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Abstract— A recent trend in optimal motion planning has
broadened the research area toward the hybridization of
sampling, optimization and grid-based approaches. We can
expect that synergy from such integrations leads to overall
performance improvement, but seamless integration and gen-
eralization is still an open problem. In this paper, we suggest
a hybrid motion planning algorithm utilizing a sampling-
based and optimization-based planner while simultaneously
approximating a configuration free space. Unlike conventional
optimization-based approaches, the proposed algorithm does
not depend on a priori information or resolution-complete
factors, e.g., a distance field. Ours instead learns spatial infor-
mation on the fly by exploiting empirical information during
the execution, and decentralizes the information over the con-
structed graph for efficient access. With the help of the learned
information, our optimization-based local planner exploits the
local area to identify the connectivity of configuration free space
without depending on the precomputed domain knowledge.
To show the novelty of proposed algorithm, we evaluate it
against other asymptotic optimal planners in both synthetic
and complex benchmarks with varying degrees of freedom.
We also discuss the performance improvement, properties and
limitations we have observed.

I. INTRODUCTION

Sampling-based motion planning algorithms have been
well studied for the past several decades thanks to their
probabilistic completeness and wide applicability. Some
prominent examples are RRT [1] and PRM [2], which can
be viewed as a random geometric graph construction in
the configuration free space. For the asymptotic optimal
motion planning, Karaman et al. presented RRT∗, PRM∗,
and RRG [3], which guarantee almost-sure asymptotic op-
timality. These optimal variants successfully opened a new
research area in motion planning by providing a theoretical
foundation and have been applied to practical solutions of
real problems [4]–[6].

In contrast to the sampling-based planners, optimization-
based planners convert a non-convex motion planning prob-
lem into a sequence of convex problems to quickly find a
local optimal solution [7]–[9]. These approaches mainly aim
to minimize an objective function with respect to planning
constraints, such as smoothness for optimality, while esti-
mating the gradients of obstacle potential for feasibility, i.e.,
a no-collision constraint.

Some papers have studied the configuration free space ap-
proximation method for various purposes [10]–[16]. Among
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them particularly, Shkolnik et al. [10] represented the con-
figuration free space as a set of hyperspheres using em-
pirical collision information for efficient biased sampling.
Bialkowski et al. [14] took a similar approach but used
explicit proximity computation to compute the boundary of
the hyperspheres. In their following work [15], they used a
KD-tree based representation to represent the approximate
configuration free space with provable convergence to the
ground-truth. Jia Pan et al. [16] suggested a probabilistic
collision checking with free space approximation. They intro-
duced an environment learning phase to understand the given
geometric structure, then exploited learned knowledge using
spatial coherency for a probabilistic collision checking.

As a hybrid approach, RABIT∗ (Regionally Acceler-
ated Batched Informed Trees) [17] suggested the inte-
gration of a sampling-based algorithm BIT∗ (Batched In-
formed Tree) [18] and an optimization-based algorithm
CHOMP (Covariant Hamiltonian Optimization for Motion
Planning) [7]. This hybrid algorithm considers the pros and
cons of sampling-based and optimization-based approaches
together to identify difficult-to-sample homotopy of the so-
lution path efficiently while preserving the asymptotic opti-
mality. It is, however, only workable under the assumption
that a precomputed domain knowledge, e.g., a distance field,
is given a priori or is analytically computable on demand,
which can be a burden in practical problems.

In this paper, we present a hybrid approach of sampling-
based and optimization-based planning, in which the entire
planning process is accomplished on the fly without depend-
ing on any precomputed domain knowledge. The proposed
algorithm uses both empirical collision and collision-free
information found during the sampling-based planning to
learn the configuration free space during the execution. The
optimization-based planner utilizes the learned information
to guide trajectories toward a configuration free space to
establish more connections between sampled configurations.
We also suggest an efficient access structure so that two
different planners can work seamlessly with our approximate
configuration free space.

In the subsequent sections, we first explain preliminar-
ies of the sampling-based and optimization-based approach
(sec. II). Sec. III gives an overview of the proposed algorithm
(Sec. III-A), how to approximate configuration free space
with sampling-based motion planning (Sec. III-B) followed
by optimization-based local planning with learned informa-
tion (Sec. III-C). We also analyze the properties of our
method (Sec. IV) and demonstrate its benefits by experiments
with various dimensions (Sec. V).



