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ABSTRACT

Approximate Nearest Neighbor (ANN) search has been an active research problem across many

fields in computer science including computational geometry, data mining, information retrieval, and

computer vision. The problem is especially important for high-dimensional and large-scale cases due to

the efficiency requirement by many practical applications. Traditional hierarchical approaches including

the kd-trees have been used for low-dimensional data, however, these techniques are not scalable to

high-dimensional data. Hence compact code representations of high-dimensional data have been actively

studied recently, since they can provide efficient similarity search and are suitable for handling large scale

databases.

In this dissertation, two compact representations of high-dimensional data and search scheme based

on the compact codes are proposed: 1) Spherical Hashing and 2) Distance Encoded Product Quantization.

In the Spherical Hashing, a novel hypersphere-based hashing functions are proposed to map more spatially

coherent data into a binary code compared to hyperplane-based methods. We also propose a new

binary code distance function tailored for our hypersphere-based binary code encoding scheme, and an

efficient iterative optimization process to achieve both balanced partitioning for each hashing function and

independence between hashing functions. Furthermore, we generalize the Spherical Hashing to support

various similarity measures define by kernel functions. We also propose a novel compact code encoding

scheme that distributes the available bit budget to encode both the cluster index and the quantized

distance between point and its cluster center in the Distance Encoded Product Quantization (DPQ).

We also propose two different distance metrics tailored to the Distance Encoded Product Quantization.

All the proposed schemes are extensively evaluated against the state-of-the-art techniques with various

large-scale benchmarks consisting of high-dimensional image descriptors.

This dissertation includes two ongoing works: 1) shortlist computation in the inverted file and 2)

tag-driven feature learning. In the first ongoing work, a distance estimator based on the orthogonality

property in a high-dimensional space is proposed. We also propose a distance aware indexing method

and a shortlist construction scheme using the distance estimator. In the second work we learn an image

feature from a large-scale tagged image database. Specifically, we define pseudo classes from the tag

information and train a neural network for those pseudo classes.
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Chapter 1. Introduction

Thanks to rapid advances of digital camera and various image processing tools, we can easily create

new pictures and images for various purposes. This in turn results in a huge amount of images available

online. These huge image databases pose a significant challenge in terms of scalability to many computer

vision applications, especially those applications that require efficient similarity search such as the image

retrieval.

Image search system consists of two main parts, 1) feature extraction and 2) indexing, encoding

and searching the extracted features, as illustrated in Fig. 1.1. Since the features used in the image

search problem are high-dimensional vectors in general. This dissertation is mostly focusing on the data

encoding and searching.

Approximate Nearest Neighbor (ANN) search has been an active research problem across many

fields in computer science including computational geometry, data mining, information retrieval, and

computer vision. The problem is especially important for high-dimensional and large-scale cases due to

the efficiency requirement by many practical applications.

For similarity search, nearest neighbor search techniques have been widely studied and tree-based

techniques [1, 2, 3, 4] have been used for low-dimensional data. Unfortunately, these techniques are not

scalable to high-dimensional data. Hence recently compact data representations have been actively

studied to provide efficient solutions for such high-dimensional data [5,6,7,8,9,10,11,12,13,14,15,16,17,

18,19,20,21,22].

Encoding high-dimensional data points into compact binary codes based on hashing techniques en-

ables higher scalability thanks to both its compact data representation and efficient indexing mechanism.

Similar high-dimensional data points are mapped to similar binary codes and thus by looking into only

those similar binary codes (based on the Hamming distance), we can efficiently identify approximate

nearest neighbors.

Existing hashing techniques can be broadly categorized as data-independent and data-dependent

schemes. In data-independent techniques, hashing functions are chosen independently from the data

points. Locality-Sensitive Hashing (LSH) [5] is one of the most widely known techniques in this cate-

gory. This technique is extended to various hashing functions [6,7,10,11,12]. Recent research attentions

have been shifted to developing data-dependent techniques to consider the distribution of data points and

design better hashing functions. Notable examples include spectral hashing [9], semi-supervised hash-

ing [16], iterative quantization [19], joint optimization [20], and random maximum margin hashing [21].

In all of these existing hashing techniques, hyperplanes are used to partition the data points into two

sets and assign two different binary codes (e.g., −1 or +1) depending on which set each point is assigned

to. Departing from this conventional approach, we propose a novel hypersphere-based scheme, spherical

hashing, for computing binary codes in Chapter 3. Intuitively, hyperspheres provide much stronger power

in defining a tighter closed region than hyperplanes. For example, at least d+ 1 hyperplanes are needed

to define a closed region for a d-dimensional space, while only a single hypersphere can form such a closed

region even in an arbitrarily high dimensional space.

In the other hands, Product Quantization (PQ) [23] and its recent improvement, Optimized Product

Quantization (OPQ) [24], have shown the-state-of-the-art performance. Its high accuracy and efficiency

– 1 –
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Figure 1.1: This figure shows a conceptual procedure of the image search. In general, the extracted

image features are high-dimensional vectors. The high dimensionality makes the search significantly

complicated (i.e. curse of dimensionality). This dissertation addresses indexing, encoding, and searching

(red rectangle) for those high-dimensional data by proposing novel compact data representations.

is mainly because (1) quantization in subspaces offers a strong representational power and (2) distances

between two data points can be computed via a look-up table. Its input feature space is divided into

several disjoint subspaces, and each subspace is partitioned into clusters independently. A data point is

then represented by an index of its corresponding cluster in each subspace. The distance between two

data points is approximated by the sum of distances of their cluster centers computed in each subspace.

PQ and OPQ can effectively generate many clusters in each subspace and thereby reduce the quanti-

zation distortion. Nonetheless, we have found that their approach shows marginal accuracy improvement

in practice, as we increase the number of clusters in each subspace. This is mainly because they encode

only clusters containing data points, but are not designed to consider how far data points are located

away from cluster centers. To address aforementioned problems, we propose a new binary code encoding

scheme, Distance-encoded Product Quantization (DPQ), and two different distance metrics tailored to

the scheme in Chapter 4.

The inverted file structure has been applied to the PQ framework to avoid expensive exhaustive

distance estimations [23]. Specifically, in order to prevent linear scan on whole database coarse quantiza-

tion is performed with given a query to compute candidate search results called shortlist which is a small

fraction of the whole data. However, the conventional shortlist construction scheme has a limitation that

some close points to the query can be missed in the shortlist. To address this, we propose a distance

aware indexing method and a shortlist construction scheme using the distance estimator designed for the

high-dimensional data in Chapter 5.

We also investigate about the image feature. The deep convolutional neural network trained on the

ImageNet dataset [25] shows the state-of-the-art performance in the image classification task. The image

features computed in the intermediate layers in the deep convolutional neural network can be used in

many computer vision applications including visual search and tagging. Specifically, the vectors in the

fully connected layers in the network is known as one of the best image features. However, the neural

network trained on the ImageNet dataset has a few disadvantages. First, most of images in the ImageNet

dataset contain a single object and are strictly assigned to a single object label. This can bring training
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bias to the pre-defined fixed number of object categories. And the trained network is weak at images

containing drawings, graphics, or illustrations since most images in the training set are real photos. In

Chapter 6, we propose a new scheme to train a neural network with large-scale image dataset that are

weakly annotated with multiple text tags.
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Chapter 2. Related Work

In this chapter we discuss prior work related to image descriptors and nearest neighbor search

techniques.

2.1 Image Descriptors

To identify visually similar images for a query image, many image descriptors have been studied [26].

Examples of the most popular schemes include the Bag-of-visual-Words representation [27] which is

a weighted histogram of visual words computed by local image descriptors such as SIFT [28], and

GIST descriptor [29] which have been known to work well in practice. These image descriptors have

high dimensionality (e.g. hundreds to thousands) and identifying similar images is typically reduced to

finding nearest neighbor points in those high dimensional, image descriptor spaces [30]. Since these image

descriptor spaces have high dimensions, finding nearest neighbor image descriptors has been known to

be very hard because of the ‘curse of dimensionality’ [5].

2.2 Hierarchical Methods

Space partitioning based tree structures such as kd-trees [1, 2], R-trees [3], Vantage Point Trees

(VPT) [31] have been used to find nearest neighbors. Excellent surveys for such tree-based indexing

and nearest neighbor search methods are available [32, 33]. Using kd-trees is one of the most popular

approaches, and thus there have been a lot of optimization efforts such as randomized kd-trees [34],

relaxed orthogonality of partitioning axes [35], and minimizing probabilistic search cost [36]. It has

been widely known, however, that kd-tree based search can run slower even than the linear scan for

high dimensional data. Nistér and Stewénius [37] proposed another tree-based nearest neighbor search

scheme based on hierarchical k-means trees. Muja and Lowe [4] have proposed an automatic parameter

selection algorithm of some of techniques mentioned in above.

Although these techniques achieve reasonably high accuracy and efficiency, they have been demon-

strated in small image databases consisting of about one million images. Also, these techniques do not

consider compressions of image descriptors to handle large-scale image databases.

2.3 Binary Code Embedding Methods

Recently binary code embedding methods have been actively studied, since they provide a high

compression rate by encoding high-dimensional data into compact binary codes, and fast distance (i.e.,

similarity) computation with simple bit-string operations or a pre-computed lookup table. We categorize

binary code embedding methods into two categories: projection and clustering based methods.

2.3.1 Projection based methods

These techniques map high-dimensional data to the Hamming space by using projection func-

tions. They can be categorized further into data-independent and data-dependent methods. In data-
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independent methods, the hash functions are defined independently from the data. One of the most

popular hashing techniques in this category is Locality Sensitive Hashing (LSH) [5]. Its hash function

is based on projection onto random vectors drawn from a specific distribution. Many variations and

extensions of LSH have been proposed for Lp norms [7], learned metrics [11], min-hash [10], inner prod-

ucts [6], multi-probe [38]. Kulis et al. [30] generalized LSH to Kernelized LSH that supports arbitrary

kernel functions defining similarity. Raginsky and Lazebnik [12] have proposed a binary code embedding

scheme based on random Fourier features for shift-invariant kernels. According to Johnson-Lindenstrauss

lemma [39, 40], LSH preserves the distances among the data points within a small relative error bound

by using a sufficient number of projections. Specifically, at least O(ln n/ε2) projections are required for

a relative error rate ε, where n is the number of data points. Hence, these data-independent methods

can be inefficient especially for short binary codes computed with a small number of projections.

There have been a number of research efforts to develop data-dependent hashing methods that reflect

data distributions to improve the performance. Weiss et al. [9] have proposed spectral hashing motivated

by spectral graph partitioning. Liu et al. [41] applied the graph Laplacian technique by interpreting a

nearest neighbor structure as an anchor graph. Strecha et al. [42] used Linear Discriminant Analysis

(LDA) for binarization of image descriptors. Wang et al. [16] proposed a semi-supervised hashing method

to improve image retrieval performance by exploiting label information of the training set. Gong and

Lazebnik [19] introduced a procrustean approach that directly minimizes quantization error by rotating

zero-centered PCA-projected data. He et al. [20] presented a hashing method that jointly optimizes

both search accuracy and search time by incorporating a similarity preserving term into the Independent

Component Analysis (ICA). Joly and Buisson [21] constructed hash functions by using large margin

classifiers such as the support vector machine (SVM) with arbitrarily sampled data points that are

randomly separated into two sets. In most cases, data-dependent methods outperform data-independent

ones with short binary codes.

The efficiency of each hash function in data-dependent methods is, however, getting lower as they

allocate longer binary codes. The main cause of this trend is the growing difficulty of defining independent

and informative set of projections as the number of hash functions increases. To avoid the issue there

have been a few approaches that use a single hash function to determine multiple bits and use less hash

functions [41,43,44,45].

2.3.2 Quantization based methods.

These techniques are closely related to clustering. In these methods, a binary code of a data point

encodes the index of a cluster containing the data point. Product Quantization (PQ) [23] decomposes

the original data space into lower-dimensional subspaces and quantizes each subspace separately using

k-means clustering. It then computes a binary code as a concatenation of cluster indices, encoded in

subspaces.

He et al. [46] have proposed k-means hashing, which optimizes cluster centers and their cluster

indices in a way that the Hamming distance between encoded cluster indices reflects distances between

cluster centers. Recently, Ge et al. have proposed Optimized PQ (OPQ) [24] that optimizes PQ by

minimizing quantization distortions with respect to the space decomposition and code books. OPQ

shows the state-of-the-art results over other quantization and projection based methods. Norouzi and

Fleet have presented Cartesian k-means [47] that also reduces the quantization distortions of PQ in a

similar manner to OPQ.
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Hamming embedding [48] uses an orthogonal projection and thresholding projected values for com-

puting binary codes only within a cluster. This approach provides higher accuracy within each cluster

and works for image retrieval. On the other hand, this method is not designed for accurately measuring

distances between points that are contained in different clusters.

2.4 Distance based Indexing Methods

The database community has been designing efficient techniques for indexing high dimensional points

and supporting various proximity queries. Filho et al. [49] index points with distances from fixed pivot

points. As a result, a region with the same index given a pivot becomes a ring shape. This method reduces

the region further by using multiple pivot points. They then built various hierarchical structures (e.g.,

R-tree [3]) to support various proximity queries. The efficiency of this method highly depends on the

locations of pivots. For choosing pivots, Jagadish et al. [50] used k-means clustering and Venkateswaran

et al. [51] adopted other heuristics such as maximizing the variance of distances from pivots to data

points.

