
Data-Driven Kinodynamic RRT

Junghwan Lee1 Heechan Shin1 Sung-eui Yoon2

Abstract— We present a novel, data-driven kinodynamic mo-
tion planner. Our sampling-based planner is based on using a
physics simulator as a black box to compute a trajectory consid-
ering dynamics, even when we cannot derive exact propagation
functions. To improve its overall efficiency, we pre-compute a
motion database containing different motions simulated with
different controls and states defined in the local frame of a
robot. We then use the motion database to efficiently estimate
the simulated trajectory during iterations of our planner. When
the planner requests the best control to reach a desired state
from a query state, we retrieve nearby motions that are close to
the query state and pick the motion that is closest to the desired
state for the tree extension. To control accuracy of our planner
with a high efficiency, we lazily validate retrieved motions. The
pre-constructed motion database contains modular trajectories
and thus can be reused for other test cases, where we have
different composition of obstacles or different start/goal states.

I. INTRODUCTION

The robot motion planning problem has been actively

researched and applied to various fields including robotics,

computer graphics, biology, and so on [1], [2]. Among many

prior techniques, sampling-based motion planning algorithms

have been widely used to solve a variety of problems in

high dimensional spaces, thanks to its effectiveness with the

probabilistically completeness.

Planning for real world robots that move and interact with

environments under the physical laws requires another class

of constraints, known as kinodynamic constraints [3]. These

kinodynamic constraints include non-holonomic constraints

for underactuated systems and differential constraints for dy-

namical systems. Kinodynamic motion planning can provide

valuable solutions to a wide variety of applications such as

space robots, mobile robots with wheels, etc.

There are two main approaches in the robotics community

for solving the kinodynamic planning problem. The first

approach decouples the problem into two phases by com-

puting a basic path in the robot’s configuration space and

then adjusting it with proper controls such that the modified

path satisfies the dynamics and other constraints [4], [5],

[6]. Unfortunately, it is possible in this approach that the

computed path in the first step cannot be adjusted in a way

that we can track it under kinodynamic constraints in the

second step.

The second approach is a generalization of planning in

the configuration space by employing the state space that

1Junghwan Lee and Heechan Shin are at Dept. of Computer science,
KAIST, Daejeon, South Korea 2Sung-eui Yoon is at Dept. of Com-
puter science, KAIST, Daejeon, South Korea goolbee@gmail.com,
shn4438@gmail.com, sungeui@gmail.com

includes both configuration space and its velocity compo-

nents. Based on this simple generalization, many sampling-

based motion planning techniques can be used for the kin-

odynamic problems [7], [8] with a suitable metric and a

propagation function under dynamics systems, and resultant

planners become probabilistically complete. A proper prop-

agation function that is a set of motion equations should be

derived and integrated for these approaches. Unfortunately,

the explicit derivation of the propagation function can be

sometimes impossible or approximated for complex systems

with dynamics [9].

Recently, a sampling-based planner with a physics-based

simulator [10] is proposed to solve the kinodynamic planning

problem with complex dynamics by using the simulator,

i.e., numerical integrations with dynamic systems, instead

of integration of motion equations. Many other kinodynamic

planners spend a high portion on integrating motion equations

in practice. Similarly, the planner using the simulator takes

a high portion of its overall running time (about 85% in

our tested benchmarks). We observe that many similar or

even redundant simulations occur during the overall RRT

process, when objects in the environment have the same

dynamics properties. Eliminating these redundant simulations

by precomputing several simulations, and utilizing them can

improve the overall efficiency of the planner.

Main contributions. In this paper, we focus on sampling

based kinodynamic motion planning methods, particularly,

kinodynamic RRT planner, that uses simulation as integra-

tion of propagation functions, since it can handle a wide

variety of dynamical systems, even where we cannot define

exact propagation functions. In this context, we propose

a novel, data-driven kinodynamic motion planner for such

environments. Our method pre-computes a motion database

containing various motions generated from different local

states (Sec. IV-A). We then use the motion database to

estimate simulations and efficiently perform the integration of

propagation functions. We propose an efficient tree extension

method using the motion database (Sec. IV-B). Our motion

database has a finite number of entries and cannot contain

all the requested motions during the planning iterations.

To avoid any inaccuracy on the solution path, we propose

lazy validation methods to efficiently update the retrieved

motions from the database, whiling achieving high efficiency

(Sec. IV-C). In our tested benchmarks, our planner DDK-RRT

achieves up to 2.43 times runtime performance improvement

over the kinodynamic RRT planner using the simulator.