Algorithm 1: NAÏVE PRM∗

1 V ←{qinit ,qgoal}
2 E← /0
3 while Termination condition is not satis f ied do
4 qrand ← Sample()
5 if IsCollisionFree(qrand) then
6 Insert qrand to V
7 Qnear← Near(qrand)
8 foreach qnear ∈ Qnear do
9 if IsCollisionFree((qnear,qrand)) then

10 Insert (qnear,qrand) to E

11 U pdateSolutionPath(G)

12 return SolutionPath(G)

II. BACKGROUND

This section reviews major previous studies and presents
preliminaries and notations employed throughout the paper.

A. Sampling-based Motion Planning

In this paper, we mainly consider the optimal motion
planning problem, whose objective is to find a feasible and
optimal trajectory ξ connecting two given end points qinit
and qgoal satisfying ξ (0) = qinit and ξ (1) = qgoal in the
configuration space X, where a trajectory ξ : [0,1]→X. For
feasibility, ξ should lie in the configuration free space X f ree,
where X f ree ⊂ X and the configuration obstacle space Xobs
is defined to be X\X f ree.

To explain how sampling-based approaches construct a
search graph G = (V,E)∈X, we briefly explain naı̈ve PRM∗

shown in Alg. 1, which is one of the prominent sampling-
based planners.

In each iteration of Alg. 1, PRM∗ samples a ran-
dom configuration qrand and checks its validity with
IsCollisionFree(·) (Line: 5) which returns true if a given
configuration q or an edge (qi,q j) is valid i.e. ∈ X f ree.
For each valid configuration qrand , r-nn(r-nearest neighbor)
query of Near(·) finds near neighbors (Line: 7) within a

ball of radius γ

(
log |V |
|V |

)1/d
centered at qrand , where d is the

dimension of the problem, |V | is the cardinality of V and γ

is a user defined constant greater than 1 [3]. k-nn(k-nearest
neighbor) query can also be an alternative of Near(·); in that
case, k is defined by dγ(e+ e

d ) · log(|V |)e.
Line 9 checks collision for every possible connection of

(qnear ∈ Qnear, qrand) to find a feasible connection between
configurations in G; this is also known as local planning.
U pdateSolutionPath(·) computes the shortest path from qinit
to qgoal on the constructed graph G if anytime property is
required for the given problem. Otherwise, the shortest path
is computed (Line: 12) using well-known A∗ or Dijkstra’s
algorithm at the end of execution.

In this study, the foundation of the proposed algorithm
is based on PRM∗. Its sampling-based behavior divides the
entire motion planning problem into a set of smaller local
planning problems while approximating the configuration
free space. We discuss how the optimization-based local

TABLE I
NOTATION SUMMARY TABLE

Notation Description
ξ (t) Configuration on the trajectory ξ at a time t = [0,1].

B Set of entire body point for a given robot model.

x(ξ (t),b) Mapping of a body point b ∈ B at a configuration ξ (t)
to the corresponding point in the workspace.

x′ Derivative of x(·).
c(·) Obstacle potential for being close or inside Xobs.

J Kinematic Jacobian, i.e., d
dq x(q,b),q ∈ X and b ∈ B

V,E Vertex and edge set of the search graph G.
V ∗ Set of free configuration observed during planning.

planning works with our spatial information in the subse-
quent section.

B. Optimization-based Motion Planning

Our local planner is based on a well-known gradient op-
timization technique, CHOMP (Covariant Hamiltonian Op-
timization for Motion Planning) [7]. We first briefly review
the concept of CHOMP and discuss the motivation with our
observations.

The objective of CHOMP is to find a smooth, collision-
free trajectory ξ , exactly like that of sampling-based plan-
ning. The objective function, U (ξ ), is then formalized as
the following:

U (ξ ) = fprior(ξ )+λ · fobs(ξ ), (1)

where fprior can be considered as a sum of squared deriva-
tives for the trajectory ξ to satisfy local optimality and addi-
tional constraints, such as controlling smoothness or limiting
the maximum acceleration. The obstacle cost function fobs
penalizes a configuration of a robot for being close to Xobs to
avoid any collision. To be specific, fobs and its gradient ∇ fobs
are formalized in Eqs. 2 and 3, respectively. The notations
used in both equations and throughout the paper are also
summarized in Tab. I.

fobs(ξ ) =
∫ 1

0

∫
B

c(x(ξ (t),b)) ‖ d
dt

x(ξ (t),b) ‖ db dt (2)

∇ fobs(ξ ) =
∫

B
JT‖x′‖ · [(I− x̂′x̂′T )∇c− cκ] db (3)

The computation of the obstacle potential c(·) depends on
a body simplification, and workspace information such as
distance field [7] which can be analytically computed in the
workspace. The robot model B is generally simplified by a
sphere covering method [9], [19]. x(·) plays a mapping role
from a configuration ξ (t) defined in the configuration space
to the workspace. As a result, the integration of whole body
B results in the obstacle potential for a configuration ξ (t).