This line of work uses a similar concept to ours in terms of using distances from pivots for indexing

high-dimensional points. However, our approach is drastically different from these techniques, since ours

aims to compute compact binary codes preserving the original metric spaces by using hashing, while

theirs targets for designing hierarchical indexing structures supporting efficient proximity queries.
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Chapter 3. Spherical Hashing

3.1 Overview

In most of prior existing hashing techniques, hyperplanes are used to partition the data points into

two sets and assign two different binary codes (e.g., −1 or +1) depending on which set each point is

assigned to. Departing from this conventional approach, we propose a novel hypersphere-based scheme,

spherical hashing, for computing binary codes. Intuitively, hyperspheres provide much stronger power in

defining a tighter closed region than hyperplanes. For example, at least d+ 1 hyperplanes are needed to

define a closed region for a d-dimensional space, while only a single hypersphere can form such a closed

region even in an arbitrarily high dimensional space.

Our paper has the following contributions:

1. We propose a novel spherical hashing scheme, analyze its ability in terms of similarity search, and

compare it against the state-of-the-art hyperplane-based techniques (Sec. 3.2.1).

2. We develop a new binary code distance function tailored for the spherical hashing method (Sec. 3.2.2).

3. We formulate an optimization problem that achieves both balanced partitioning for each hashing

function and the independence between any two hashing functions (Sec. 3.2.3). Also, an efficient,

iterative process is proposed to construct spherical hashing functions (Sec. 3.2.4).

4. We generalize spherical hashing to support arbitrary kernel functions, and reformulate the opti-

mization process into a kernelized one (Sec. 3.3).

In order to highlight benefits of our method, we have tested our method against different benchmarks

that consist of one to 75 million image descriptors with varying dimensions. We have also compared

our method with many state-of-the-art techniques and found that our method significantly outperforms

all the tested techniques, confirming the superior ability of defining closed regions with tighter bounds

compared to conventional hyperplane-based hashing functions (Sec. 3.4).

3.2 Spherical Hashing

Let us first define notations. Given a set of N data points in a D-dimensional space, we use

X = {x1, ..., xN}, xi ∈ RD to denote those data points. A binary code corresponding to each data point

xi is defined by bi = {−1,+1}l, where l is the length of the code1.

3.2.1 Binary Code Embedding Function

Our binary code embedding function H(x) = (h1(x), ..., hl(x)) maps points in RD into the binary

cube {−1,+1}l. We use a hypersphere to define a spherical hashing function. Each spherical hashing

1(−1,+1)∗ codes are conceptual expression. Codes are stored and processed as (0, 1)∗ codes in practice.
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Figure 3.1: These figures show a main difference between our hypersphere-based binary code embedding

method and hyperplane-based one. The left and right figures show partitioning examples of hypersphere-

based and hyperplane-based methods respectively, for 3 bit binary codes in 2-D space. Each function hi

determines the value of i-th bit of binary codes. The hypersphere-based binary code embedding scheme

gives more tightly closed regions compared to hyperplane-based one.

function hi(x) is defined by a pivot pi ∈ RD and a distance threshold ti ∈ R+ as the following:

hi(x) =

−1 when d(pi, x) > ti

+1 when d(pi, x) ≤ ti,
(3.1)

where d(·, ·) denotes the Euclidean distance between two points in RD; various distance metrics (e.g., Lp

metrics) can be used instead of the Euclidean distance. The value of each spherical hashing function hi(x)

indicates whether the point x is inside the hypersphere whose center is pi and radius is ti. Fig. 3.1(a)

shows an example of a space partitioning and assigned binary codes with three hyperspheres in 2-D

space.

The key difference between using hyperplanes and hyperspheres for computing binary codes is their

abilities to define a closed region in RD that can be indexed by a binary code. To define a closed region in

a d-dimensional space, at least d+ 1 hyperplanes are needed, while only a single hypersphere is sufficient

to form such a closed region in an arbitrarily high dimensional space. Furthermore, unlike using multiple

hyperplanes a higher number of closed regions can be constructed by using multiple hyperspheres, while

the distances between points located in each region are bounded. For example, the number of bounded

regions by having l hyperspheres goes up to
(
l−1
d

)
+
∑d
i=0

(
l
i

)
[52]. In addition, we can approximate a

hyperplane with a large hypersphere that has a large radius and a far-away center.

In nearest neighbor search the capability of forming closed regions with tighter distance bounds is

very important in terms of effectively locating nearest neighbors from a query point. When we construct

such tighter closed regions, a region indexed by the binary code of the query point can contain more

promising candidates for the nearest neighbors.

We also empirically measure how tightly hyperspheres and hyperplanes bound regions. For this

purpose, we measure the maximum distance between any two points that have the same binary code and

take the average of the maximum distances among different binary codes. As can be seen in Fig. 3.2(a),

hyperspheres bound regions of binary codes more tightly compared to hyperplanes used in LSH [7]. Across

all the tested code lengths, hyperspheres show about two times tighter bounds over the hyperplane-based

approach.
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Figure 3.2: The left figure shows how the avg. of the max. distances among points having the same

binary code changes with different code lengths based on hyperspheres or hyperplanes. We randomly

sample 1000 different binary codes to compute avg. of the max. distances. The right figure shows how

having more common +1 bits in our method effectively forms tighter closed regions. For the right curve

we randomly sample one million pairs of binary codes. For each pair of binary codes (bi, bj) we compute

the max. distance between pairs of points, (xi, xj), where H(xi) = bi and H(xj) = bj . We report the

avg. of the max. distances as a function of the number of common +1 bits, i.e. |bi ∧ bj |. Both figures are

obtained with GIST-1M-960D dataset (Sec. 3.4.1).

(a) Each colored re-

gion is within one hy-

persphere.

(b) Each colored region is within two hyperspheres. (c) The colored region

is within three hyper-

spheres.

Figure 3.3: These figures give a high-level intuition of the spherical hamming distance. If both two

points xi and xj are located in one of colored regions of (a), (b), or (c), then their binary codes bi and

bj have at least 1, 2, or 3 common +1 bits, respectively. As the number of common +1 bits of bi and bj

increases, the area (or volume) of regions where two points xi and xj can be located in is getting smaller.

As a result, the expected distance between xi and xj is getting smaller, as the number of common +1

bits of bi and bj increases.
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1000-NN mAP with GIST-1M-960D

# bits 32 64 128 256

RMMH-SHD 0.0279 0.0603 0.0976 0.1466

RMMH-HD 0.0266 0.0576 0.0993 0.1483

ITQ-SHD 0.0385 0.0578 0.0860 0.1060

ITQ-HD 0.0380 0.0620 0.0875 0.1101

Table 3.1: Experimental results of hyperplane based methods combined with SHD.

3.2.2 Distance between Binary Codes

Most hyperplane-based binary code embedding methods use the Hamming distance between two

binary codes, which measures the number of different bits, i.e. |bi⊕bj |, where ⊕ is the XOR bit operation

and |·| denotes the number of +1 bit in a given binary code. This distance metric measures the number of

hyperplanes that two given points reside in the opposing side of them. The Hamming distance, however,

does not well reflect the property related to defining closed regions with tighter bounds, which is the

core benefit of using our spherical hashing functions.

To fully utilize desirable properties of our spherical hashing function, we propose the following

distance metric, spherical Hamming distance (SHD) (dSHD(bi, bj)), between two binary codes bi and bj

computed by spherical hashing:

dSHD(bi, bj) =
|bi ⊕ bj |
|bi ∧ bj |

,

where |bi ∧ bj | denotes the number of common +1 bits between two binary codes which can be easily

computed with the AND bit operations.

Having the common +1 bits in two binary codes gives us tighter bound information than having

the common −1 bits in our spherical hashing functions. This is mainly because each common +1 bit

indicates that two data points are inside its corresponding hypersphere, giving a stronger cue in terms

of distance bounds of those two data points; see Fig. 3.3 for intuition. In order to see the relationship

between the distance bound and the number of the common +1 bits, we measure the average distance

bounds of data points as a function of the number of the common +1 bits. As can be seen in Fig. 3.2(b),

the average distance bound decreases as the number of the common +1 bits in two binary codes increases.

As a result, we put |bi ∧ bj | in the denominator of our spherical Hamming distance.

In implementation we add a small value (e.g. 0.1) to the denominator to avoid the division-by-zero.

Also, we can construct a pre-computed SHD table T (|bi ∧ bj |, |bi ⊕ bj |) whose size is (l + 1)2 and refer

the table, when computing SHD to avoid expensive division operations.

The common +1 bits between two binary codes define a closed region with a distance bound as

mentioned above. Within this closed region we can further differentiate the distance between two binary

codes based on the Hamming distance |bi ⊕ bj |, the numerator of our distance function. The numerator

affects our distance function in the same manner to the Hamming distance, since the distance between

two binary codes increases as we have more different bits between two binary codes.

In hyperplane based methods, the common +1 bits do not give strong cue on estimating the real

distance. As a resulot, SHD does not provide any benefit for hyperplane based methods as reported in

Table. 3.1.

An alternative definition of SHD can be constructed based on the subtraction as following:

dSHD−SUB(bi, bj) = |bi ⊕ bj | − |bi ∧ bj |. (3.2)
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100-NN mAP with GIST-1M-384D

# bits 32 64 128 256 512

SHD 0.0153 0.0426 0.981 0.1760 0.2572

SHD-SUB 0.0139 0.0398 0.0931 0.1656 0.2402

Table 3.2: Comparisons between SHD and SHD-SUB described in Sec. 3.2.2

SHD-SUB is intuitive and free from the division by zero. However, the estimated distance is linearly

decreasing with respect to |bi ∧ bj | and thus a little bit different from our observation in Fig. 3.2(b). We

also provide experimental comparison between SHD and SHD-SUB in Table. 3.2. Since SHD provides

slightly better performance compared to SHD-SUB, we have used SHD in all the experiments in this

paper instead of SHD-SUB.

3.2.3 Independence between Hashing Functions

Achieving balanced partitioning of data points for each hashing function and the independence

between hashing functions has been known to be important [9,20,21], since independent hashing functions

distribute points in a balanced manner to different binary codes. It has been known that achieving such

properties lead to minimizing the search time [20] and improving the accuracy even for longer code

lengths [21]. We also aim to achieve this independence between our spherical hashing functions.

We define each hashing function hi to have the equal probability for +1 and −1 bits respectively as

the following:

Pr[ hi(x) = +1 ] =
1

2
, x ∈ X, 1 ≤ i ≤ l (3.3)

Let us define a probabilistic event Vi to represent the case of hi(x) = +1. Two events Vi and Vj are

independent if and only if Pr[Vi ∩ Vj ] = Pr[Vi] · Pr[Vj ]. Once we achieve balanced partitioning of data

points for each bit (Eq. 3.3), then the independence between two bits can satisfy the following equation

given x ∈ X and 1 ≤ i < j ≤ l:

Pr[hi(x) = +1, hj(x) = +1]

= Pr[hi(x) = +1] · Pr[hj(x) = +1] = 1
2 ·

1
2 = 1

4 (3.4)

In general the pair-wise independence between hashing functions does not guarantee the higher-order

independence among three or more hashing functions. We can also formulate the independences among

more than two hashing functions and aim to satisfy them in addition to constraints shown in Eq. 3.3 and

Eq. 3.4. However we found that considering such higher-order independence hardly improves the search

quality.

3.2.4 Iterative Optimization

We now propose an iterative process for computing l different hyperspheres, i.e. their pivots pi and

distance thresholds ti. During this iterative process we construct hyperspheres to satisfy constraints

shown in Eq. 3.3 and Eq. 3.4.

As the first phase of our iterative process, we sample a subset S = {s1, s2, ..., sn} from data points

X to approximate its distribution. We then initialize the pivots of l hyperspheres with randomly chosen

l data points in the subset S; we found that other alternatives of initializing the pivots (e.g., using center
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Figure 3.4: These two images show how a force between two pivots is computed. In the left image a

repulsive force is computed since their overlap oi,j is larger than the desired amount. On the other hand,

the attractive force is computed in the right image because their overlap is smaller than the desired

amount.

points of K-means clustering performed on the subset S) do not affect the results of our optimization

process. However, we observe that the optimization process converges slightly quicker, when initial

pivots are closely located in the center of the training points. This is mainly because by locating

hyperspheres closely to each other, we can initialize hyperspheres to have overlaps. For this acceleration,

we set the pivot position of a hypersphere to be the median of randomly chosen multiple samples, i.e.

pi = 1
g

∑g
j=1 qj , where qj are randomly selected points from S and g is the number of such points. Too

small g does not locate pivots closely to the data center, and too large g locates pivots to be in almost

similar positions. In practice, g = 10 provides a reasonable acceleration rate, given its trade-off space.