II. RELATED WORK

Among the sampling-based algorithms, Probabilistic

Roadmap Method (PRM) and Rapidly-exploring Random

Tree (RRT) are the most widely used techniques [11].

Particularly, RRT has been applied to various single query

problems, and many variations for higher performance have

been developed in different directions [12], [13].

The classic approach for kinodynamic motion planning in

robotics is to decouple the problem as two stages: firstly

compute an initial path by solving a basic path planning

problem with a geometric planner, and then compute a global

solution near the initial path, while satisfying the dynamics

and other constraints [14], [15]. When intractable paths are

generated from the first stage, this approach, unfortunately,

can result in a susceptibility to local minima, because of

limits on forces and torques for the robot in the environments.

In order to cope with the local minima problem, a num-

ber of approaches have been proposed. Svestka and Over-

mars [16] proposed an extension of randomized holonomic

planning technique to the non-holonomic planning assum-

ing a proper steering method for a system, and LaValle

and Kuffner [7] extended a sampling-based method with

the configuration space into the state space. Randomized

kinodynamic planning has been extended to improve the

performance [17], [18], [19], [10]. Since the dimensionality

of the state space is increased two times from that of

its configuration space, the complexity of sampling based

kinodynamic planners is higher than that of holonomic plan-

ning. Furthermore, selecting a suitable metric and designing

effective extension methods still remains to be challenging.

Additionally, directly considering physical constraints and

effectively generating samples under them have been also

studied [20]. Recently, propagation types used for kino-

dynamic planners and their properties have been investi-

gated [21], [22].

III. BACKGROUND

In this section, we give our problem definition followed

by the kinodynamic RRT planner. We then motivate our

approach.

A. Problem Definition

In the kinodynamic planning problem, the state space

is used for the same purpose as the configuration space

for the holonomic planning problem, to represent geomet-

ric and differential states of a robot. The state space for

the kinodynamic problem is defined as a set of a state

x = (q, q̇), where q denotes a configuration. Differential or

non-holonomic constraints can be described by a forward

propagation function f : X×U → Ẋ , where X and U represent

the state and control spaces, respectively. A solution path of

the planning problem consists of a sequence of controls, its

time durations, and states that can be obtained by sequentially

integrating the propagation function f .

In order to integrate the propagation function, a set of

motion equations need to be defined. Additionally, the dy-

namics in-between environments and a robot (e.g., friction,

gravity), and the physical property (e.g., torque limits) of

the robot should be derived. For complicated problems con-

sidering many dynamic properties, the propagation function,

unfortunately, is hard to derive explicitly [9], because of

the complexity of dynamics and various physical properties

of the robot. In some cases, the function is provided in

a simplified form, but can result in inaccuracy. In order

to provide more generality and higher accuracy, a realistic

physics-based simulation engine, which works as a black box

to the motion planner, is used for generating motions instead

of integrating the propagation function [10]. A downside of

this approach is that the physics-based simulation is more

computationally expensive than the integration of propagation

function.

Many physics-based simulation libraries (e.g., ODE, bullet,

and Nvidia PhysX) are available. These libraries support

rigid and even deformable objects, and rely on various

numerical integration of differential equations. In physics-

based simulators, a simulation time is discretized and the

propagation function is evaluated only in this discretized

simulation interval (e.g., 1 ms). This discretization interval,

called a simulation step, normally does not change during

the whole simulation. Simulating for a specific period (e.g.,

1 s) is achieved by iteratively executing simulation with the

simulation step. The simulation step has a trade-off between

the quality of solution and the running time of the simulation;

larger simulation steps get simulation results faster, but with

lower accuracy. We simply use the default value suggested

by the simulator community.

B. Kinodynamic RRT planner

Kinodynamic RRT planners have been derived from RRT

designed for holonomic planning [7]. Given a random tree

initialized from the start state, the kinodynamic RRT plan-

ner incrementally expands the tree by randomly generating

samples in the state space and attempting to connect nodes

of the tree to those random samples. Specifically, given a

randomly generated sample, xr, in the state space, we identify

the nearest neighbor, xn, in the tree from the random state xr.

Among a set of possible controls, the best control, ubest , is

then selected as the one that pulls the node xn most closely

toward the randomly chosen state xr.