Eq. 3 shows the gradient of Eq. 2, where ∇c(·) is the
gradient of obstacle potential c(·), and κ is the curvature of
the trajectory. The objective function of CHOMP contains
obstacle potential terms such as c(·) and ∇c, which are hard
to compute in the configuration space. For this reason, the
conversion from the configuration space to the workspace
with x(·) and J is introduced to compute fobs and ∇ fobs for a
trajectory defined in the configuration space using workspace
information. It also makes the planning process less affected



Fig. 1. The left figure shows an example of a trajectory optimization
problem with two initial trajectories ξi and ξ j where the black arrow
indicates a direction toward the closest free space from each intermediate
configuration along the trajectories. The right figure shows the result with
a distance field, which is a discretization of a given environment. The
penetration depth of each cell is color encoded, red for high and green for
low. In this scenario, it fails to capture the narrow passage in the optimal
homotopy due to the coarse-grained resolution.

by the dimensions of the configuration space for practical
performance.

The aforementioned benefit, however, comes with two
drawbacks as follows. First, CHOMP only guarantees the
convergence to a local optimum since the optimization
process exploits the local convexity of fobs. Fortunately,
the local optimality issue has been studied extensively with
a stochastic sampling [7], [8] and a hybrid approach of
sampling-based and optimization-based planning [17]. Sec-
ond, CHOMP and its variants assume a discretized repre-
sentation, e.g., distance fields in finite resolutions, of the
workspace information and the simplified robot model B.
The discretized representation of the workspace information
is a relatively less studied area.

Fig. 1 reveals a limitation on the use of distance field,
which is defined in the workspace with a fixed resolution. As
we see, the actual environment (left) has a narrow passage,
while the distance field (right) fails to capture the narrow
passage due to its coarse-grained resolution.

Fig. 2 illustrates the difference between obstacle potentials
computed from the workspace (left) and the configuration
space (right). In the left figure, c(·) and ∇c(·) for a config-
uration needs to be computed by considering the obstacles
with the simplified body B and average them according to
Eq. 2 and Eq. 3 in order to be used in the configuration space
where ξ is defined. For this reason, the resolution of the
distance field and the simplified robot representation affect
the performance and completeness. On the other hand, the
right figure shows what they look like in the configuration
space, where obstacle potentials can be computed without
the robot body simplification B, x(·) and Jacobian, J. It
is, however, a hard problem to compute such information,
e.g., a fine-resolution distance field in a high dimensional
configuration space.

To deal with this context, we set our goal to perform
the entire optimization process solely in the configuration
space without using discretized workspace information or
expensive overheads related to proximity computation in
the configuration space, while preserving the asymptotic
optimality by integrating a sampling-based approach.

Fig. 2. Both figures show a 2D manipulation problem in a planar space
and how the environment of given problem looks different in the workspace
(left) and the configuration space (right). In the workspace, a robot arm
is simplified by a set of body points b ∈ B (small squares); its potentials
against the obstacle circle are computed by the proximity of those in the
workspace (black arrow). The right figure shows the same circumstance, but
in the configuration space.

III. ALGORITHM

In this section, we elaborate each component of the
proposed algorithm and the underlying theoretical meanings.

A. Overview

At a high level, our approach is based on the integration
of optimization-based and sampling-based planning, while
simultaneously constructing an approximate configuration
free space without the priori knowledge of the given envi-
ronment. The adjective ”Dancing’ in the title metaphorically
describes how the proposed algorithm works, connecting
configurations in G with optimized trajectories which are
curved in the configuration space. Specifically, sampling-
based planning is used for decomposing the entire problem
into a set of local planning problems, while constructing an
approximate configuration free space, X̃ f ree, on the fly. We
then solve each sub-problem using optimization with X̃ f ree
to exploit the local area around Xobs efficiently.