As the second phase of our iterative process, we refine pivots of hyperspheres and compute their

distance thresholds. To help these computations, we compute the following two variables, oi and oi,j ,

given 1 ≤ i, j ≤ l:

oi = | {sg|hi(sg) = +1, 1 ≤ g ≤ n} |,

oi,j = | {sg|hi(sg) = +1, hj(sg) = +1, 1 ≤ g ≤ n} |,

where |·| is the cardinality of the given set. oi measures how many data points in the subset S have +1 bit

for i-th hashing function and will be used to satisfy balanced partitioning for each bit (Eq. 3.3). Also, oi,j

measures the number of data points in the subset S that are contained within both of two hyperspheres

corresponding to i-th and j-th hashing functions. oi,j will be used to satisfy the independence between

i-th and j-th hashing functions during our iterative optimization process.

Once we compute these two variables with data points in the subset of S, we adopt two alternating

steps to refine pivots and distance thresholds for hyperspheres. First, we adjust the pivot positions of

two hyperspheres in a way that oi,j becomes closer to or equal to n
4 . Intuitively, for each pair of two

hyperspheres i and j, when oi,j is greater than n
4 , a repulsive force is applied to both pivots of those two

hyperspheres (i.e. pi and pj) to place them farther away. Otherwise an attractive force is applied to locate

them closer. Second, once pivots are computed, we adjust the distance threshold ti of ith hypersphere

such that oi becomes n
2 to meet balanced partitioning of the data points for the hypersphere (Eq. 3.3).

We perform our iterative process until the computed hyperspheres do not make further improvements

in terms of satisfying constraints. Specifically, we consider the sample mean and standard deviation of

oi,j as a measure of the convergence of our iterative process. Ideal values for the mean and standard

deviation of oi,j are n
4 and zero respectively. However, in order to avoid over-fitting, we stop our iterative
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Figure 3.5: This graph shows mean Average Precision (mAP) curves for k-nearest neighbor search with

respect to various parameters. A pair of values in x-axis are used for two parameters of εm and εs, and y-

axis represents their corresponding mAP values. Each legend consists of four experiment settings ‘dataset

/ k / binary code length / distance metric type (HD: Hamming distance, SHD: spherical Hamming

distance)’.

process when the mean and standard deviation of oi,j are within εm% and εs%, error tolerances, of the

ideal mean of oi,j respectively.

For these parameters, we conducted the following experimental tests to find suitable values. We

compute mean Average Precisions (mAPs) of k-nearest neighbor search with various experiment settings,

and they are shown in Fig. 3.5. According to the experimental results, we pick εm and εs that provide

the empirical maximum. Based on these experimental tests, we have chosen (εm=10%, εs=15%) for

GIST-1M-384D, GIST-1M-960D, and 1000 dimensional BoW descriptors. We have, however, found that

we need stricter termination conditions of the optimization process for higher dimensional data. The

convergence rate of the objective functions is much faster in higher dimensional space, since we have more

degrees of freedom of pivot positions, and this can cause an undesired under-fitting. We have therefore

chosen (εm=4%, εs=6%) for 8192 dimensional VLAD descriptors (Sec. 3.4.1).

Force computation: A (repulsive or attractive) force from pj to pi, fi←j , is defined as the following

(Fig. 3.4):

fi←j =
1

2

oi,j − n/4
n/4

(pi − pj). (3.5)

An accumulated force, fi, is then the average of all the forces computed from all the other pivots as

the following:

fi =
1

l

l∑
j=1

fi←j .

Once we apply the accumulated force fi to pi, then pi is updated simply as pi + fi. Our iterative
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Algorithm 1 Our iterative optimization process

Input: sample points S = {s1, ..., sn}, error tolerances εm and εs, and the number of hash functions l

Output: pivot positions p1, ..., pl and distance thresholds t1, ..., tl for l hyperespheres

1: Initialize p1, ..., pl with randomly chosen l data points from the set S

(It can be replaced with pi = 1
g

∑g
j=1 qj for quicker convergence, where qj are randomly selected

points from S)

2: Determine t1, ..., tl to satisfy oi = n
2 (Sec. 3.2.5)

3: Compute oi,j for each pair of hashing functions

4: repeat

5: for i = 1 to l − 1 do

6: for j = i+ 1 to l do

7: fi←j = 1
2
oi,j−n/4
n/4 (pi − pj)

8: fj←i = −fi←j
9: end for

10: end for

11: for i = 1 to l do

12: fi = 1
l

∑l
j=1 fi←j

13: pi = pi + fi

14: end for

15: Determine t1, ..., tl to satisfy oi = n
2 (Sec. 3.2.5)

16: Compute oi,j for each pair of hashing functions

17: until avg(| oi,j − n
4 |) ≤ εm

n
4 and std-dev(oi,j) ≤ εs n4

optimization process is shown in Algorithm 1. A simple example of the optimization process in 2-D space

is presented in Fig. 3.8.

The time complexity of our iterative process is O((l2 + lD)n), which is comparable to those of the

state-of-the-art techniques (e.g., O(D2n) of spectral hashing [9]). In practice, our iterative process is

finished within 10 to 30 iterations. Also, its overall computation time is less than 30 seconds even for

128 code lengths. The convergence rate with respect to the number of iterations is shown in Fig. 3.6 and

Fig. 3.7. Note that our iterative optimization process shares similar characteristics of the N-body simu-

lation [53] designed for simulating various dynamic systems of particles (e.g., celestial objects interacting

with each other under gravitational forces). Efficient numerical integration methods (e.g., fast multipole

method) can be applied to accelerate our iterative optimization process.

One may wonder why we do not use k-means to compute centers of hyperspheres. Using k-means

clustering to obtain centers of hyperspheres is very intuitive, since k-means locates the centers in dense

regions and assigning the same hash value to those dense regions seems an appropriate direction. How-

ever, this alternative does not ensure the independence between hashing functions. The cluster centers

obtained by k-means clustering in a high dimensional space are highly likely to be close to the data mean.

It leads that hyperspheres are highly overlapped, and a high portion of regions are not covered by any

hypersphere. As a result, the alternative optimization scheme does not meet our independence criteria,

since hashing functions corresponding to highly overlapped hyperspheres will generated correlated hash

values.
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indicate how the average and std. dev. of oi,j approach our termination condition in the scale of our

error tolerances, εm and εs respectively. In this case, we set εm as 0.1 and εs as 0.15 for terminating our

optimization. This result is obtained with the GIST-1M-384D dataset at the 64-bit code length.
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Figure 3.7: Convergence rates of our iterative optimization with three individual trials. The optimization

processes are finished within 30 iterations when we se we set εm as 0.1 and εs as 0.15. This graph also

shows that both objectives converge to 0 when we increase the number of iterations. This result is

obtained with the GIST-1M-384D dataset at the 64-bit code length.

Figure 3.8: These figures visualize results of our optimization process with three hyperspheres and 500

points in 2D space. The leftmost and rightmost figures show an initial state and converged state of the

optimization process, respectively, while two middle figures show intermediate states.
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100-NN mAP with GIST-1M-384D

# bits 32 64 128 256 512

SHD+M 0.0153 0.0426 0.0981 0.1760 0.2572

SHD 0.0147 0.0409 0.0938 0.1678 0.2434

HD+M 0.0113 0.0310 0.0665 0.1152 0.1648

HD 0.0107 0.0290 0.0653 0.1113 0.1583

1000-NN mAP with GIST-1M-960D

# bits 32 64 128 256 512

SHD+M 0.0460 0.0982 0.1782 0.2738 0.3560

SHD 0.0439 0.0945 0.1756 0.2641 0.3398

HD+M 0.0322 0.0660 0.1132 0.1669 0.2103

HD 0.0310 0.0636 0.1126 0.1644 0.2058

Table 3.3: These two tables show the effect of our max-margin based distance thresholding (Sec. 3.2.5).

SHD and HD indicate the binary code distance metric type, and M indicates the max-margin based

distance thresholding scheme. The max-margin based distance thresholding improves mAPs 3.8% on

average over the median based distance thresholding across various settings of experiments.

3.2.5 Max-Margin based Distance Thresholding

In each iteration step, we need to determine distance thresholds t1, ..., tl to satisfy oi = n
2 for the

balanced partitioning. For this we could simply set each ti as d(pi, sn/2) the distance from pi to sn/2,

when samples of S are sorted into s1, ..., sn in terms of distance from pi. However, this simple approach

could lead undesirable partitioning, especially when sn/2 is located in a dense region. To ameliorate this

concern, the distance threshold ti is set to maximize a margin from points to to the hypersphere without

significant loss on the balance partition criterion. For our max-margin based threshold optimization, we

first sort samples of S into ss1, ..., s
s
n according to d(pi, s

s
j) the distance to the pivot. Instead of simply

using the median point ssn/2 with its index, n/2, indicating a sample in the ordered list, we compute a

set J containing candidate indices near the median n
2 for the optimization:

J = {j|(1

2
− β)n ≤ j ≤ (

1

2
+ β)n, j ∈ Z+},

where β is a parameter that controls the degree of tolerance for breaking the balance partition criterion.

We set β = 0.05 in practice. We then compute an index ĵ of a sample among the sorted list that

maximizes the margin to the hypersphere as the following:

ĵ = arg max
j∈J

d(ti, s
s
j+1)− d(ti, s

s
j)

The distance threshold ti is finally determined such that the hypersphere partitions ss
ĵ

and ss
ĵ+1

as

the following:

ti =
1

2
(d(ti, s

s
ĵ
) + d(ti, s

s
ĵ+1

))

Table 3.3 shows how much the max-margin based distance thresholding improves the performance of

our method. Our margin-based distance threshold computation scheme improves mAPs 3.8% on average,

compared with the simple median based distance thresholding.
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3.3 Generalized Spherical Hashing

Many applications benefit from the use of domain-specific kernels that define data similarities [54,55].

In this section we generalize our basic spherical hashing (Sec. 3.2) to a kernelized one.

Let us first define notations. Given a set of N data elements in an input space X , we use X =

{x1, x2, ..., xN} ∈ X to denote those data elements. We use a non-linear map Φ : X → F from the input

space X to a feature space F . We denote k(x, y) = 〈Φ(x),Φ(y)〉 as a kernel function corresponding to

the map Φ, where 〈·, ·〉 is the inner product operator.

3.3.1 Kernelized Binary Code Embedding Function

The squared distance between two points Φ(x) and Φ(y) in the feature space F can be expressed

with the kernel function as the following:

‖ Φ(x)− Φ(y) ‖2

= 〈Φ(x),Φ(x)〉 − 2〈Φ(x),Φ(y)〉+ 〈Φ(y),Φ(y)〉

= k(x, x)− 2k(x, y) + k(y, y). (3.6)

Our binary code construction function H(x) = (h1(x), ..., hl(x)) maps a data element in the input

space into the Hamming space {−1,+1}l. Each kernelized spherical hashing function hi(x) is defined

with the pivot point pi in the feature space and distance threshold ti as the following:

hi(x) =

−1 when ‖ Φ(x)− pi ‖2> t2i

+1 when ‖ Φ(x)− pi ‖2≤ t2i
.

Intuitively, each kernelized spherical hashing function hi(x) determines whether Φ(x), the point x

mapped into the feature space, is inside the hypersphere defined by its center pi and radius ti.

To represent the center of a hypersphere in the feature space, we use a set of m landmark sam-

ples Z = {z1, ..., zm} ∈ X, where m � n. We now express the center pi by a linear combination of

{Φ(z1), ...,Φ(zm)} as the following:

pi =

m∑
j=1

wijΦ(zj), (3.7)

where wij ∈ R denotes a weight of Φ(zj) for pi.

The squared distance between a point Φ(x) and the pivot pi used in our kernelized spherical hashing
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function is computed as the following:

‖ Φ(x)− pi ‖2

= 〈Φ(x),Φ(x)〉 − 2〈 Φ(x), pi〉+ 〈pi, pi〉 [by Eq. 3.6]

= 〈Φ(x),Φ(x)〉 − 2〈 Φ(x),

m∑
j=1

wijΦ(zj)〉

+ 〈
m∑
j=1

wijΦ(zj),

m∑
j=1

wijΦ(zj)〉 [by Eq. 3.7]

= 〈Φ(x),Φ(x)〉 − 2

m∑
j=1

wij〈Φ(x),Φ(zj)〉

+

m∑
j=1

m∑
g=1

wijw
i
g〈Φ(zj),Φ(zg)〉

= k(x, x)− 2

m∑
j=1

wijk(x, zj) +

m∑
j=1

m∑
g=1

wijw
i
gk(zj , zg)

Note that the last term
∑m
j=1

∑m
g=1 w

i
jw

i
gk(zj , zg) can be pre-computed for each hypersphere, since

it is independent from x [56].

3.3.2 Kernelized Iterative Optimization

As did in Sec. 3.2.4 we first sample a training set S = {s1, ..., sn} from X to approximate its

distribution, and also sample a subset Z = {z1, ..., zm} from S as landmarks that are used for defining

center positions of hyperspheres, as described in Eq. 3.7.

Initial center positions pi of hyperspheres are chosen randomly. Specifically speaking, we set each

element of weight vectors wi defining centers pi of hyperspheres with randomly drawn values from the

uniform distribution U(−1, 1) and normalize the weight vectors according to L2 norm.