In order to determine such a control, integration of the

propagation function is required. In this work, the propaga-

tion of motion is computed by running the physics-based

simulator as we discussed earlier (Sec. III-A), instead of de-

riving a set of motion equations. We then determine the best

control ubest after trying all available controls and choosing

the one that extends the state xn as close as possible to the

xr. In practice, searching the best control ubest is achieved

iteratively by randomly generating n different controls and

Algorithm 1 n-control Kinodynamic RRT

Require: tree T , n
T .AddVertex (xinit)

repeat
xr ← RandomStateInStateSpace()

xn ← NearestNeighbor(xr, T)

ubest ← FindBestControl(xn, xr, n)

xnew ← Extend(xn, ubest)

if CollisionFree(xnew, xn) then
T .AddVertex(xnew)

T .AddEdge(xn, xnew, ubest)

end if
until a collision-free path between xinit and xgoal is found

choosing the best one. Finally, we generate a new state, xnew,

by taking ubest from xn, and add it with its control ubest to the

tree if there is no collision in the trajectory between xn and

xnew. We call this algorithm a n-control kinodynamic RRT,

where n denotes the number of trials to find the best control.

Its pseudocode is shown in Algorithm 1. The kinodynamic

RRT is a probabilistically complete algorithm [7].

C. Motivation

The running time of each iteration of the kinodynamic

RRT can be decomposed into propagation process, nearest

neighbor search, and other parts including collision detec-

tion, tree expanding, etc. When a simulator is used for the

propagation process, executing the simulator takes the highest

portion of the running time, while we can handle a wider set

of robots and dynamics. In our tested benchmarks, running

the simulation takes about 87% (Table I). Note that a similar

or higher portion (e.g., 90%) was reported for performing

forward propagation within tree-based planners [10] that do

not use simulation.

During the kinodynamic RRT process running a simula-

tor, we observe that many similar simulations occur, when

environments consist of objects that have the same dynamics

property such as the friction constant. Furthermore, some of

simulations turn out to be exactly identical after performing

a proper transformation.

For example, when a mobile robot moves around on a

large floor that has the same, isotropic material properties,

trajectories of the robot in this environment are same in a

local frame defined by the robot’s orientation, while their

counterparts in the global frame, i.e., workspace, are differ-

ent. Fig. 1 shows an example of two different trajectories

of two stationary mobile robots, x1 and x2, applied by the

same control u that executes the same force with each robot’s

heading orientation. Their states x1 and x2 are different in

the state space; their global positions and orientations are

different. When the floor has the isotropic physical property,

the results of those two different simulations will be identical

in the robot’s local frame. As a result, a single simulation

Fig. 1. Two stationary mobile robots in a floor with isotropic physical
properties (e.g, the same isotropic friction). Even when the same control is
applied to both states, their states in the state space are different, but the same
simulation result can be utilized to both robots after a proper transformation.

result can be used for both states by transforming results from

one robot’s local frame to another one, instead of performing

simulations repeatedly.

Eliminating these duplicated simulations can improve the

overall efficiency of the planner. Furthermore, precomputing

simulation results in known environments in a database and

utilizing them can improve the runtime performance, and

the database also can be used for other problems in the

same environments with different start/goal positions or with

different composition of obstacles.

IV. ALGORITHM

In this section, we explain our kinodynamic sampling-

based planner utilizing a precomputed motion database. Our

planner is based on the RRT-based kinodynamic planner [7].

We first show the structure of the proposed motion database

and how to construct it. We then explain our planning

algorithm with the motion database and how to efficiently

validate generated paths from the database during planning.

Finally, we give an overall planning algorithm.

A. Building a motion database

We store various motions of a robot in the motion database,

where a robot motion is defined as a trajectory of the robot

given a start state and a control. In order to construct such

a motion database, we first define the local state space
of a robot to be a state space in the local frame of the

robot. The local state space contains various components

described in the robot’s local frame. They include velocities

and local geometric configurations such as joint angles for

an articulated robot or a steering angle of a wheeled robot.