The pseudocode of the proposed algorithm called
Dancing PRM∗ is depicted in Alg. 2. The main flow of
the algorithm is based on PRM∗, and we also apply a lazy
collision checking [20] to minimize the number of local
plannings by skipping unnecessary ones.

Procedures newly added or that behave differently from a
conventional planner are highlighted in Alg. 2. Procedures
in (Line: 5, 8, 11, 13, 15, 16) are for X̃ f ree construction, and
DanceSolutionPath(·) (Line: 17) validates a best-so-far so-
lution path in a lazy manner with an additional optimization-
based local planning step. U pdateShortestPathTree(·) (Line:
12) is invoked when a graph restructuring, such as edge
insertion or deletion occurs to maintain the best solution
path from qinit to qgoal over the search graph G, which is
necessary for anytime lazy collision checking.

We discuss details of each component in the subsequent
subsections.

B. Configuration Free Space Approximation

The main purpose of the approximate configuration free
space X̃ f ree is to efficiently guide trajectories towards local
configuration free space during the optimization.



Algorithm 2: DANCING PRM∗

1 V ←{qinit ,qgoal}
2 E← /0
3 while Termination condition is not satis f ied do
4 qrand ← Sample()
5 if IsCollisionFree(qrand) then
6 Insert qrand to V ; V ∗qrand

← /0
7 Qnear← Near(qrand)

8 Insert Qnear to V ∗qrand
9 foreach qnear ∈ Qnear do

10 Insert (qnear,qrand) to E
11 Insert qrand to V ∗qnear

12 U pdateShortestPathTree(·)
13 PropagateCFreeSpace(Qnear,qrand)

14 else
15 qnearest ← Nearest(qrand)

16 U pdateCFreeSpace(qrand ,qnearest)

17 DanceSolutionPath(G)

18 return SolutionPath(G)

We choose to represent X̃ f ree as a set of hyperspheres
motivated by previous studies [10], [14] for scalability
and light-weight proximity computation, e.g., the distance
function. While the representation is analogously defined,
our study differs in terms of the approximation procedure
and accessing strategy for the efficient integration with
optimization-based planning explained in a later paragraph.

Fig. 3(a) shows a conceptual image of X̃ f ree, which can
be simply formalized as:

X̃ f ree = {x | ‖x−qi‖< rqi}, qi ∈V ∗ (4)

where rqi is the radius of an approximate collision free
hypersphere centered at qi, and V ∗ is a set of all q ∈ X f ree
found during the execution; thus V ⊂ V ∗. Intuitively, each
configuration q ∈ V ∗ is associated with a single hyper-
sphere approximated by an empirical collision, the so-called
witness, wq ∈ Xobs, such that ‖q−wq‖= rq.

A new witness wq can be generated and replaced by the
following samples, as long as it results in a smaller radius:

1) a sampled configuration qrand ∈ Xobs (Line: 15-16 in
Alg 2). This update is done by U pdateCFreeSpace(·).

2) an intermediate configuration that turned out to be in
Xobs during a solution path validation (Line: 5, 9 in
Alg 3).

3) a witness of near neighbors (Line: 13 in Alg. 2). This
is handled by our witness propagation step.

Note that the intermediate configuration qinter can be
computed in IsCollisionFree(·) using a discrete collision
checker, which is widely used in the most conventional
sampling-based planners.

Decentralized storage for observed collision states. For
efficient access to our approximate free space, X̃ f ree during a
local optimization process, we adopt a decentralized storage
strategy for V ∗, where each q∈V maintains a subset V ∗q ∈V ∗.

(a) (b)

Fig. 3. The left is a visualization of X̃ f ree, regions covered by a set of
merged light blue circles in 2D. Each configuration q∈V ∗ is associated with
an approximate collision-free hypersphere in X. Their radii are trimmed by
witness (red cross symbol) which is a configuration in Xobs found during a
local planning (dotted black segment on the left side) or a sample qrand (right
side). The right shows an example of local optimization for a trajectory
ξ . Black arrows show the gradient of obstacle potential computed with
our approximate configuration space and the red curved segment shows an
optimized trajectory. Each red dot indicates an intermediate configuration
ξ (t) on the discretized ξ .