To express two constraints of Eq. 3.3 and Eq. 3.4 with the training set X, let us recall the following

two variables, oi and oi,j , given 1 ≤ i < j ≤ l:

oi = | {sg|hi(sg) = +1, 1 ≤ g ≤ n} |,

oi,j = | {sg|hi(sg) = +1, hj(sg) = +1, 1 ≤ g ≤ n} |,

where | · | is the cardinality of the given set. oi, and oi,j measure how many data elements in the training

set S are inside a single i-th hypersphere and inside the overlap region of i-th and j-th hyperspheres,

respectively. The objectives of our optimization are then described as the following:

oi =
n

2
and oi,j =

n

4
.

In each iteration of our optimization process, we first measure oi and oi,j . We then move centers of

hyperspheres to meet oi,j = n
4 , followed by adjusting radii of hyperspheres to satisfy oi = n

2 .

For moving centers of hyperspheres, we compute a pair-wise force vector fi←j = −fj←i between

i-th and j-th hyperspheres. fi←j is a force applied to i-th hypersphere caused by j-th hypersphere. We
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Figure 3.9: Comparison between our method and the state-of-the-art methods with the GIST-1M-384D

dataset when k = 100

kernelize Eq. 3.5 as the following:

fi←j =
1

2

oi,j − n/4
n/4

(pi − pj)

=
1

2

oi,j − n/4
n/4

(

m∑
g=1

wigΦ(zg)−
m∑
g=1

wjgΦ(zg))

=
1

2

oi,j − n/4
n/4

m∑
g=1

(wig − wjg)Φ(zg).

Same as Algorithm 1, a pair of forces fi←j and fj←i between i-th and j-th hyperspheres attracts

each other to increase their overlap when their overlap oi,j is less than n
4 , or pushes them farther away

in the other case. Once we compute all the forces, we compute an accumulated force fi = 1
l

∑l
j=1 fi←j

for each hypersphere and adjust its center pi to pi + fi.

We iteratively perform our optimization process until the mean and standard deviation of oi,j are

within εm% and εs% of n4 to avoid over-fitting in the same manner to the basic spherical hashing method.

3.4 Evaluation

In this section we evaluate our method and compare it with the state-of-the-art methods [7, 9, 12,

19,20,21]. We use a machine consisting of Xeon X5690 and 144GB main memory to hold all the data in

its main memory.

3.4.1 Datasets

We perform various experiments with the following four datasets:

• GIST-1M-384D: A set of 384 dimensional, one million GIST descriptors, which consist of a subset

of Tiny Images [8].

• GIST-1M-960D: A set of 960 dimensional, one million GIST descriptors that are also used in [23].
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Figure 3.10: Comparison between our method and the state-of-the-art methods with the GIST-1M-960D

dataset when k = 1, 000
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Figure 3.11: Comparison between our method and the-state-of-the-art methods with the VLAD-1M-

8192D dataset when k = 1, 000.
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Figure 3.12: Comparison between our method and the-state-of-the-art methods with the L2-normalized

GIST-1M-960D dataset when k = 1, 000.
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(b) 64 bits
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(c) 128 bits
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(d) 256 bits
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Figure 3.13: Comparison between our method and the state-of-the-art methods on GIST-1M-384D

dataset when k = 100. Refer to Fig. 3.9 for the mAP curves.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

 

 

Ours-SHD
RMMH-L2
GSPICA-RBF
PCA-ITQ
LSH-ZC
LSBC
SpecH

(a) 32 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

 

 

Ours-SHD
RMMH-L2
GSPICA-RBF
PCA-ITQ
LSH-ZC
LSBC
SpecH

(b) 64 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

 

 

Ours-SHD
RMMH-L2
GSPICA-RBF
PCA-ITQ
LSH-ZC
LSBC
SpecH

(c) 128 bits
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(d) 256 bits
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Figure 3.14: Comparison between our method and the state-of-the-art methods on GIST-1M-960D

dataset when k = 1, 000. Refer to Fig. 3.10 for the mAP curves.

– 21 –



• GIST-75M-384D: A set of 384 dimensional, 75 million GIST descriptors, which consist of a

subset of 80 million Tiny Images [8].

• ILSVRC: A set of 1000 dimensional, one million SIFT-based Bag of visual Words (BoW) histogram

descriptors provided from ImageNet Large Scale Visual Recognition Challenge 2010 dataset, which

is a subset of the ImageNet database [57].

• VLAD-1M-8192D: One million of 8192 dimensional VLAD [58] descriptors (128 dimensional

SIFT features and 64 codebook vectors).

3.4.2 Evaluation on Euclidean Space

We first present results with the Euclidean space, followed by ones with the kernel space.

Protocol

Our evaluation protocol follows that of [21]. Specifically, we tested with randomly chosen 1000

queries for datasets GIST-1M-384D and GIST-1M-960D, VLAD-1M-8192D and 500 queries for

GIST-75M-384D that do not have any overlap with data points. The performance is measured by

mean Average Precision (mAP). The ground truth is defined by k nearest neighbors that are computed

by the exhaustive, linear scan based on the Euclidean distance. When calculating precisions, we consider

all the items having lower or the equal Hamming distance (or spherical Hamming distance) from given

queries.

Compared Methods

• LSH and LSH-ZC: Locality Sensitive Hashing [7] with/without Zero Centered data points. The

projection matrix is a Gaussian random matrix. As discussed in [19,59], centering the data around

the origin (i.e.
∑
xi = 0) produces much better results over LSH. Hence, we transform data points

such that their center is located at the origin for LSH-ZC.

• LSBC: Locality Sensitive Binary Codes [12]. The bandwidth parameter used in experiment is the

inverse of the mean distance between the points in the dataset, as suggested in [59].

• SpecH: Spectral Hashing [9].

• PCA-ITQ: Iterative Quantization [19].

• RMMH-L2: Random Maximum Margin Hashing (RMMH) [21] with the triangular L2 kernel. We

experiment RMMH with the triangular L2 kernel since the authors reported the best performance

on k nearest neighbor search with this kernel. We use 32 for the parameter M that is the number

of samples for each hash function, as suggested by [21].

• GSPICA-RBF: Generalized Similarity Preserving Independent Component Analysis (GSPICA) [20]

with the RBF kernel. We experiment GSPICA with the RBF kernel, since the authors reported

the best performance on k nearest neighbor search with this kernel. The parameter used in the

RBF kernel is determined by the mean distance of kth nearest neighbors within training samples as

suggested by [21]. The parameters γ and P are 1 and the dimensionality of the dataset respectively,

as suggested in [20].
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Figure 3.16: Comparison between our method and the-state-of-the-art methods with the GIST-75M-

384D dataset when k = 10, 000.

• Ours-HD and Ours-SHD: We have tested two different versions of our method. Ours-HD

represents our method with the common Hamming distance, while Ours-SHD uses our spherical

Hamming distance (Sec. 3.2.2). Max-margin based distance thresholding scheme (Sec. 3.2.5) is also

applied to both versions of our method.

For all the data-dependent hashing methods, we randomly choose 100K data points from the original

dataset as a training set. We also use the same training set to estimate parameters of each method. We

report the average mAP and recall values by repeating all the experiments five times, in order to gain

statistically meaningful values; for GIST-75M-384D benchmark, we repeat experiments only three

times because of its long experimentation time. Note that we do not report results of two PCA-based

methods SpecH and PCA-ITQ for 512 hash bits at 384 dimensional datasets, since they do not support

bit lengths larger than the dimension of the data space.
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GIST_1M_384Dim K=100
8 16 32 64 96 128 192 256 512

Ours 0.001274 0.004129 0.015344 0.0426 0.070072 0.09811 0.139623 0.175971 0.257224
Ours w/o SHD 0.001022 0.003288 0.011311 0.03095 0.049493 0.066499 0.093339 0.115218 0.164831

Ours w/o Indep 0.001298 0.003461 0.00706 0.013302 0.020372 0.029096
Ours w/o Indep & Balance 0.001113 0.00281 0.004757 0.009784 0.016738 0.022999

1.255779 1.356556 1.376414 1.475361 1.527287 1.560532
3.181048 4.433401 6.033994 7.375583 8.637885 8.840528
3.709793 5.460498 8.955224 10.0276 10.51326 11.18414

K = 1000
*  Symmetric Distance

8 16 32 64 96 128 192 256 512
Ours-XoA 0.008959 0.01992 0.045581 0.095754 0.1423 0.178153 0.233188 0.2738 0.35599
Ours-XOR 0.006763 0.014407 0.032332 0.065016 0.092397 0.113467 0.143458 0.167183 0.210853
RMMH-L2 0.005331 0.0117 0.026615 0.05761 0.079902 0.099305 0.128687 0.148329 0.191857

GSPICA-RBF 0.009796 0.016569 0.030765 0.046715 0.05542 0.063741 0.08005 0.090242 0.118967
PCA-ITQ 0.009395 0.020169 0.037951 0.062046 0.077786 0.087498 0.101358 0.110094 0.130681
LSH-ZC 0.003042 0.005583 0.012736 0.02671 0.042369 0.056607 0.078402 0.0958 0.136549

LSBC 0.002327 0.002907 0.006469 0.01355 0.02284 0.030216 0.054265 0.073539 0.169141
LSH 0.00178 0.002366 0.004579 0.009284 0.014176 0.020195 0.02998 0.044365 0.085609

SpecH 0.005886 0.00829 0.013646 0.020371 0.023245 0.02464 0.033904 0.034455 0.045816
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Figure 3.17: This figure shows how each component of our method affects the accuracy. The mAP curves

are obtained with GIST-1M-384D dataset when k = 100.

Results

Fig. 3.9 shows the mAP of k nearest neighbor search of all the tested methods when k = 100.

Our method with the spherical Hamming distance, Ours-SHD, shows better results over all the tested

methods across all the tested bit lengths ranging from 32 bits to 512 bits. Furthermore, our method shows

increasingly higher benefits over all the other tested methods as we allocate more bits. This increasing

improvement is mainly because using multiple hyperspheres can effectively create closed regions with

tighter distance bounds compared to hyperplanes.

Given 0.1 mAP in Fig. 3.9, our method needs to use 128 bits to encode each image. On the other

hand, other tested methods should use more than 256 bits. As a result, our method provides over two

times more compact data representations than other methods. We would like to point out that low

mAP values of our method are still very meaningful, as discussed in [21]. Once we identify nearest

neighbor images based on binary codes, we can employ additional re-ranking processes on those images.

As pointed out in [21], 0.1 mAP given k = 100 nearest neighbors, for example, indicates that 1000 images

on average need to be re-ranked.

Performances of our methods with two different binary code distance functions are also shown in

Fig. 3.9. Our method with the Hamming distance Ours-HD shows better results than most of other

methods across different bits, especially higher bits. Furthermore, the spherical Hamming distance

Ours-SHD shows significantly improved results even than Ours-HD. The spherical Hamming distance

function also shows increasingly higher improvement over the Hamming distance, as we add more bits

for encoding images.

Our technique can be easily extended to use multiple hash tables; for example, we can construct

a new hash table by recomputing S, the subset of the original dataset. Fig. 3.15 shows recall curves

of different methods with varying numbers of hash tables, when we allocate 64 bits for encoding each

image. Our method (with our spherical Hamming distance) improves the accuracy as we use more tables.

More importantly, our method only with a single table shows significantly improved results over all the

other tested methods that use four hash tables. For example, when we aim to achieve 0.5 recall rate, our

method with one and four hash tables needs 3674 and 2013 images on average respectively. However,

GSPICA-RBF [20] with four hash tables, the second-best method, needs to identify 4909 images, which
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are 33% and 143% more number of images than our method with one and four hash tables respectively.

We have also performed all the tests against the 960 dimensional, one million GIST dataset GIST-

1M-960D with k = 1000 (Fig. 3.10). We have found that our method shows similar trends even

with this dataset, compared to what we have achieved in GIST-1M-384D. The precision-recall curves

corresponding to Fig. 3.9 and Fig. 3.10 are Fig. 3.13 and Fig. 3.14 respectively.

We have performed each test multiple times, since our method can be impacted by different initial-

izations. However, our method shows robust results against different initializations. For example, the

standard deviation of mAPs of five experiments with GIST-1M-960D when the code length is 64 bits

is only 0.0017, while the average mAP is 0.0982. The standard deviation with 256 bits is 0.0035, while

the average is 0.2738.

In order to evaluate our method with very high dimensional data, we have performed the tests with

8192 dimensional, one million VLAD dataset VLAD-1M-8192D with k = 1000 (Fig. 3.11). Ours-SHD

consistently provides the best performance among the tested techniques.

We have also performed all the tests against the 384 dimensional, 75 million GIST dataset GIST-

75M-384D with k = 10, 000 (Fig. 3.16). We have found that our method shows significantly higher

results than all the other tested methods across all the tested bit lengths even with this large-scale

dataset.

In order to see how each component of our method affects the accuracy, we measure mAP by dis-

abling the spherical Hamming distance, the independent constraint, and balanced partitioning in our

method (Fig. 3.17). In the case of using 64 bits, mAP of our method goes down 28%, 83%, and 90%

by disabling the spherical Hamming distance, the independence constraint, and the balanced partition-

ing/independence constraints respectively.