Once the local state space is defined, we also define two

conversion functions, fc : X →Xlocal and fc inv : Xlocal ,G→X ,

where X is the global state space, Xlocal denotes the local

state space, and G is the information (e.g., the orientation

and global position of the robot) needed to position the local

frame of the robot into the global space. Generally, fc and

Algorithm 2 Data-Driven n-control Kinodynamic RRT

Require: tree T , n, and a motion database db
T .AddVertex (xinit)

repeat
xr ← RandomStateInStateSpace()

xn ← NearestNeighbor(xr, T)

controls ← RetrieveControls(db, xn)

if True w/ p(|controls|) (Eq. 1) then
ubest ← FindBestControlAmong(xn, xr, controls)

xnew ← ExtendFromDatabase(xn, ubest)

else
ubest ← FindBestControl(xn, xr, n)

xnew ← Extend(xn, ubest)

end if
if any of two validation conditions is satisfied then

ValidatePath (xnew)

end if
if CollisionFree(xnew, xn) then

T .AddVertex(xnew)

T .AddEdge(xn, xnew, ubest)

end if
until a collision-free path between xinit and xgoal is found

fc inv can be easily defined by geometric transformations

for robots. In general, the control space is defined in the

robot’s local frame. A conversion function for the control

state, therefore, is not required. An example of the local state

space and conversion functions we use in our experiments is

explained at Sec.V-A.

In the motion database, every component of motions are

defined in the local state space. Each motion entry consists of

a start state, a control state, control duration, and a trajectory.

Therefore, an input query consisting of a start state defined

in the global state space X is first converted to the local

space space Xlocal by applying the conversion function fc. A

resultant trajectory of the robot computed by performing the

simulator describes a motion after applying the control to the

start state of the robot. The motion trajectory is defined as

a set of states from the start and goal state. When a motion

retrieved from the database is applied to a global state, xn, of

the random tree for the tree expansion, we apply fc inv to the

trajectory of the motion as the conversion process from the

local to the global, and add it to xn. We maintain the motion

data as a lookup table indexed by a state of the local state

space. One may wonder why we do not include the control in

the key value of the motion database. We exclude a control

value out of the key value, mainly to reduce the dimension

of the database and to increase the hit ratio of identifying

similar local states from the database.

In order to build the motion database, motions can be

generated randomly or provided by the user. In this work, we

generate motions in a random way. In other words, we ran-

Fig. 2. An example plot of the motion utilization probability function
with α = 0.5, to decide whether the motion database is used, and the x-axis
represents ndb/n.

domly generate a start state and a control, and then store re-

sults of simulation for a fixed amount of time. Time duration

of the control is also chosen randomly. One can build more

effective motion databases by analyzing environments/robots

or by domain experts to target robots/applications.

B. Planning with the motion database

Our planner is based on the n-control kinodynamic RRT

planner (Sec. III-B). For each iteration, we randomly generate

a sample, xr, in the global state space, and find its nearest

neighbor node, xn, in the random tree. We then aim to choose

the best control input, ubest , that yields a new node, xnew, that

is the closest state to xr among different controls. We then

append the new node xnew with its control and trajectory to

the random tree if there is no-collision.

In order to compute ubest , we retrieve a set of motions pre-

computed with different controls from the database, instead

of relying on running the simulator. Given the node xn, we

fetch nearby motions from the database with a query key

value containing the local state of the node xn. Since it

is unlikely to have the motion exactly same as the query

state from the database, we perform the fixed-radius near

neighbor search that reports a set of states that are within

a distance, dsim, to the given query state. An example of

distance metrics used for our tested benchmarks is shown

at Sec. V-A. dsim, called a displacement control parameter,

determines an allowable similarity of states in the local state

space. As the higher dsim is used, the more data are fetched,

but the reliability of fetched motions becomes lower. In the

following section, we explain how to validate and adjust

inaccuracy caused by using such motions.

The number of retrieved motions and associated controls

also varies depending on the amount of pre-computed mo-

tions in the motion database. The more motions the database

has, the more number of controls are retrieved. These motions

and controls are used for calculating the best control to reach

xr closely. Building the database to cover the whole local

state space, however, is impossible and inefficient, because

Fig. 3. This figure shows an example of a retrieval displacement between a
retrieved motion (solid line) and the actual motion by running the simulation
(dotted line), when a start state of mret is different from a state of nsrc.

the size of the local state space grows exponentially as

its dimension grows. Therefore, in practice, the number of

retrieved controls for a given state can be less than the

required number of trials n for finding the best control, or

could be zero at the worst case. Searching the best control

with a limited number of retrieved controls might bias the

expansion of the tree in the global state space and interfere

the rapid exploration of the state space, degrading the overall

performance of the planner.