V ∗q is updated with its near neighbors (Line: 8, 11 in Alg. 2)
and collision-free configurations qinter found during a local
planning (Line: 5, 9 in Alg. 3); the maximum distance from

q to those newly added v ∈ V ∗q is bounded by γ

(
log |V |
|V |

)1/d

when they are inserted into V ∗q , according to the ball radius
adopted by Near(·). Note that qinter is not in V but only in
V ∗, and we initialize their collision-free radii with zero i.e.,
rqinter = 0.

Witness propagation step. To acquire more accurate
X̃ f ree in practice, we apply a witness propagation step (Line:
11 in Alg. 2). Our key insight for the witness propagation
is to treat finding the closest configuration obstacle for a
q ∈ X f ree as a connectivity problem on random geometric
graphs [3]. This suggests that for an arbitrary configuration
q ∈ V , all witnesses of V located in the ball of radius

γ

(
log |V |
|V |

)1/d
centered at q serve as candidates for wq.

For this purpose, we define PropagateCFreeSpace(·)
(Alg. 4), which initializes rqnew using witnesses of near
neighbors, Qnear, and also propagates its witness wqnew to
Qnear at the same time. This process of witness propaga-
tion is fundamentally analogous to the rewire procedure of
RRT∗ [3], in terms of a threshold bound for the connectivity.

C. Optimization in Configuration Space

Our CHOMP-based optimizer is performed lazily in
DanceSolutionPath(·), as depicted in Alg. 3, when we try
to validate the best-so-far path. At the beginning of each
iteration, we retrieve a provisional solution path Esolution ⊂ E
(Line: 3), which possibly contains infeasible edges. When the
solution path validation fails by an edge collision checking
for an edge ei (Line: 5), we reject ei from E and then update
X̃ f ree with a configuration qobs ∈ Xobs found during edge
collision checking (Line: 7).

Our optimization-based local planner then attempts to
optimize the invalid edge ei (Line: 8) to find a new trajectory
bypassing local Xobs using X̃ f ree. Successful optimization
yields a non-linear trajectory eopt , which increases the chance



Algorithm 3: DanceSolutionPath
Input: G, a search graph

1 Esolution← /0
2 repeat
3 Esolution← ProvisionalSolutionPath(G)
4 foreach ei ∈ Esolution do
5 if ¬IsCollisionFree(ei) then
6 E = E \ {ei}
7 U pdateCFreeSpace(ei)
8 eopt ← Optimize(ei)
9 if IsFeasible(eopt) then

10 E = E ∪ {eopt}
11 U pdateShortestPathTree(G)
12 Break

13 until ei ∈ X f ree,∀ei ∈ Esolution

Algorithm 4: PropagateCFreeSpace
Input: qnew, a sample configuration,

Qnear, a set of near neighbor of qnew
1 rqnew ← ∞; wqnew ← /0
2 foreach qnear ∈ Qnear do
3 if (wqnear 6=∅)∧ (‖wqnear −qnew‖< rqnew) then
4 rqnew ←‖wqnear −qnew‖
5 wqnew ← wqnear

6 foreach qnear ∈ Qnear do
7 if (wqnew 6=∅)∧ (‖wqnew −qnear‖< rqnear) then
8 rqnear ←‖wqnew −qnear‖
9 wqnear ← wqnew

of reducing the cost of the solution path or finding a better
solution homotopy.

The local planner explicitly takes into account the obstacle
potential computation with our approximate configuration
free space X̃ f ree which learns the given arbitrary environ-
ment dynamically. This generality separates our work from
RABIT∗ [17], which assumes the obstacle potential, fobs and
∇ fobs, to be given as a priori or analytically computable. We
also explain features of ours that are different from CHOMP.

In the objective function of Eq. 1, fprior is generally
assumed to be independent of the environment [7] and
computed in the configuration space. We, therefore, only deal
with fobs depicted in the following equation:

fobs(ξ ) =
∫ 1

0
c(ξ (t)) ‖ d

dt
ξ (t) ‖ dt (5)

Unlike the original form in Eq. 2, we can naturally eliminate
the following two things:

1) a workspace-configuration mapping function x(·).
2) an integration over the simplified body model B.