Finally, we also measure how efficiently our hypersphere-based hashing method generates binary

codes given a query image. Our method takes 0.08 ms for generating a 256 bit-long binary code. This

cost is same to that of the LSH technique generating binary codes based on hyperplanes.

3.4.3 Evaluation on Kernel Space

Datasets

We normalized GIST-1M-384D and GIST-1M-960D datasets according to L2-norm to make

exact k-nearest neighbors with the linear kernel to be equivalent to the k-nearest neighbors with the

RBF kernel as did in [21]. As a result, we can compare results acquired by using two different kernels

in the same ground. We also normalized ILSVRC dataset according to L1-norm as suggested in [60].

For all the experiments, we tested with randomly chosen one thousand queries that do not overlap with

data elements. We report the average result by repeating all the experiments three times.

Compared Methods

• RMMH: Random Maximum Margin Hashing [21]. We used 32 for the parameter M that is the

number of samples for each hash function as suggested by [21].

• GSPICA: Generalized Similarity Preserving Independent Component Analysis [20]. We set the

parameter P as the dimensionality of the dataset and γ to 1 as suggested in the paper.

There are a few more kernelized binary hashing methods such as KLSH [30]. According to papers

of RMMH and GSPICA, their techniques have been reported to be better than KLSH. As a result,
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we compare our method only against them. For our method Ours, we set the number of landmarks m

as the dimensionality of input data.

Used Kernels

We have tested our method with the following four popular kernels:

• Linear: Linear kernel, k(x, y) = 〈x, y〉.

• RBF: RBF kernel, k(x, y) = exp(−γ ‖ x− y ‖2). We set the bandwidth parameter γ as an inverse

of the mean distance between randomly sampled points as suggested by [59].

• HI: Histogram Intersection kernel, k(x, y) =
∑D
i=1min(xi, yi), where D is the dimensionality of x

and y.

• CS: Chi Square kernel, k(x, y) = 2
∑D
i=1

xiyi
xi+yi

.

Results

We evaluated our method with k-nearest neighbor search. The ground truth is defined by top k data

elements based on each tested kernel function. The performance is measured by mAP. When calculating

precisions, we consider all the items having lower or equal Hamming distance from given queries.

Fig. 3.18 shows the mAP of k-nearest neighbor search of all the tested methods when k = 1000;

other cases (e.g. k = 50, 100, 500, 2000) show similar trends. We evaluated the performance of our

method with Linear and RBF in GIST384D and GIST960D datasets (Fig. 3.18-(a) and -(b)); we

report results of compared methods only with RBF, since RBF gives better results than Linear.

We also experimented with CS and HI in ILSVRC dataset (Fig. 3.18-(c)). Since RMMH per-

formed better than GSPICA in this experiment, we report results of RMMH in this graph. We have

found that our method consistently shows higher performance than the state-of-the-art methods in all

the tested benchmarks with various kernels.

3.4.4 Evaluation on Image Retrieval

We evaluated image retrieval performance of our method in ILSVRC, which has 1000 different

classes. We followed the evaluation protocol of [21]. For each query we run a k-nearest neighbor classifier

on the top 1000 results retrieved by each method. As suggested in ILSVRC, we evaluated tested methods

with the five best retrieved classes (i.e. recognition rate@5). Specifically we first perform 1000-nearest

neighbor search for given a query with binary codes. We then determine the correctness of retrieval

results by checking whether five most frequently occurred classes within 1000-nearest neighbor images

contain the ground truth class.

Fig. 3.19 shows recognition rates of our method and RMMH with CS and HI kernels. Our method

consistently gives better image retrieval performance with both kernels over the other tested methods.

3.4.5 Discussion

SHD (Sec. 3.2.2) drastically improves mAPs in the Euclidean space (Sec. 3.4.2). However, we

observed that SHD does not provide significant accuracy improvements with the generalized spherical

hashing. Table 3.4 shows how much the SHD improves mAPs of the generalized spherical hashing

over HD with two popular kernels, and SHD provides 3.5% benefits on the mAPs over the Hamming

– 26 –



1000-NN mAP with GIST-1M-384D

# bits 32 64 128 256 512

RBF-SHD 0.0358 0.0789 0.1336 0.1992 0.2587

RBF-HD 0.0330 0.0725 0.1318 0.1997 0.2575

Linear-SHD 0.0345 0.0671 0.1385 0.1974 0.2424

Linear-HD 0.0325 0.0736 0.1295 0.1958 0.2450

1000-NN mAP with GIST-1M-960D

# bits 32 64 128 256 512

RBF-SHD 0.0316 0.0672 0.1198 0.1757 0.2451

RBF-HD 0.0308 0.0680 0.1220 0.1811 0.2331

Linear-SHD 0.0335 0.0733 0.1270 0.1932 0.2517

Linear-HD 0.0332 0.0682 0.1194 0.1824 0.2321

Table 3.4: These two tables show the effect of SHD (Sec. 3.2.2) with generalized spherical hashing

(Sec. 3.3). SHD and HD indicate binary code distance metric types. SHD improves mAPs of general-

ized spherical hashing 3.5% on average over HD.

distance. The reason why SHD shows a relatively small benefit for generalized spherical hashing is that

SHD does not directly reflect inner product, since it is designed to better reflect the Euclidean distance.

Nonetheless, generalized spherical hashing with both of HD and SHD outperforms state-of-the-art

kernelized binary code embedding methods.

3.5 Conclusion and Future Work

In this work we have proposed a novel hypersphere-based binary embedding technique, spherical

hashing, for providing a compact data representation and highly scalable nearest neighbor search with

high accuracy. We have found that spherical hashing significantly outperforms the tested six state-of-the-

art binary code embedding techniques based on hyperplanes with one and 75 million high-dimensional

image descriptors. We have also proposed generalized spherical hashing to support various similarity

metrics defined by arbitrary kernel functions, and we have demonstrated on three datasets with four

popular kernels that generalized spherical hashing improves the state-of-the-art techniques.

Many interesting future research direction lies ahead. We would like to further improve our spherical

Hamming distance such that it shows higher improvement for kernel functions, as we achieved improve-

ment for the Euclidean space. Also, we would like to incorporate the quantization error that is considered

in the iterative quantization method [19] into our optimization process. We expect that by doing so,

we can improve the search accuracy further. In addition, some of recent techniques [43,44] use multiple

bits per hashing function for achieving higher accuracy. We would like to design a effective scheme that

allocates multiple bits for our spherical hashing functions and achieve higher accuracy.
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Figure 3.18: k-nearest neighbor search performances on three different datasets when k = 1000.
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Figure 3.19: Image retrieval performances on ILSVRC dataset. Exact-CS and Exact-HI are recognition

rates obtained by the exact 1000-nearest neighbor classifier on corresponding kernel functions.
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Chapter 4. Distance Encoded Product

Quantization

4.1 Overview

Among prior ANN techniques, Product Quantization (PQ) [23] and its recent improvement, Opti-

mized Product Quantization (OPQ) [24], have shown the-state-of-the-art performance. Its high accuracy

and efficiency is mainly because (1) quantization in subspaces offers a strong representational power and

(2) distances between two data points can be computed via a look-up table. Its input feature space is

divided into several disjoint subspaces, and each subspace is partitioned into clusters independently. A

data point is then represented by an index of its corresponding cluster in each subspace. The distance

between two data points is approximated by the sum of distances of their cluster centers computed in

each subspace.

PQ and OPQ can effectively generate many clusters in each subspace and thereby reduce the quanti-

zation distortion. Nonetheless, we have found that their approach shows marginal accuracy improvement

in practice, as we increase the number of clusters in each subspace. This is mainly because they encode

only clusters containing data points, but are not designed to consider how far data points are located

away from cluster centers.

Main contributions. To address aforementioned problems, we propose a new binary code encoding

scheme, Distance-encoded Product Quantization (DPQ), and two different distance metrics tailored to

the scheme. We follow exactly the same procedure as in PQ and OPQ to generate subspaces, quantize

them with unsupervised clustering (i.e. k-means), and encode each data point with the index of its

nearest cluster center in each subspace. The novelty of our method lies in that in addition to encoding

the cluster index, we use additional bits to quantize the distance from the data point to its closest

cluster center. Based on the new binary encoding scheme, we propose two distance metrics, statistics

and geometry based distance metrics, for symmetric and asymmetric cases. Especially, our geometry

based distance metric is based on novel geometric reasoning for high-dimensional data spaces.

We have applied our method to three standard benchmarks consisting of GIST and BoW descriptors.

Results show that our encoding scheme with our distance metrics consistently outperforms the existing

state of the art methods across tested benchmarks. Specifically, combined with PQ our method improves

results of PQ significantly, and combined with OPQ, the improvement is even larger. This indicates

that our subspace encoding scheme is more useful, when the subspace is constructed more optimally.

These improvements are mainly caused by both quantizing distances of points from cluster centers and

well estimated distance metrics. Overall our method is simple, but results in meaningful performance

improvement over PQ and OPQ.
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Figure 4.1: The left and right figures show toy examples of partitioned space and assigned binary codes

for PQ and ours, respectively, when using 4 bit binary codes. Our method allocates first two bits for

encoding a cluster index and another underlined two bits for quantized distances, while PQ allocates all

the bits for encoding a cluster index.

4.2 Background and Motivations

Let us define notations that we will use throughout the paper. We use X = {x1, ..., xn}, xi ∈ RD

to denote a set of n data points in a D-dimensional space, A binary code corresponding to each data

point xi is defined by bi = {0, 1}L, where L is the length of the code. We denote d(x, y) as the Euclidean

distance ‖ x− y ‖.
We first briefly review Product Quantization (PQ) [23] that our work is built upon and its two

distance measures. Let us denote a point x ∈ RD as the concatenation of M subvectors, x = [x1, ..., xM ].

For simplicity, we assume that the dimensionality of data D is divisible by the number of subspace M .

Each ith subspace is encoded by L/M bits and we thus have k(= 2L/M ) codebook vectors, {ci1, ..., cik}.
A vector quantizer qi(xi) given ith subspace is defined as following:

qi(xi) = arg min
cij

d(xi, cij).

The sub-binary code, bi, computed from ith subspace elements of x is computed by encoding an

codebook index of the nearest cluster:

bi = B
(

arg min
j

d(xi, cij),
L

M

)
,

where the function B(v, l) converts an integer v−1 to a binary string with a length l; e.g., B(6, 4) = 0101.

PQ then maps x to the concatenation of sub-binary codes, b = [b1, ..., bM ].

PQ uses two distance computation schemes: Symmetric Distance (SD) and Asymmetric Distance

(AD). SD is used, when both vectors x and y are encoded, and is defined as following:

dPQSD(x, y) =

√√√√ M∑
i=1

d
(
qi(x), qi(y)

)2
. (4.1)

On the other hand, AD is used, when only data point x is encoded, but query y is not, and is defined as

following:

dPQAD(x, y) =

√√√√ M∑
i=1

d
(
qi(x), y

)2
. (4.2)
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Figure 4.2: The left figure shows the empirical quantization distortions as a function of the number

of clusters in each subspace. M indicates the number of subspaces used. The right figure shows mAP

curves of 1000-nearest neighbor search with varying numbers of clusters for each subspace. We use OPQ

on the GIST-960D dataset for the experiments.

Recently proposed Optimized PQ (OPQ) [24] has the same underlying scheme as PQ, but operating

on a transformed feature space obtained with an optimized projection matrix. OPQ shows the state of

the art performance in the field of approximate nearest neighbor search. Cartesian k-means (ck-means)

and OPQ are based on a very similar generalization of PQ, as stated in [47]. Our method is independent

from clustering and construction methods for subspaces. Our method, therefore, can be built on the

subspaces created by ck-means in the same manner to what we do for OPQ. In this paper we explain

our concept and its benefits of our method on top of PQ and OPQ for the sake of succinct explanations.

4.2.1 Motivations

Quantization distortion has been identified to be closely related to the search accuracy [24]. OPQ

directly aims to reduce the quantization distortion of PQ. In general we can reduce the quantization

distortion by allocating longer binary codes, i.e., having more clusters. In particular, we have studied

the relationship between the number of clusters and quantization distortion, ξ, which is defined as

follows [23,24]:

ξ =
1

M

M∑
i=1

1

n

n∑
j=1

d
(
xij , q

i(xij)
)2
.

We experimentally measure quantization distortions as a function of the number of clusters (Fig. 4.2(a)).

As expected, the quantization distortion reduces as we have more bits. However we observe that the

decreasing rate of the quantization distortion is marginal with respect to the number of centers. Simi-

larly we observe the same diminishing return of having more clusters for the search accuracy, as shown

in Fig. 4.2(b).

Once a data point is encoded as a compact code, a reconstructed position from the code is set as the

center of the corresponding cluster of the code. Distances between encoded binary codes at the search

phase are estimated only with such center positions. One can easily see that the error of estimated

distances depends on the quantization distortion. Specifically, it has been shown previously that the

distance is biased and the error is statistically bounded by two times of the quantization distortion [23].
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Figure 4.3: This figure visualizes errors of the symmetric distances. We sample two random points, x and

y, in a randomly selected subspace. The x-axis indicates the distance between xi and its corresponding

cluster’s center qi(xi), and y-axis shows similar information for y. The vertical axis is the difference

between the actual distance d(xi, yi) and its estimated distance d(qi(xi), qi(yi)). The errors of estimated

distances tend to be higher as the distance between data points and their corresponding clusters becomes

larger. We use OPQ to define subspaces and clusters with the GIST-960D dataset.