In order to address this issue arising with a small number of

retrieved controls, we selectively use our control generation

method using the motion database with a probability func-

tion, p(ndb), where ndb represents the number of controls

retrieved from the database given a query state. We define

the following probability function, called motion utilization

probability:

p(ndb) = (ndb/n)α , (1)

where n is the maximum number of control trials and α
is a parameter in the range of (0,1). α controls a degree

of utilization of the database proportional to a hit ratio

of the database. When α value increases, the database is

utilized more frequently. Fig. 2 shows a plot of the motion

utilization function when α is 0.5. When we decide not to

use our control generation method, we simply fall back to use

the original technique of choosing the best control method,

FindBestControl(·), running the simulator (Sec. III-B).

C. Validating retrieved motions

In this section, we explain how to control inaccuracy

caused by using nearby motions retrieved from the motion

database and how to validate those motions.

1) Retrieval displacement: A retrieved motion from the

database can be incorrect, because we retrieve a motion

whose source state can be different from a query state, while

their distance is controlled by the parameter dsim. Fig. 3

shows an example of such a case. Suppose that a random tree

is extended from a node nsrc with a retrieved motion mret .

When the start state of mret is different from the state of nsrc,

Fig. 4. This figure shows an example when a retrieved motion with
slight displacement causes a collision. The retrieved motion mret successfully
extends the tree toward a node n (solid line), its corresponding, actual
motion (dotted line), however, causes a collision with obstacles. The precise
trajectory to the node n is computed based on our validation process.

applying the motion mret to nsrc would lead to a different

trajectory from the actual motion that can be generated by

running the simulator to nsrc. We call this displacement

between the actual motion and the retrieved one a retrieval
displacement.

Calculating the actual motions requires to perform sim-

ulation at runtime. As a result, it is infeasible to precisely

measure the retrieval displacement. Therefore we approxi-

mate a retrieval displacement of a retrieved motion simply

as the distance between a query state and the start state of

its retrieved motion, which is bounded by the displacement

control parameter dsim.

If dsim is set to be small, the retrieval displacement with a

few extensions would not affect the exploration of the state

space in practice. The displacement, however, aggravates,

since retrieval displacements are accumulated as the random

tree is expanded. Moreover, even a small displacement can

cause a problem when a tree is expanded near obstacle

regions. Fig. 4 shows such an example. The retrieved motion

mret successfully extends the tree toward a node n (a solid

line). However, the actual motion (a dotted line) causes a

collision although the retrieval displacement is small. To

address this problem, we employ motion validation process.

2) Motion validation: In order to check whether a re-

trieved motion does not cause any collisions, we perform

a motion validation operation by running a simulator with

its start state and control. If any collision occurs in the

recomputed trajectory with the simulation, we remove the

motion’s corresponding edge and all child nodes in the ran-

dom tree. Otherwise, we update the random tree by replacing

the recomputed trajectory with the prior retrieved motion.

The frequency of performing validation operations gov-

erns the accuracy and efficiency of our planner. Validating

more retrieved motions reduces a probability to have inac-

Fig. 5. Tested environment for a sled robot. The start and goal state of the
robot are located at lower and upper sides of the image (circled in red).

curate nodes in the state space with a higher computational

overhead. Therefore, motion validation should be carefully

performed during iterations for the efficiency of the planner,

while exploring the state space effectively.

Given this trade-off between the accuracy and efficiency,

we use a lazy validation method that checks only motions that

need to be validated immediately (e.g. motions in a solution

path) or that are likely to be invalidated (e.g., motions close to

obstacles). When a solution path is found, we validate every

motions in the solution path in order to verify that the robot

can reach to the goal with the solution. If the checked path

does not reach the goal, we update it with simulated motions

in the tree and then continue iterations until a new solution

is found.

We define two criteria to see whether we need to perform

the validation operation by considering a possibility of being

invalidated in order to balance between efficiency and accu-

racy. When a new node is added to the tree, we check the

following two criteria to decide whether we need to perform

validation:

1) An accumulated displacement of the node is larger than

thresholda,

2) The distance from the node to the nearest obstacle is

less than thresholdo,

If any of criteria is satisfied, we validate motions along the

path from the root to the newly inserted node.

A pseudocode of the overall algorithm of our planner is

shown at Algorithm 2.

D. Probabilistic Completeness

Our planning method can efficiently explore the state

space, while reducing duplicated, time-consuming propaga-

tion simulations by using the precomputed motion database.