These are possible because we can directly compute the
obstacle potential c(ξ (t)) with the following equation [7]:


−D(ξ (t))+ 1

2 ε, D(ξ (t))< 0
1

2ε
(D(ξ (t))− ε)2, 0 <D(ξ (t))≤ ε

0 otherwise

where D(ξ (t)) is a distance field value computed with our
approximate configuration free space X̃obs i.e., D(ξ (t)) =
−min(‖ξ (t)− q‖−ω(|V ∗q |) · rq),∀q which gives a negated
distance to the closest X̃ f ree.

The concept of ω(·) is to compensate the overestimation
of rq. Since our approximation result entirely depends on
the random sampling procedure, we can expect an over-
estimation of collision-free radius r, i.e., r ≥ r∗, r∗ for
a ground-truth distance to the closest obstacle space. To
accommodate this approximation error, we define ω(n), a

parameter function of n to be 1.0− ζ

(
log(n)
(n)

)1/d
, which

converges to 1 as n→ ∞ for a user parameter ζ ≥ 0. This
is based on the concept of statistical dispersion, which
is identical to the radius of a largest empty hypersphere,
i.e., containing no v ∈ V ∗q . The multiplication of ω(·) and
the collision-free radius rq therefore can be considered a
probabilistic maximum error of rq.

Fig. 3(b) visualizes an example of a gradient of obstacle
potentials denoted by black arrows in the configuration
space. By applying compensation ω(·), the boundary of
X̃ f ree can shrink toward V ∗ and the optimizer works more
conservatively. We can also compute ∇ fobs, as follows:

∇ fobs(ξ ) = ‖ξ ′‖ · [(I− ξ̂ ′ · ξ̂ ′
T
)∇c− cκ] (6)

where ∇c for a specific ξ (t) is a normalized d-
dimensional direction vector toward the closest X̃ f ree. To
be specific, it can be computed as p−ξ (t)

‖p−ξ (t)‖ , where p =

arg minq∈V ∗ (‖ξ (t)−q‖−ω(|V ∗q |) · rq).
It is, however, computationally expensive if we attempt to

consider the entire V ∗ for computing the obstacle potentials
c(ξ (t)) and ∇c(ξ (t)) which must be evaluated repeatedly
during the optimization. To this end, we restrict the con-
figuration space used for a local optimization of ξ within
V ∗q f rom

∪V ∗qto . This restriction can be a reasonable choice in
the light of the fact that the maximum length of a newly

generated edge is limited to γ

(
log |V |
|V |

)1/d
, when r-nn is

used for Near(·). According to the definition of V ∗q , all the
edges coming out from a configuration q is also completely
inside V ∗q at the initial phase of the optimization. Under
these circumstances, the optimizer makes the edges, i.e., the
initial trajectories, to converge within the configuration space
occupied by X̃ f ree of V ∗q f rom

∪V ∗qto , which is a practically
reasonable space for a local planning problem for the faster
optimization.

Back to Alg. 3, IsFeasible(·) checks whether the op-
timized trajectory eopt is valid using a sequence of
IsCollisionFree(·) calls where the update of X̃ f ree is in-
volved. DanceSolutionPath(·) is terminated when it yields
a feasible solution path after validating the best-so-far pro-
visional solution path by lazy collision checking.



IV. ANALYSIS

In this section, we discuss the properties of the proposed
method. We first discuss the asymptotic optimality and
then the time complexity of the computational overhead
induced by the configuration free space approximation and
optimization-based local planning.

A. Almost-sure Asymptotic Optimality

Let Eproposed and ElazyPRM∗ refer to the valid edges in
a graph constructed by the proposed method and lazy
PRM∗ [20], respectively. A vertex set of VlazyPRM∗ and
Vproposed is defined in a similar way. Without loss of gen-
erality, we assume that a sequence of random samples and
subroutines in both planners are identical.

As described with Alg. 3, the proposed method never
rejects any edge e ∈ ElazyPRM∗ because the path validation
in the proposed algorithm is identical to that of lazy PRM∗

except for the additional trajectory optimization. Further-
more, the proposed algorithm optimizes only edges that turns
out to be invalid, Eproposed rather has a chance to have
more edges than ElazyPRM∗ . (Line: 10 in Alg. 3). Therefore,
ElazyPRM∗ ⊆ Eproposed holds.

The vertex set is identical, because no modification is
applied to the sampling and collision checking on qrand as
shown in Algs. 1 and 2, i.e., VlazyPRM∗ = Vproposed . Con-
sequently, if we compute a solution path on Gproposed =
{Vproposed ,Eproposed} the optimality of the proposed algo-
rithm follows that of lazy PRM∗, which is proven almost-sure
asymptotically optimal [20].