It is also observed that error-corrected versions of distance measures can reduce the bias, but increase

the distance variance, resulting in even worse search accuracy.

We have empirically studied a functional relationship between the errors of estimated distances and

the actual distance of data points from centers of their corresponding clusters (Fig. 4.3). We have found

that the estimated distances tend to have higher errors, as data points are further away from centers of

their corresponding clusters.

These results suggest that by reducing quantization distortions, we can predict the distances between

data points more reliably, i.e. lower variance. Motivated by this, we allocate additional bits to directly

encode the distances of data points from their corresponding cluster centers in each subspace, instead of

constructing more clusters and encoding data with them.

4.3 Our Approach

In this section we explain our binary code encoding scheme, Distance-encoded Product Quantization

(DPQ), and two distance metrics tailored to the scheme.

4.3.1 Our Binary Code Encoding Scheme

Our encoding scheme can be used with any hashing techniques that encode cluster indices in com-

puted binary codes. For simplicity we explain our method by following the PQ framework. Combining
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our method with OPQ is straightforward, since we only need to apply an estimated rotation projection

to the input feature space.

Suppose that the binary code length assigned for encoding the information in each subspace is L/M

bits, where L and M indicate the overall binary code length and the number of subspaces, respectively. In

each subspace, our method encodes the distance of a data point from the center of its cluster containing

the point as well as the index of the cluster. Fig. 4.1 shows a visual example of our encoding method.

Specifically, we allocate lc bits for encoding the cluster index, and ld bits for the distance from its cluster

center. We define h(= 2ld) different distance thresholds, tij,1, ..., t
i
j,h, for cij , the center of the cluster j in

ith subspace. The binary code of a data point, x, for the ith subspace is then the concatenation of the

nearest center index, ĵ, and the quantized distance index, k̂, as follows:

bi(xi) = [B(ĵ, lc), B(k̂, ld)],

where

ĵ = arg min
j

d(xi, cij),

and k̂ is the value satisfying the following:

ti
ĵ,k̂−1 ≤ d(xi, ci

ĵ
) < ti

ĵ,k̂
.

tij,0 and tij,h are defined as 0 and ∞, respectively. We also use P ij,k to denote a set of data points that

are encoded by the cluster j with threshold k in ith subspace. We use P ij to denote all the data points

of the union of P ij,1, ... , P ij,h.

Computing thresholds. In order to choose distance thresholds determining h disjoint regions within

each cluster, we identify points |P ij | contained in the cluster j in ith subspace. We then construct distances

of those points from the cluster center, cij . For choosing thresholds, we first compute h different regions

in a way that we minimize the variances of distances of points contained in each region, i.e., minimizing

the within-region variance.

It is also important to balance the number of points contained in each region. To achieve this, we

enforce the number of points in each P ij,k to be between (|P ij |/h−|P ij |/h2) and (|P ij |/h+ |P ij |/h2); in this

equation we use h2 to achieve a near-balance among the numbers of points allocated to regions. Each

cluster has a small number of points, and the search space of the candidate set for computing thresholds

given the balancing criterion are small. As a result, we can efficiently find thresholds that minimize

the within-region variance even by exhaustively searching the optimal one. Alternatively, we can also

use balanced-clustering techniques such as [61] for accelerating the aforementioned process of computing

thresholds.

4.3.2 Distance Metrics

We propose two distance metrics, statistics and geometry based metrics, that consider quantization

distortions for achieving higher accuracy.

Statistics based distance metric. One can measure how far data points are located from the center

of their corresponding cluster and use that information for improving the quality of estimated distances

between quantized points. Jegou et al. [23] have discussed the quantization distortion of each cluster

and suggested error corrected versions for Symmetric Distance (SD) and Asymmetric Distance (AD).
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Figure 4.4: This figure shows the distribution of differences from the ground-truth distances to estimated

results from statistics based distance metrics used for our method and PQ. We draw 100 K pairs of

samples randomly chosen from the GIST-1M-960D dataset. Our method shows the bias of 0.0091, which

is reduced from 0.0096 of PQ. Similarly, the variance of our method is 0.0099, while PQ has 0.0133.

For AD, we start with the following distance metric, Error-Corrected AD (ECAD), considering the

quantization distortion of x [23] :

dPQECAD(x, y)
2

= dPQAD(x, y)
2

+

M∑
i=1

ξij(x
i), (4.3)

where ξij(x
i) is a pre-computed error correcting term for the cluster j containing xi. The error correcting

term ξij(·) is defined as the average distortion of the cluster j in the ith subspace:

ξij(x
i) =

1

|P ij |

|P i
j |∑

w=1

d(pw, c
i
j)

2,

where pw is wth point of P ij . We can similarly define an Error-Corrected distance metric for SD (ECSD)

considering quantization distortions of both x and y.

We can easily extend these error-corrected distance metrics to our encoding scheme. For our method

we define a new error correcting term, ξij,k(xi), with xi ∈ P ij,k, which contains points in the kth region of

the cluster j in the ith subspace:

ξij,k(xi) =
1

|P ij,k|

|P i
j,k|∑

w=1

d(pw, c
i
j)

2. (4.4)

Interestingly, [23] reported that the error-corrected distance metrics did not improve accuracy over

metrics without the error correcting terms, mainly because the error-corrected distance metrics have

higher variances. In contrast, our encoding scheme with our error-correcting terms (Eq. 4.4) shows

higher accuracy over ours without the terms. In order to identify reasons why the similar error-correcting

terms result in contrasting results between our encoding scheme and PQ, we have measured the bias

and variance of these two distance estimators. As can be seen in Fig. 4.4, the variance and bias of our
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Figure 4.5: This figure shows two points x and y on the hyper-spheres centered at cx and cy respectively.

rx and ry represent the radii of hyper-spheres.

error-corrected distance metric are reduced from those of PQ. Since our encoding scheme quantizes the

distance of a data point from its corresponding cluster, our error correcting term (Eq. 4.4) reduces the

bias and, more importantly, the variance of the distance estimates effectively.

Geometry based distance metric. We now propose a novel geometric approach to develop distance

metrics for our encoding scheme. Suppose that two high dimensional points x and y are randomly chosen

on the surfaces of two hyper-spheres centered at cx and cy, respectively, with rx and ry radii (Fig. 4.5).

Given these geometric configurations, the vector x− y is reformulated as:

x− y = (cx − cy) + (x− cx) + (cy − y). (4.5)

Our goal is to estimate the length of the vector x − y with available information within our encoding

scheme.

As the dimension of data points goes higher, the surface area of the hyper-sphere becomes closer

to the length of its equator. One may find this is counter-intuitive, but this has been proved for high

dimensional spaces [62]. Given a D dimensional hyper-sphere, a cross section of the hyper-sphere against

a horizontal hyperplane is D − 1 dimensional hyper-sphere. The length of the cross section is longest in

the equator. It then exponentially decreases with a function of D − 1 degree, as the cross section gets

closer to the north pole. As a result, as we have a higher dimensional space, the length of the equator

takes a more dominant factor in the surface area of the hyper-sphere.

Given those x and y points, we rotate our randomly chosen points such that x is located at the

north pole. By applying the above theorem, we have a higher probability that another point y is located

on the equator of the rotated hyper-sphere, as we have higher dimensional space. As a result, we can

conclude that it is highly likely that two vectors x−cx and y−cy are orthogonal, when these data points

are in a high-dimensional space. Similarly, we can show that these two vectors are also orthogonal to

another vector cy − cx. We have also experimentally checked its validity with a benchmark consisting of

960 dimensional GIST descriptors. For this we have measured the average angle between two randomly

chosen points (i.e. 100K pairs) from a random cluster. On average their average angle is 89.81◦ with the

standard deviation of ±7.1◦.

Since cx − cy, x− cx, and cy − y are highly likely to be mutually orthogonal in a high-dimensional
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space, the squared magnitude of the vector x− y can be computed as follows:

‖ x− y ‖2 =‖ (cx − cy) + (x− cx) + (cy − y) ‖2

≈‖cx − cy‖2 + ‖x− cx‖2 + ‖cy − y‖2 . (4.6)

The first term, ‖ cx − cy ‖2, is pre-computed as the distance between different clusters. The second and

third terms indicate how far x and y are located from the centers of their corresponding clusters.

In our encoding scheme, the second term can be estimated by using points pw ∈ P ijx,kx , where jx

and kx are encoded cluster and threshold indices for x, respectively. Specifically, the second term is

estimated as the average distance, rijx,kx , from the center cijx to pw ∈ P ijx,kx :

rijx,kx =
1

|P ijx,kx |

|P i
jx,kx

|∑
w=1

d(pw, c
i
jx). (4.7)

The third term of Eq. 4.6 is estimated in the same manner with points in P ijy,ky , where jy and ky are

chosen cluster and threshold indices for y.

We then formulate our distance metric based on Eq. 4.6 and Eq. 4.7. Our GeoMetry based squared

Symmetric Distance (GMSD) between two points x and y is defined as:

dDPQSD (x, y)
2
=

M∑
i=1

(
d
(
q(xi), q(yi)

)2
+rijx,kx

2
+rijy,ky

2)
. (4.8)

Our GeoMetry based squared Asymmetric Distance (GMAD) between encoded data x and query y

is defined similarly as:

dDPQAD (x, y)
2

=

M∑
i=1

(
d
(
q(xi), y)

)2
+ rijx,kx

2)
. (4.9)

Note that rij,k is precomputed and stored as a lookup table as a function of i, j, and k values.

One may find that our geometry based distance metric using the average distance (Eq. 4.7) of points

from their cluster have a similar form to our statistics based distance metric using the error correcting

term (Eq. 4.4). One can theoretically show that our statistics based metric generates a distance equal

or larger than that of the geometry based metric, and their value difference is the variance of distances

between data points and their corresponding clusters. It is hard to theoretically tell which approach is

better, but these two different metrics consider different aspects of input data points; the statistics based

metric considers the variance of distances, while the geometry based one does not.

Empirically we, however, have observed that the geometry based metric shows better performance,

6%, on average over our statistics based metric (Fig. 4.6). Furthermore, when we integrate our geometry

based distance metric within PQ, we have observed that our geometry-based distance metric, PQ w/

GMAD, shows higher accuracy over the statistics based one proposed for PQ, PQ w/ ECAD. These

results demonstrate benefits of our geometry-based distance metric.

4.4 Evaluation

In this section we evaluate our method for approximate nearest neighbor search and compare its

results to the state-of-the-art techniques.
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Figure 4.6: This figure shows the recall curves with respect to the number of retrieved data. Our geometry

based distance metric, Ours w/ GMAD, improves our statistics based metric, Ours w/ ECAD, and the

PQ method, PQ w/ ECAD. The results are obtained with GIST-1M-960D dataset and the number of

ground truth K=100. We use 64 bits in this experiment and PQ uses 8 bits for each subspace to define

256 centers. Our method uses 7 bits for the center and 1 bit for the distance quantization.

Bits Num. of Subspaces

lc ld 2 4 8 16

OPQ baseline 6 0 0.045 0.117 0.238 0.408

Ours+OPQ 6 2 0.101 0.230 0.408 0.584

OPQ baseline 7 0 0.061 0.144 0.276 0.459

Ours+OPQ 7 1 0.106 0.236 0.415 0.595

Table 4.1: This table shows mAPs with different bit budgets. mAPs are measured with the asymmetric

distances in GIST-1M-960D dataset. ‘OPQ baseline’ is provided here to see how much our scheme

improves the performance by using quantized distances. 8 bit lc for OPQ is used in other tests.

4.4.1 Protocol

We evaluate our method on the following public benchmarks:

• GIST-1M-960D: One million 960D GIST descriptors that are also used in [23,24].

• GIST-1M-384D: One million 384D GIST descriptors, a subset of Tiny Images [8].

• BoW-1M-1024D: One million 1024D Bag-of-visual-Words (BoW) descriptors, which are subsets

of the ImageNet database [57].

For all the experiments, we use 1000 queries that do not have any overlap with the data points. We

compute K = 1000 nearest neighbors for each query point. Also we compute the ground truth for each

query by performing the linear scan. The performance of different methods is measured by the mean

Average Precision (mAP). To verify benefits of our method we compare the following methods:

• PQ: Product Quantization [23]
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Figure 4.7: Comparisons on GIST-1M-960D. The left and right graphs show the mAP curves with

symmetric and asymmetric distances, respectively.

• OPQ: Optimized Product Quantization [24]. We use the non-parametric version, because it shows

better accuracy than the parametric version.

• Ours+PQ: Our method using the same subspaces and clustering method as used for PQ, and the

geometry based distance metrics.

• Ours+OPQ: Our method using the same subspaces, projection matrix, and clustering method,

as used for OPQ, and the geometry-based distance metric.