The correctness of solutions computed by the proposed

planner is same as any planning algorithm using a physics

simulator, because our solution is entirely validated by the

Fig. 6. A solution path computed by our method.

same simulator. The sub-paths in RRT tree that are not

included in the solution path, however, could be incorrect,

because we lazily validate motions in the tree. When there

are many small obstacles in the environment, the homotopy

of the solution path might be changed after performing the

validation process. This, however, does not cause a problem

in our application that aims to compute a feasible planning

solution efficiently.

Nonetheless, the insufficient number of retrieved controls

and displacements by using nearby retrieved motions can

degrade the exploration quality of the state space. In order

to guarantee the probabilistic completeness of our method,

we set our planner to invoke our extension method using

the database with a probability β and use the original

kinodynamic extension method with a probability 1−β . We

set β to 0.85 in our tested experiments.

V. EXPERIMENTAL RESULTS

We implemented our method on an Intel i7 desktop

machine that has 3.6GHz CPU and 16GB main memory.

Our method is built upon an Open Motion Planning Library

(OMPL [23]). We chose the Open Dynamic Engine [24]

as a simulation engine among well known libraries such

as PhysX, Bullet, Vortex, etc. Please note that our planner

is not restricted to a specific library; therefore any library

can be coupled to our method. We compared our method,

denoted as DDK, to the kinodynamic RRT with n control

trials (Sec. III-B), denoted as n-RRT, against a kinodynamic

planning problem for a rigid robot with dynamics.

A. Benchmark Model

We conducted experiments for a sled robot that can apply

force forward and horizontal torques on a slippery floor with

static obstacles. Fig. 5 shows our experiment environment.

In our model, the global state space has the following

components of the robot:

x = (p,θ ,v,ω),

TABLE I

PERFORMANCE COMPARISON TABLE BETWEEN n-CONTROL

KINODYNAMIC RRT (n-RRT, SEC. III-B) AND OUR METHOD (DDK,

SEC. IV). IN DDK 1, 40K MOTIONS ARE GENERATED AND IN DDK 2,

120K MOTIONS ARE GENERATED IN THE PREPROCESSING PHASE.

n-RRT DDK 1 DDK 2

40k DB 120k DB

of iterations 12111.5 14841.2 13174.8

of nodes 415.4 511.7 329.1

DB construction time (s) - 38.4 115.3

Planning time (s) 215.88 131.91 88.84

Simulation time (s) 188.52 84.27 46.27

% of simulation 87.33 63.88 52.08

where p denotes the global position in the three dimensional

space, θ denotes an orientation, v denotes linear velocity (vx,

vy), and ω denotes angular velocity. The local state space,

which is used in the motion database, is defined by linear

velocity and angular velocity in local coordinate space of a

robot:

xlocal = (vlocal ,ωlocal),

where vlocal ,ωlocal represent the converted linear and angular

velocities at the robot’s local coordinate space. Conversion

functions fc and fc inv are defined as fc = Pro j(M−1
G x) and

fc inv = MGReconst(xlocal), where MG represents a matrix

containing translational and rotational parts between local

and global frames. Pro j(·) is a projection function that takes

out the first two global coordinates, while Reconst(·) is the

reconstruction function putting those two dropped global

coordinates back.

We use simple, weighed Euclidean distance metrics for

computing the distance between states in both global and

local state spaces. These metrics are defined as:

dglobal(x1,x2) = wp(‖p1 −p2‖)2 +wo(1− | θ1 ·θ2 |)2

+wv(‖v1 −v2‖)2 +wω(‖ω1 −ω2‖)2,

dlocal(x′1,x
′
2) = wv(‖v′1 −v′2‖)2 +wω(‖ω ′

1 −ω ′
2‖)2,

where wp,wo,wv,wω are weights for components of the state

space and x′ denotes the variable defined in the local state

space. We use dglobal for computing the nearest neighbor

during RRT iterations and dlocal for the fixed-radius near

neighbor search used in retrieving similar motions from the

database.

Finally, the control space of the robot has two dimensions:

force along the long edge of the robot to represent the forward

and reverse acceleration, and yaw torque. Combining these

controls, the robot can reach any place on the slippery floor

with complex maneuvers.