B. Computational Time Complexity

The complexity and analysis of primitive operations used
for our method follows the discussion in [21], and we thus
deal with overheads introduced mainly by the proposed
algorithm.

In Alg. 2, we added various steps for X̃ f ree construction.
First of all, updates on V ∗ (Line: 5, 8, 11, 16) linearly
increase as the number of elements to be inserted increases,
because V ∗ does not have to be an ordered structure. We also
have O(|Qnear|) of iterations in PropagateCFreeSpace(·);
thus the time complexity of the entire while loop in Alg. 2
is dominated by that of Near(·), i.e., O(γd · 2d · log(|V |)),
which is identical to the expected cardinality of Qnear.

We perform an additional nearest neighbor search for
qrand ∈ Xobs (Line: 15), which is proportional to log(|V |) ·
L(Xobs), where L(·) is a Lebesgue measure, i.e., the hy-
pervolume of Xobs. It is an additional overhead compared
to PRM∗, depending on the volume of the configuration
obstacle space.

DanceSolutionPath(·) (Line: 17) validates the provisional
solution path as shown in Alg. 3. On top of the procedures
for lazy collision checking in this function, we additionally
perform Optimize(·) for optimization-based local planning.
Its computational overhead with modified obstacle potentials
defined in Eqs. 5 and 6 can be expressed as imax · z ·C(D(·))
where imax is the maximum iteration of optimization, z, the
number of discretized intermediate nodes and C(D), the

computational complexity for D(·) calculation. To compute
D(·), subsets of V ∗ associated with the two end points of ξ

should be considered. Its computational cost can be bounded
by O(d · γd · 2d · log(|V |)) which is a multiplication of the
expected number of near neighbors and d for the distance
computation in d dimensional Euclidean space. The number
of optimize(·) calls is, however, remarkably reduced by lazy
collision checking in practice [20].

V. EXPERIMENTS

A. Experiment setup

For fair comparison, all the tested methods are built upon
the same proximity subroutines such as discrete collision
detector and the nearest neighbor search available in OMPL
(Open Motion Planning Library) [22] integrated with a
CHOMP-based optimizer on V-REP simulator [23]. r-nn is
used for Near(·) with a parameter γ = 1.1 and the CHOMP-
based optimizer works with parameters of λ = 1, ε = 10−3,
µ = 2.0, z = 10, ζ = 1.1 and imax = 10, which are applied
identically to RABIT∗ and our algorithm. The reported
results are averaged over 20 trials and we only report values
on the plot after all of trials find the initial solution path.

B. Comparison against RABIT∗

We first compare the performance of DancingPRM∗

against RABIT∗, which works when the explicit represen-
tation of X f ree is available. Since our approach does not
assume such an environment, we can not say that the direct
comparison in this setting is completely fair. Nonetheless,
we would like to show how our method works, even in these
cases, to show the difference against RABIT∗ through this
section.

For this test, our evaluation benchmark is constructed by
following the ones used in the original paper of RABIT∗.
Specifically, they are R2 and R8 configuration spaces where
a wall with 10 narrow passages are located at the center in
a d-dimensional hypercube of a width 2, i.e. [−1,1]d . The
boundary of the configuration obstacle space is created to be
axis-aligned for easy computation of c(·) and ∇c(·). A pair
of input configurations (qinit , qgoal) are set to ([−1, ...,−1],
[1, ...,1]), and therefore, this benchmark is designed to have
multiple difficult-to-sample homotopies of solution paths.

Fig. 4 shows our experimental results of the solution cost
as a function of computation time. Since we assume that
the domain knowledge is available, “RABIT∗ + DF(δ )” uses
a distance field with a resolution of δ given as a priori.
“RABIT∗ + Dynamic DF” uses obstacle potentials computed
analytically on the fly. This runtime computation is possible
because we consider only axis-aligned configuration obsta-
cles in this test. Fig. 4(a) shows that RABIT∗ with a dynamic
distance field outperforms than those with precomputed
distance fields because using the precomputed distance fields
works more conservatively, i.e., yielding longer trajectories
that are farther from the boundary of Xobs on a given δ . Even
in this case, our method shows comparable performance to
“RABIT∗ + Dynamic DF” due to the local optimization that
uses configuration free space approximation.
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Fig. 4. Plot of the solution cost over computation time for four different
algorithms. Results are measured against the benchmarks of both R2 and
R8.