• ITQ: Iterative Quantization [19]

• SpH: Spherical Hashing [63] with Spherical Hamming Distance (SHD)

For all the methods, 100K data points randomly sampled from the dataset are used in the training

stage, and we allow 100 iterations in the k-means clustering. We assign 8 bits for each subspace as

suggested in [23,24]. PQ and OPQ then have 256 centers in each subspace, and the number of subspace

M is L/8, where L is the given code-length. We also use public source codes for all the compared methods

including PQ and OPQ. For PQ and OPQ we use symmetric and asymmetric distances (Eq. 4.1 and

Eq. 4.2), which achieved the best accuracy according to their original papers [23,24]. On the other hand,

the proposed binary encoding scheme and our geometry based distance metrics (Eq. 4.8 and Eq. 4.9) are

used for Ours+PQ and Ours+OPQ.

In our method, we have parameter ld (the number of bits) for the distance quantization. We observe

that ld = 1 or ld = 2 gives reasonable performance across tested benchmarks. Experimental results with

these parameter values are given in Tab. 4.1. Although the performances with ld = 1 and ld = 2 are

both similarly good, we pick ld = 1 for all the following tests. In other words, we use 128 centers in each

subspace and 2 distance quantizations for each cluster.

4.4.2 Results

Fig. 4.7 and Fig. 4.8 show mAPs of nearest neighbor search for all the tested methods on GIST-

1M-960D and GIST-1M-384D datasets, respectively. Ours+OPQ shows better results over all the
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Figure 4.8: Comparisons on GIST-1M-384D. The left and right graphs show the mAP curves with

symmetric distances and asymmetric distances, respectively.

tested methods across all the tested code lengths ranging from 16 bits to 128 bits. Moreover, our methods

Ours+OPQ and Ours+PQ consistently improve both PQ and OPQ in all the tests, respectively. In

addition, we show mAPs of some of well-known binary embedding techniques, iterative quantization

(ITQ) [19] and spherical hashing (SpH) [63] with its distance metric, SHD, for symmetric distance cases.

Since these results are lower than PQ, we do not show them in other tests. This improvement clearly

demonstrates the merits of our proposed binary code encoding scheme and the new distance metrics.

It also shows an interesting trend that in general the relative improvement of our method over the

baseline PQ and OPQ is more significant for the higher dimensional cases, e.g. 960D vs 384D. This

is encouraging since many powerful descriptors are of very high dimensions such as spatial pyramids,

VLADs, and Fisher vectors. Furthermore, performance improvement for Ours+OPQ is in general larger

than Ours+PQ, which indicates that better subspaces would provide more benefit for our method.

We also perform the same experiments with another popular global image descriptor Bag-of-Words

(BoW) on BoW-1M-1024D, and its results are shown in Fig. 4.9 with SD and AD cases. Since BoW

descriptors are also used with the vector normalization according to L2 norm, we test the normalized

data too. Our method robustly provides better performance compared to OPQ.

Finally, we measure the computational times with GIST-1M-960D dataset at 64 bits encoding.

Ours+PQ takes 94.34s to encode one million data, 21ms for one million SD computations, and 819ms for

one million AD computations, while PQ takes 187.45s, 21ms, and 829ms, respectively. Since our method

uses less number of cluster centers, it has a faster encoding performance. Also, distance computation

time of our methods are similar to that of PQ.

4.5 Conclusion

We have presented a novel compact code encoding scheme that quantizes distances of points from

their corresponding cluster centers in each subspace. In addition, we have proposed two different distance

metrics tailored for our encoding scheme: statistics and geometry based metrics. We have chosen the

geometry based metrics, since it consistently show better accuracy over the statistics based one. We

have tested our method against the-state-of-the-art techniques with three well known benchmark, and
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Figure 4.9: Comparisons on BoW-1M-1024D. The left and right graphs show results for original and

L2 normalized data with symmetric and asymmetric distance metrics.

have demonstrated benefits of our method over them.

Many interesting research directions lie ahead. Our current encoding scheme uses a fixed bit length

for quantizing distances from all the clusters. A clear improvement would be to use a variable bit length

for different clusters depending on quantization distortions of them. The key challenge is to design

an effective optimization for deciding the bit distributions between encoding clusters and quantizing

distances. We leave it as future work.
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Chapter 5. Accurate Shortlist Computation in

Inverted File

5.1 Overview

Continuously growing image databases enable many promising computer vision applications includ-

ing web-scale image retrieval. However, traditional data structures and search mechanisms do not provide

sufficient scalability in terms of both the size and dimensionality of data. Thus, recent research directions

are shifting to develop scalable indexing and search methods mostly based on inverted file structures and

compact data representations [23].

In this chapter, we propose a novel searching mechanism for retrieving the inverted file structures.

Specifically, we derive a distance estimator designed for high-dimensional spaces and propose a shortlist

retrieving scheme according to the estimated distance.

5.2 Background

In this section, we describe a baseline procedure of indexing and search using an inverted file struc-

tures with a PQ-like encoding method.

Let us first define notations. Li is ith inverted list (i = 1...k) and ci ∈ RD is ith center of a coarse

quantizer corresponding to Li, where D is the dimensionality of the image descriptors. d(x, y) is the

Euclidean distance between x and y.

We also define a coarse quantizer q(x) as the index of the closet center from x:

q(x) = arg min
i

d(ci, x)

, and the closet coarse quantizer center c(x) as following:

c(x) = arg min
ci

d(ci, x).

When storing an image to the inverted file with its image descriptor x, we firstly quantize x to

determine a inverted list where the image will be appended. We then append the image index to the

determined inverted list Lq(x) with a compact code of x computed by PQ-like encoding method.

Recently many compact code encoding methods have been actively studied, since they provide both

a high compression ratio and fast distance estimation. There are two different categories in the encoding

methods: hashing and Product Quantization (PQ) based methods. We will rather focus on the PQ based

approaches since the proposed research is more related to PQ than hashing.

PQ [23] decomposes the given data space into lower-dimensional subspaces and quantizes each

subspace separately using k-means clustering. The compact code is then computed as a concatenation

of cluster indices encoded in subspaces. Optimized PQ [24] and Cartesian k-means [47] have been also

proposed to optimize PQ by minimizing quantization distortions with respect to the space decomposition

and cluster centers. Lately, DPQ [64] has been proposed to distribute memory budget to encode both

cluster indices and distance from data to corresponding centers. The inverted file structure has been
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(a) (b)

Figure 5.1: These two figures illustrate examples of shortlists for given query y. The shortlists consist

of points inside the red-dotted shape. The left figure shows a limitation of the shortlist construction

method described in Sec. 5.2. The green points are close to the query y but they are missed in the

shortlist since c3 is farther than c1 and c2 from y. In the other hand, the shortlist in the right figure

is more accurately constructed. Our goal is to develop a method to construct accurate shortlist as the

right figure.

applied to the PQ framework to avoid expensive exhaustive distance estimations [23]. Specifically, in

order to prevent linear scan on whole database coarse quantization is performed with given a query to

compute candidate search results called shortlist which is a small fraction of the whole data.

5.3 Our Approach

5.3.1 Motivation

Given a shortlist size T , items for the shortlist are determined with the coarse quantizer as described

in Sec. 5.2. An assumption under the procedure is that the distance between a data point x and a query

y is estimated by the distance between the coarse quantizer center c(x) and y as following:

d̃(y, x) = d(y, c(x)). (5.1)

However, this conventional shortlist construction scheme has a limitation that some close points to

the query can be missed in the shortlist (Fig. 5.2(a)). This is mainly because the distance estimation

by Eq. 5.1 is inaccurate and causes high quantization error. In this research, our goal is to propose a

method to construct a shotlist more accurately as illustrated in Fig. 5.2(b).

Both search accuracy and time is depending on the quality of a shortlist. Given fixed size T the

search accuracy is higher if we have a better shotlist. It also implies that we can decrease the shotlist size

for the same accuracy and thus the search time can be accelerated by reducing the number of distance

estimations.

5.3.2 Distance Estimator for High-Dimensional Space

As the dimensionality goes higher, two random vectors are more likely to be orthogonal [64, 65].

We start to develop our distance estimator with the orthogonality between two random vectors in high-

dimensional spaces. Given a query y and a data point x, we assume that y − c(x) and x − c(x) are
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orthogonal. Under this assumption, we formulate our squared distance estimator between y and x as

following:

d̂(y, x)2 = d(y, c(x))2 + d(x, c(x))2. (5.2)

We propose to use our distance estimator (Eq. 5.2) instead of conventional one (Eq. 5.1) to construct

more accurate shortlist.

5.3.3 Shortlist Construction

Precomputation

In order to construct shortlist according to our distance estimator, the distances from data to their

corresponding center d(x, c(x)) are required. However, storing such distances takes additional memory

overhead. Moreover, ordering the points according to the estimated distance also requires additional

computations. To overcome both memory and computational cost problems, we propose an efficient

shortlist construction scheme.

We first sort data in each inverted list Li according to the squared distances d(x, c(x))2. We compute

R0 and Rmax as the minimum and maximum squared distance to the center respectively:

R0 = min d(x, c(x))2 and Rmax = max d(x, c(x))2

The range [R0, Rmax] is uniformly divided into fixed sized (∆R) intervals. We denote the boundary

values Ri as following:

Ri = R0 + i∆R

We define a lookup table W to quickly refer the number of data points in Li whose squared distance

to the center d(x, ci)
2 is less than Rj as following:

W (i, j) = num( {x | d(x, ci)
2 < Rj , x ∈ Li } )

Fig. 5.2 provides an example of the above procedure to construct a lookup table W and refer a value

in the W .

Runtime Algorithm

The precomputed lookup table W is based on d(x, c(x))2 but we need also consider d(y, c(x))2 which

is depending on the query y and computable in the runtime. In order to compute the number of data

points w(i, t) in Li whose estimated distance (by Eq. 5.2) to the query is less than a value t, we refer the

table W with shifted index as following:

w(i, t) = num( {x | d(x, ci)
2 + d(y, ci)

2 < t, x ∈ Li })

= num( {x | d(x, ci)
2 < t− d(y, ci)

2, x ∈ Li })

= W (i,

⌈
t− d(y, ci)

2 −R0

∆R

⌉
)

When query y is given, we firstly compute and store d(y, ci)
2 for all the ci. Since each row in the

table W is increasing order, the column-wise sum is also increasing order. We use binary search to find

appropriate threshold of estimated distance t that meets a given shortlist size T . The binary search for
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Figure 5.2: These two figures show an example of the procedure described in Sec. 5.3.3 (a) The data

points in each list Li is sorted according to the squared distance to the center d(x, ci)
2, and range of the

squared distances [R0, Rmax] is uniformly divided with fixed interval length ∆R. (b) A lookup table W

is defined to W (i, j) be the number of data points in Li whose squared distance to the center d(x, ci)
2 is

less than Rj . For instance, the number of data points within the green box in (a) is W (2, 5) = 20 in the

lookup table.

t is performed within the range [min d(y, ci)
2 + R0,max d(y, ci)

2 + Rmax], and stopped when the lower

bound that satisfies following:

T ≤
k∑
i=1

w(i, t)

The resulting shotlist is constructed by collecting points that has smaller estimated distance than

the threshold found by the binary search.

Parameter Selection

Since we aim to avoid additional computational overhead to construct a shortlist, we suggest a

parameter selection scheme based on the cost analysis. The computational cost Csearch for the search

based on the procedure described in Sec. 5.2 is formulated as following:

C = CS + CR

, where CS and CR are the costs for computing shortlist and for rerank the shortlist respectively. In

order to identify the near coarse quantizer centers computing distances to the centers is required, so the

first part of the cost equation is:

CS = kD + k log k

and the cost for the reranking phase is:

CR = MT

, where M is an unit cost for one distance estimation. The prior method and our proposed method have

same complexity on reranking phase. Our proposed shortlist construction method desribed in Sec. 5.3.3
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Figure 5.3: These two figure show the experimental results with different K which is number of defined

true neighbors. x-axis and y-axis represent the shortlist size (T ) and Recall@T respectively.

runs with following time complexity:

CS′ = kD + k log
Rmax −R0

∆R

In order to ensure CS = CS′ , we can set the parameter ∆R to satisfy

Rmax −R0

∆R
= k.

5.4 Evaluation

Dataset: We collect about 11 millions of Internet images from Flickr, and extract 4096 dimensional

image descriptors by using a deep convolutional neural network. As a training set for the neural network,

we used 1 million of images from ImageNet within 1000 categories.

Protocol: We use 1000 queries do not have any overlap with the data points. K nearest neighbors

for each query points are computed and defined to be the ground truth via the exhaustive search. The

accuracy of retrieved shortlist is measured by recall@T where T is the size of the shotlist. Recall@T

means how many true neighbors are in the retrieved shortlist. We use the k = 4096 inverted lists with

4096 coarse quantizer centers.

Results: We compare our method (Ours) against the conventional method (Baseline) described in

Sec. 5.2. The experimental results are reported in the Fig. 5.3. Our proposed method Ours consistently

provides more accurate shortlist compared to the Baseline in all the tested configurations. Ours and

Baseline take 6.5ms and 6.3ms to retrieve the shortlists in average respectively.
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Chapter 6. Large-Scale Tag-Driven Feature

Learning

6.1 Overview

The deep convolutional neural network trained on the ImageNet dataset [25] shows the state-of-the-

art performance in the image classification task. The image features computed in the intermediate layers

in the deep convolutional neural network can be used in many computer vision applications including

visual search and tagging. Specifically, the vectors in the fully connected layers in the network is known

as one of the best image features.

