1176–1185.

SAGAN, H. 1994. Space-Filling Curves. Springer-Verlag.
SHIRLEY, P. AND MORLEY, R. K. 2003. Realistic Ray Tracing, Second

ed. AK Peters.
SILVA, C., CHIANG, Y.-J., CORREA, W., EL-SANA, J., AND LIND-

STROM, P. 2002. Out-of-core algorithms for scientific visualization and
computer graphics. In IEEE Visualization Course Notes.

STEINHURST, J., COOMBE, G., AND LASTRA, A. 2005. Reordering for
cache conscious photon mapping. In Graphics Interface. 97–104.

STEPHENS, A., BOULOS, S., BIGLER, J., WALD, I., AND PARKER, S. G.
2006. An Application of Scalable Massive Model Interaction using
Shared Memory Systems. In EGPGV. 19–26.

TABELLION, E. AND LAMORLETTE, A. 2004. An approximate global illu-
mination system for computer generated films. ACM Trans. Graph. 23, 3,
469–476.

VAN EMDE BOAS, P. 1977. Preserving order in a forest in less than loga-
rithmic time and linear space. Inf. Process. Lett. 6, 80–82.

VITTER, J. S. 2001. External memory algorithms and data structures: deal-
ing with massive data. ACM Comput. Surv. 33, 2, 209–271.

WALD, I., BOULOS, S., AND SHIRLEY, P. 2007. Ray Tracing Deformable
Scenes using Dynamic Bounding Volume Hierarchies. ACM Transac-
tions on Graphics 26, 1, 6.

WALD, I., DIETRICH, A., AND SLUSALLEK, P. 2004. An Interactive Out-
of-Core Rendering Framework for Visualizing Massively Complex Mod-
els. In EG Symp. on Rendering. 82–91.

WALD, I., MARK, W. R., GÜNTHER, J., BOULOS, S., IZE, T., HUNT, W.,
PARKER, S. G., AND SHIRLEY, P. 2007. State of the Art in Ray Tracing
Animated Scenes. In Eurographics State of the Art Reports.

WALD, I., SLUSALLEK, P., AND BENTHIN, C. 2001. Interactive dis-
tributed ray tracing of highly complex models. In EG Workshop on Ren-
dering. 277–288.

YOON, S.-E., GOBBETTI, E., KASIK, D., AND MANOCHA, D. 2008.
Real-Time Massive Model Rendering. Morgan & Claypool Publisher.

YOON, S.-E. AND LINDSTROM, P. 2006. Mesh layouts for block-based
caches. IEEE Trans. on Visualization and Computer Graphics (Proc.
Visualization) 12, 5, 1213–1220.

YOON, S.-E., LINDSTROM, P., PASCUCCI, V., AND MANOCHA, D. 2005.
Cache-Oblivious Mesh Layouts. ACM Transactions on Graphics (SIG-
GRAPH) 24, 3, 886–893.

YOON, S.-E. AND MANOCHA, D. 2006. Cache-efficient layouts of bound-
ing volume hierarchies. Computer Graphics Forum (Eurographics) 25, 3,
507–516.

ACM Transactions on Graphics, Vol. 29, No. 3, Article 28, Publication date: June 2010.

	Introduction
	Related Work
	Computation Reordering
	Cache-Coherent Ray Tracing
	Ray Tracing Massive Models

	Overview
	Ray Coherence
	Ray Reordering Framework

	Cache-Oblivious Ray Reordering
	Hit Point Heuristic
	Approximate Hit Points
	Space-Filling Curve based Reordering

	Implementations and Results
	Path Tracing
	Photon Mapping
	Analysis

	Comparisons and Discussions
	Conclusion and Future Work