In R8, it takes a huge amount of time and memory to
construct a distance field with reasonable resolution. We
therefore only report “RABIT∗ + Dynamic DF” and other
planners. As we have observed, the experimental result can
be seen as negative for the proposed algorithm; R8 especially
seems to show our limitation in a high dimensional problem.
In practice, however, we do not know the exact configuration
free space, and obstacle potential computation in runtime
requires heavy computational overhead as well. For these
reasons, we further evaluate the proposed algorithm with
more general benchmarks, which RABIT∗ could not handle
directly because of the absence of an appropriate obstacle
potential computation function due to the complexity of the
configuration space.

C. Comparison in complex configuration spaces

In this experiment we compare DancingPRM∗ against
other asymptotic optimal planners, RRT∗, lazyPRM∗ and
lazy LBT-RRT [24] which is a near-optimal version of RRT∗

with lazy local planning. The parameter τ in parentheses of
the lazy LBT-RRT makes the planner almost surely converge
to within (1+τ) times of the optimum in terms of the solu-
tion cost. Fig. 6 shows a comparison result tested with our
benchmark set illustrated in Fig. 7, where the configuration
spaces of our benchmarks in Figs. 7(a), 7(b), 7(c) are R2,
SE(3) and S6, respectively. Fig. 5 shows a computation time
breakdown of DancingPRM∗.

The benchmarks contain both easy-to-find homotopies and
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Fig. 5. Computation time breakdown of the proposed algorithm measured
in our benchmarks (Fig. 7). Each abbreviation in legend stands for OPTi-
mization (OPT), Shortest Path tree update (SP), Nearest Neighbor search
(NN), and Collision Detection (CD). Note that the computation time for
X̃ f ree construction is negligible (< 1%) for all of three benchmarks.

difficult-to-find optimal homotopy of a solution path. The
optimization-based local planner cannot only improve the
performance by optimizing a solution path in a specific
homotopy, but also help to identify a better homotopy earlier
than other tested planners. Moreover, the light computation
of our X̃ f ree makes the proposed algorithm accomplish the
entire process in runtime without any priori information
while providing a better result against other tested algo-
rithms.

The 6-DOF of Figs. 7(b) and 7(c) has a relatively higher
computation cost for collision checking as observed in
Fig. 5. The lazyPRM∗ and DancingPRM∗ thus show superior
performance to the lazy LBT-RRT and RRT∗ thanks to
the local planning minimization by lazy collision checking.
Furthermore, the proposed algorithm improves the perfor-
mance even with the overhead of free space approximation
and optimization-based local planning. The details of the
benchmark scenes and an example of the approximate con-
figuration free space visualization can be seen in the attached
video.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present DancingPRM∗, an almost-sure
asymptotic optimal hybrid planner with sampling-based and
optimization-based planning. The proposed algorithm does
not depend on any precomputed domain knowledge or expen-
sive computation of obstacle potentials in the configuration
space throughout the entire process for seamless integra-
tion. We instead utilize the approximate configuration space
learned on the fly by empirical collisions and suggest a
decentralization of spatial information for efficient access.
The limitation is that it may be beyond the capability of
a sampling-based approach to approximate configuration
free space on the fly in higher dimensional space due
to the curse of dimensionality. Further, even though the
hypersphere-based representation is simple and effective in
low or moderate dimensional space, it would not be an
all-purpose solution. Some possible future work includes
dimension reduction techniques and adaptive representation
of configuration free space for better approximation.
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Fig. 6. The plots show the performance of four different asymptotic optimal planners. Each plot corresponds to the scene with same alphabetical numbering
in Fig. 7. The algorithms which are not reported on the plot has 50−90% of failure to find an initial solution path.
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Fig. 7. a) A 2-DOF mobile robot planning problem in a conference room which has both a wide-open area and narrow passages. To minimize the cost,
a robot would pass under the table where chair/table legs compose narrow passages. b) A 6-DOF quadrotor planning in a Sponza scene consisting of over
66K triangles. The Sponza scene is a three-story Gothic building with many pillars, which composes various homotopies of the solution path. c) A 6-DOF
manipulation problem to grab a cup in the middle of table through the narrow passage between two other cups and the ceiling. A sequence of afterimage
shows an example of the solution path.
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