TABLE II

BREAKDOWN OF THE RUNNING TIME

n-RRT DDK 1 DDK 2

Total time (s) 215.88 131.91 88.84

Simulation time (s) 188.52 84.27 46.27

% of simulation 87.33 63.88 52.08

Retrieval time (s) 0 1.92 7.99

% of retrieval 0.00 1.46 8.99

Validation time (s) 0 13.24 11.91

% of validation 0.00 10.04 13.41

others (s) 27.35 34.26 23.88

% of others 12.67 25.98 26.88

B. Results and Comparisons

We tested our method with different sizes of the motion

database. We ran the experiment 20 times for each method

and report the mean of those results. Table I shows exper-

imental results with two different settings for our method

and with the conventional kinodynamic RRT with n = 10. In

the first experiment (DDK 1), we generate 40 K motions for

the database, and 120 K motions are generated in the second

experiment (DDK 2). For building the database, it took 38.4 s

and 115.3 s as the pre-computation time, and used 13MB

and 40MB of memory. Fig. 6 shows one of solution paths

computed by our planner.

In n-RRT, the simulation takes a very high portion (about

87%) of the running time for simulation, while our planner,

DDK, uses a smaller portion for the simulation as more

motions are stored in the motion database. This is mainly

because we replace simulation that is computationally ex-

pensive with efficient data retrieval operations. As we use

a bigger database, the planning time decreases. DDK 1 with

40K database shows 1.64 times faster, and DDK 2 with 120K

database shows 2.43 times faster than n-RRT.

Note that the generated motion database can be reused for

different problems such as different composition of obstacles

and start/goal states as long as the applied dynamics to

the robot is not changed, because motions in the database

are constructed in its local state space. The cost of pre-

computing motion databases is amortized as we use for

different planning queries.

Our DDK planer can show a better performance, even if

we solve a single problem and discard the database. When we

compare different methods in terms of the total time including

the construction time, DDK 1 shows 1.27 times faster and

DDK 2 shows 5% improvement over n-RRT. The lower

performance of DDK 2 is caused by its large construction

time.

Table II shows a breakdown of the running time of n-

control kinodynamic RRT and our method with different

database sizes. We divide the running time into simulation

time, retrieval time from the database, time for validations,

and time spent on other parts (e.g. nearest neighbor search,

maintaining graph, etc.) As we have the larger database, we

reduce simulation and validation costs, while increasing the

retrieval time. Since the motion retrieval from the motion

database is very efficient, the overall performance with the

larger database was improved.

Limitations. A major drawback of our method is that our

planner relies on four parameters related to the validation

process (Sec.IV-C). While our currently chosen parameter

values worked well for our tests, further analysis is required

to design robust thresholds that work with a wide variety

of robots and environments. The size of the database affects

the overall performance. We showed that the larger database

achieves a better performance. Nonetheless, a huge database

would increase not only the construction time but also the

retrieval time, and could degrade the overall performance.

The optimal size of the database should be chosen depending

on a complexity of robots and a dimension of the database.

VI. CONCLUSION

For planning under kinodynamic constraints, we have

proposed a novel data-driven kinodynamic motion planner

designed for complex dynamics. We proposed an extension

method utilizing the motion database that is constructed as

a preprocessing, and replaced the time-consuming integra-

tion of propagation functions by motion retrievals from the

database. In order to increase the usage of a finite database

in the continuous state space, we retrieved nearby motions to

the query state and computed the best control and trajectory.

To achieve high accuracy with high efficiency, we lazily

validated retrieved motions. As a result, our proposed planner,

DDK-RRT, shows meaningful improvement over the previous

method. Constructed motion database can be reused for

other problems such as different composition of obstacles

or different start/goal state.

As future research directions, we would like to develop

a better method for the database construction by reflecting

the capability of a robot, in addition to addressing current

drawbacks of our method. There have been machine learning

approaches to utilize prior sampling information [25], [26]. It

is interesting to apply this approach to our method for further

improvement. Finally, we would like to apply our method to

more challenging problems that deal with complicated robots

such as a humanoid.

VII. ACKNOWLEDGMENT

This work was supported in part by MI/KEIT 10070171
and MSIP/IITP [R0126-17-1108]. Corresponding author of
this paper is Sung-eui Yoon.

REFERENCES

[1] P. W. Finn and L. E. Kavraki, “Computational approaches to drug
design,” Algorithmica, vol. 25, no. 2-3, pp. 347–371, 1999.

[2] J. Latombe, “Motion planning: A journey of robots, molecules, digital
actors, and other artifacts,” Int’l. Journal of Robotics Research, vol. 18,
pp. 1119–1128, 1999.