However, the neural network trained on the ImageNet dataset has a few disadvantages. First, most

of images in the ImageNet dataset contain a single object and are strictly assigned to a single object

label. This can bring training bias to the pre-defined fixed number of object categories. And the trained

network is weak at images containing drawings, graphics, or illustrations since most images in the training

set are real photos.

In this chapter, we propose a new scheme to train a neural network with large-scale image dataset

that are weakly annotated with multiple text tags. Since the number of tags is usually very large (i.e.

a few millions of keywords), it is not feasible to directly train a classification network with the tags. So

we suggest a novel way to utilize such valuable tag information to train a neural network.

6.2 Tag-Driven Pseudo Classes

Suppose that we have images I1, I2, ..., In ∈ I and each image Ii has mi tags T i = {ti1, ti2, ..., timi
}.

Let us define a set of all possible tags as U = {u1, u2, ..., uM}. We represent tags of each image Ii to a

M dimensional binary vector bi as followings:

bij =

1 when uj ∈ T i

0 otherwise
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Figure 6.1: This figure shows our framework to define pseudo classes.
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10 tags 25 tags 50 tags 100 tags

P@10 R@10 P@25 R@25 P@50 R@50 P@100 R@100

ImageNet 0.530 0.161 0.403 0.295 0.297 0.424 0.196 0.552

Ours 0.591 0.181 0.454 0.333 0.337 0.480 0.220 0.616

Table 6.1: This table shows experimental results of image tagging task. 25 nearest neighbors are consid-

ered in the voting scheme that determines tags of given query.

The jth entry of the vector bi is 1 only when the image Ii has a tag uj . We then apply normalization

terms to all vectors bi with consideration of tf (term frequency), idf (inverse document frequent), and

their L2 norms. The idfi of each ui is defined as followings:

idfi = log
n

occurrence of ui

We use the term frequency to normalize varying number of number of tags for each images, and we use

the inverse document frequency to assign higher importance to more informative tags since less common

tags are more informative. For example, ’Eiffel Tower’ is more informative keyword than ’architecture’.

We finally define a Bag of Tags (BoT) representation of each image as followings:

xij =


idfj
mi

when uj ∈ T i

0 otherwise

We then normalize xi according to their L2 norm ‖ xi ‖, and perform k-means clustering to xi vectors.

In the clustering stage, we use an inverted representation for xi since they are very sparse vectors. For

example, the number of total tags M is usually very large (e.g. more than 100K) and the number of tags

mi of each image Ii is not larger than a hundred.

We call each cluster as pseudo class, and let ci ∈ RM for the centroid of the ith class. The pseudo

class is not exist in real, but weighted combination of tags. The overall procedure of computing pseudo

classes is illustrated in Fig. 6.1. Also, we provide Fig. 6.2 that shows examples of clustering results that

confirm the visual coherency within each pseudo class.

Once we have training images and their pseudo class indices, we train a classification neural network

with image and label pairs.

6.3 Evaluation

We evaluate our proposed method against one of the state-of-the-art method ImageNet [25]. We

use 12.5 million of tagged images as the dataset that do not have overlap with training set. Our method

is trained with 3500 pseudo classes and 3.5 millions of images. And we use the last fully connected layers

(fc7) of the trained networks for all tested tasks.

We quantitatively evaluate our method with the image tagging task. 10K randomly selected queries

are performed, and performances are evaluated with precision and recall. To obtain the tags of given

query, we use a simple k-NN voting scheme. The experimental results are provided in Table. 6.1

We also qualitatively evaluate our method with the image search task. Our method provided more

visually relevant and consistent results compared to ImageNet. Some example results are provided in

Fig. 6.3.
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(a)

(b)

(c)

Figure 6.2: These figures show examples of three pseudo classes that confirm the visual coherency within

each pseudo classes

– 49 –



(a) Query A - ImageNet (b) Query A - Ours

(c) Query B - ImageNet (d) Query B - Ours

(e) Query C - ImageNet (f) Query C - Ours

Figure 6.3: These figures show that three image search results of our method and the compared method.

The leftmost picture of each sub-figure is the provided query image.
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6.4 Regression Network

In the classification network that we discussed above, we assign the index of the closest pseudo class

to each image as its label. However we can define a multi-dimensional label for each image and train a

regression network based on such multi-dimensional labels. We can compute a multi-dimensional labels

based on the distances from the Bag of Tags vector xi of each image to the pseudo class centroid cj :

sij = f(‖ xi − cj ‖)

where f(·) is a numerical function that adjusts scales. One example of the function is f(x) = e−γx
2

.
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Chapter 7. Conclusion

This dissertation addresses scalable approximate nearest neighbor search problem for high-dimensional

data. Traditional techniques such as kd-trees are not scalable to large-scale high-dimensional data. To

overcome the difficulty, two compact representations of high-dimensional data and search scheme based

on the compact codes are proposed in this dissertation: 1) Spherical Hashing (Chapter. 3) and 2)

Distance Encoded Product Quantization (Chapter. 4). In the Spherical Hashing, a novel hypersphere-

based hashing functions are proposed to map more spatially coherent data into a binary code compared

to hyperplane-based methods. We also propose a new binary code distance function tailored for our

hypersphere-based binary code encoding scheme, and an efficient iterative optimization process to achieve

both balanced partitioning for each hashing function and independence between hashing functions. Fur-

thermore, we generalize the Spherical Hashing to support various similarity measures define by kernel

functions. We also propose a novel compact code encoding scheme that distributes the available bit

budget to encode both the cluster index and the quantized distance between point and its cluster center

in the Distance Encoded Product Quantization (DPQ). We also propose two different distance metrics

tailored to the DPQ. All the proposed schemes are extensively evaluated against the state-of-the-art

techniques with various large-scale benchmarks consisting of high-dimensional image descriptors. The

proposed methods significantly outperform the state-of-the-art techniques.
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Comput. Surv., vol. 33, no. 3, pp. 273–321, Sep. 2001.

[34] C. Silpa-Anan, R. Hartley, S. Machines, and A. Canberra, “Optimised kd-trees for fast image

descriptor matching,” in CVPR, 2008.

[35] Y. Jia, J. Wang, G. Zeng, H. Zha, and X.-S. Hua, “Optimizing kd-trees for scalable visual descriptor

indexing,” in CVPR, 2010.

– 54 –



[36] K. Kim, M. K. Hasan, J.-P. Heo, Y.-W. Tai, and S.-E. Yoon, “Probabilistic cost model for nearest

neighbor search in image retrieval,” Computer Vision and Image Understanding (CVIU), 2012.

[37] D. Nistér and H. Stewénius, “Scalable recognition with a vocabulary tree,” in CVPR, 2006.

[38] A. Joly and O. Buisson, “A posteriori multi-probe locality sensitive hashing,” in Proceedings of the

16th ACM international conference on Multimedia, ser. MM ’08. New York, NY, USA: ACM, 2008,

pp. 209–218.

[39] J. Bourgain, “On lipschitz embeddings of finite metric spaces in hilbert space,” Israel Journal of

Mathematics, vol. 52, no. 1, pp. 46–52, Mar. 1985.

[40] W. Johnson and J. Lindernstrauss, “Extensions of lipschitz mapping into hilbert space,” Contem-

porary Mathematics, vol. 26, pp. 189–206, 1984.

[41] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with graphs,” in ICML, 2011.

[42] C. Strecha, A. M. Bronstein, M. M. Bronstein, and P. Fua, “Ldahash: Improved matching with

smaller descriptors,” PAMI, 2010.

[43] W. Kong and W.-J. Li, “Double-bit quantization for hashing,” in AAAI, 2012.

[44] Y. Lee, J.-P. Heo, and S.-E. Yoon, “Quadra-embedding: Binary code embedding with low quanti-

zation error,” in ACCV, 2012.

[45] W. Kong, W.-J. Li, and M. Guo, “Manhattan hashing for large-scale image retrieval,” in SIGIR,

2012.

[46] K. He, F. Wen, and J. Sun, “K-means hashing: an affinity-preserving quantization method for

learning binary compact codes,” in CVPR, 2013.

[47] M. Norouzi and D. J. Fleet, “Cartesian k-means,” in CVPR, 2013.

[48] H. Jégou, M. Douze, and C. Schmid, “Hamming embedding and weak geometric consistency for

large-scale image search,” in ECCV, 2008.

[49] R. F. S. Filho, A. Traina, C. J. Traina., and C. Faloutsos, “Similarity search without tears: the

omni-family of all-purpose access methods,” in Int’l Conf. on Data Engineering, 2001.

[50] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang, “idistance: An adaptive b+-tree based

indexing method for nearest neighbor search,” ACM T. on Database Systems, 2005.

[51] J. Venkateswaran, D. Lachwani, T. Kahveci, and C. Jermaine, “Reference-based indexing of sequence

databases,” in VLDB, 2006.

[52] A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions.

New York: Dover Pub., Inc., 1987.

[53] L. Greengard, The rapid evaluation of potential fields in particle systems. Cambridge: MIT Press,

1988.

[54] K. Grauman and T. Darrell, “The pyramid match kernel: discriminative classification with sets of

image features,” in ICCV, 2005.

– 55 –



[55] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, “Local features and kernels for classification

of texture and object categories: A comprehensive study,” IJCV, vol. 73, pp. 213–238, 2007.

[56] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means: spectral clustering and normalized cuts,” in

KDD, 2004.

[57] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical

image database,” in CVPR, june 2009, pp. 248 –255.
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Summary

Compact Representation of High-Dimensional Data
for Large-Scale Image Search

근사적 근접점 검색 (approximate nearest neighbor search) 은 계산기하학, 데이터마이닝, 컴퓨터 비전 등

다양한 전산학의 분야에서 오랫동안 집중적으로 연구되어 왔다. 이 문제는 주어진 데이터가 고차원이거나

그 규모가 방대할 때에 그 복잡도가 크게 증가한다. 하지만 실제 어플리케이션들에서는 이러한 고차원 대규

모 데이터에 대한 효율적인 근접점 검사 기법이 중요한 실정이다. 전통적으로 잘 알려진 계층 구조 기반의

방법들 (hierarchical methods) 은 저차원 데이터에 대해서 효율적인 해답이 될 수 있는 반면, 데이터의 차

원이 높아짐에 따라 그 효율성이 급감하여 선형 탐색 (linear scan) 보다 비효율적일 경우도 있다. 그래서

최근에는 데이터의 간략한 표현법 (compact data representation) 에 대한 연구가 집중적으로 이루어지고

있는데, 그 이유는 데이터를 간략화함으로 높은 압축률과 빠른 거리 (혹은 유사도) 계산 속도를 얻을 수 있고

나아가서 방대한 데이터베이스를 다룰 수 있기 때문이다.

본 박사학위논문에서는 두 가지의 데이터 간략화 기법 1) Spherical Hashing (SpH)과 2) Distance

Encoded Product Quantization (DPQ) 을 제안한다. 기존의 방법들이 초평면 (hyperplane) 기반 해싱

함수들을 이용한 반면, SpH 에서는 새로운 초구 (hypersphere) 기반의 해싱 함수를 사용할 것을 제안한다.

나아가 초구 기반의 해싱 함수를 위해 고안된 이진 코드간의 거리 함수와, 각 해싱 함수의 공간의 균등한

분할과 해싱 함수들 사이의 독립성을 만족시키는 최적화 과정 역시도 제안한다. 또한 커널 함수 (kernel

function) 로 정의된 다양한 유사도 척도를 사용할 수 있도록 SpH 를 일반화 한다. DPQ는 공간 양자화

(space quantization) 방법을 개선한 방법이다. 기존의 방법들이 데이터가 어떤 보로노이 셀 (Voronoi cell)

에 속하는지 그 인덱스만으로 데이터를 이진 코드화 했다면, DPQ에서는 클러스터의 인덱스 뿐만 아니라 그

클러스터의중심으로부터어느정도거리로떨어져있는지의정보역시도이진코드화하여저장한다. 나아가

DPQ에특화된두개의이진코드거리함수를제안한다. 고안한방법들은모두다양한고차원벤치마크에서

최신 기법들과 비교하였고, 최신 기법들 대비 나은 성능을 보임을 확인하였다.

더나아가본박사학위논문에서현재진행중인다음의두연구, 역파일 (inverted file)에서후보군선출

기법, 2) 이미지 태그 (image tag) 에 기반한 이미지 특징점 (image feature) 학습법, 을 소개한다. 먼저 첫

번째 연구에서는 고차원에서 벡터들 끼리의 수직 성질에 기반을 둔 거리 추정 함수를 정의하고, 이 함수에

기반하여 거리 기반 인덱싱 기법과 검색 결과 후보군 선출법을 제안하고 평가한다. 두 번째 연구에서는

대규모 태깅된 이미지 (large-scale tagged images) 를 이용하여 이미지 특징점 추출 기법을 학습하는 방법을

제안한다. 구체적으로는 허종 (pseudo class) 를 정의하고 각각의 이미지를 하나의 허종에 배정한 후, 뉴럴

네트워크 (neural network) 를 학습한다.
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