[3] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” Journal of the ACM (JACM), vol. 40, no. 5, pp. 1048–1066,
1993.

[4] Z. Shiller and S. Dubowsky, “On computing the global time-optimal
motions of robotic manipulators in the presence of obstacles,” Robotics
and Automation, IEEE Transactions on, vol. 7, no. 6, pp. 785–797,
1991.

[5] J. J. Kuffner Jr, S. Kagami, K. Nishiwaki, M. Inaba, and H. In-
oue, “Dynamically-stable motion planning for humanoid robots,” Au-
tonomous Robots, vol. 12, no. 1, pp. 105–118, 2002.

[6] R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, and J. Kuffner,
“Bispace planning: Concurrent multi-space exploration,” Proceedings
of Robotics: Science and Systems IV, vol. 63, 2008.

[7] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp.
378–400, 2001.

[8] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kino-
dynamic motion planning with moving obstacles,” The International
Journal of Robotics Research, vol. 21, no. 3, pp. 233–255, 2002.

[9] I. Sucan, J. Kruse, M. Yim, and E. Kavraki, “Kinodynamic motion
planning with hardware demonstrations,” in IROS, Sept 2008, pp.
1661–1666.

[10] I. Sucan and L. E. Kavraki, “A sampling-based tree planner for systems
with complex dynamics,” Robotics, IEEE Transactions on, vol. 28,
no. 1, pp. 116–131, 2012.

[11] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[12] J. Guitton, J.-L. Farges, and R. Chatila, “Cell-rrt: Decomposing the
environment for better plan,” in IROS, 2009, pp. 5776–5781.

[13] J. Lee, O. Kwon, L. Zhang, and S. Yoon, “A selective retraction-based
rrt planner for various environments,” Robotics, IEEE Transactions on,
vol. 30, no. 4, pp. 1002–1011, Aug 2014.

[14] F. Lamiraux, S. Sekhavat, and J.-P. Laumond, “Motion planning and
control for hilare pulling a trailer,” Robotics and Automation, IEEE
Transactions on, vol. 15, no. 4, pp. 640–652, 1999.

[15] C. Stachniss and W. Burgard, “An integrated approach to goal-directed
obstacle avoidance under dynamic constraints for dynamic environ-
ments,” in IROS, vol. 1. IEEE, 2002, pp. 508–513.

[16] P. Svestka and M. H. Overmars, “Motion planning for carlike robots
using a probabilistic learning approach,” The International Journal of
Robotics Research, vol. 16, no. 2, pp. 119–143, 1997.

[17] P. Cheng, E. Frazzoli, and S. M. LaValle, “Improving the performance
of sampling-based planners by using a symmetry-exploiting gap re-
duction algorithm,” in ICRA, vol. 5. IEEE, 2004, pp. 4362–4368.

[18] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sam-
pling for planning under differential constraints,” in Robotics and
Automation, 2009. ICRA’09. IEEE International Conference on. IEEE,
2009, pp. 2859–2865.

[19] E. Plaku, E. Kavraki, and M. Y. Vardi, “Motion planning with dynamics
by a synergistic combination of layers of planning,” Robotics, IEEE
Transactions on, vol. 26, no. 3, pp. 469–482, 2010.

[20] R. Gayle, S. Redon, A. Sud, M. C. Lin, and D. Manocha, “Efficient
motion planning of highly articulated chains using physics-based
sampling,” in Proceedings 2007 IEEE International Conference on
Robotics and Automation, 2007.

[21] T. Kunz and M. Stilman, “Kinodynamic rrts with fixed time step
and best-input extension are not probabilistically complete,” in WAFR,
2014, pp. 233–244.

[22] Y. Li, Z. Littlefield, and K. E. Bekris, “Sparse methods for efficient
asymptotically optimal kinodynamic planning,” in Workshop on the
Algorithmic Foundations of Robotics (WAFR), 08/2014 2014.

[23] I. A. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, http://ompl.kavrakilab.org.

[24] Open Dynamics Engine. http://sourceforge.net/projects/opende/files/.
[25] M. Kalisiak and M. van de Panne, “Faster motion planning using

learned local viability models,” in ICRA, 2007.
[26] J. Pan, S. Chitta, and D. Manocha, Faster Sample-Based Motion

Planning Using Instance-Based Learning, 2013.

