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ABSTRACT

Robot motion planning problem has been actively studied since 1970’s and has many applica-

tions, such as part disassembly, autonomous vehicle and computer graphics. Sampling-based algorithms

have been successfully used to give a probabilistically complete solution for a variety of types of robots

and constraints. Sampling-based algorithms, however, suffer when narrow passages are included in an

environment. This phenomenon become worse as more constraints are related such as kinematic and

dynamics constraints, because of its high degrees-of-freedom and complexity of extensions. In this thesis,

we present novel sampling-based planners to efficiently handle various environments that have different

characteristics and constraints. We first present a bridge line-test that can identify narrow passage re-

gions in the configuration space, and then selectively performs an optimization-based retraction only at

those regions. We also propose a non-colliding line-test, a dual operator to the bridge line-test, as a

culling method to avoid generating samples near wide-open free spaces. These two line-tests are per-

formed with a small computational overhead. As a result, proposed planner shows better performance

than recent works for a variety of environments that have or do not have narrow passages. For a hyper-

redundant robot manipulator, we define productive regions in the task space as a set of states that can

lead effectively to a goal state. To check whether a node of a random tree is in productive regions or

not, we construct a maximum reachable area (MRA) for a node in the task space, where a manipulator

can reach from the node by using an employed local planner. When the MRA of a node contains the

goal state, we call it promising and bias our sampling to cover promising MRAs. When the MRA does

not contain the goal state, we call it unpromising and construct a detour sampling domain for detouring

operations from obstacles constraining the manipulator. The union of promising MRAs and detour sam-

pling domains approximates our productive regions, and we bias sampling regions to cover these domains

more. Finally, we present a novel kinodynamic motion planner designed for complex dynamics environ-

ments with many obstacles. We define a motion database that is constructed as a preprocessing and

can replace time-consuming propagation function integration of kinodynamic sampling-based planners.

Motion interpolation is applied for retrieving large set of motions in the continuous state space. During

iterations, interpolated motions are selectively validated by the employed simulator in order to increase

the efficiency of the planner. Constructed motion database can be also used for other problems such

as different composition of obstacles or different start/goal state. Overall, proposed methods achieve

several times improvement over the state-of-the-art planning algorithms.
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Chapter 1. Introduction

1.1 Sampling-based Motion Planning

Robot motion planning problem is computing collision-free paths of a robot from given initial state

to a goal state or region, while satisfying a set of constraints. The problem has been actively studied since

1970’s and has many applications, such as part disassembly simulation, autonomous vehicle, tolerance

verification, protein folding, and computer graphics [CL95, FK99, Lat99]. Reif proved that a most basic

version of motion planning problems, such as a piano movers’ problem, is PSPACE-hard to develop a

complete solution [Rei79].

Sampling-based motion planning algorithms have been designed and successfully used to solve the

problem for a variety of environments under the limited completeness which is probabilistically complete.

Two of the most successful algorithms include Probabilistic Roadmap Method (PRM) [KSLO96] and

Rapidly-exploring Random Tree (RRT) [KL00]. At a high level, as random sampling is performed

iteratively, these techniques provide collision-free paths by capturing a larger portion of the connectivity

of the free space.

One of the most challenging cases for sampling-based techniques is to efficiently handle narrow pas-

sages in the free space. In many practical motion planning applications, a robot often needs to pass

through narrow passages and the performance of sampling-based planning algorithms can degrade sig-

nificantly. Many approaches have been proposed in different directions such as utilizing the workspace

geometric information [KH06], filtering (or adaptive sampling) techniques towards more important re-

gions [BOvdS99, SLN00, HJRS03, YJSL05], retracting samples, etc.

Recently, retraction-based techniques [ZM08, RTLA06, HSAlCL06, RL05, SL05] have been actively

studied, since they can pose samples near the boundary of the C-Obstacle, efficiently leading to explore

important regions including narrow passages. However, these techniques have the computation overhead

of retracting sampling near the boundary of the C-Obstacle and thus can run slower even to a basic RRT

method, when the free space does not have such difficult regions [ZM08].

1.2 Motion Planning with Kinematic Constraints

The motion planning problem for robot manipulators is to generate a motion trajectory to move from

an initial configuration to reach an end-effector in a goal position, while satisfying desired constraints

(e.g. avoiding obstacles, joint limits, etc.). Specifically, avoiding obstacles is the principal constraint for

kinematically redundant manipulators, which have high degrees-of-freedom (dofs). Recently, sampling-

based path planners including the Rapidly-exploring Random Tree (RRT) have been successfully used

to give a probabilistically complete solution for redundant manipulators. Most sampling-based planners

work in the configuration space (or joint space) and experience difficulty as the number of dimensions of

the configuration space grows.

This phenomenon becomes worse for hyper-redundant manipulators whose configuration space has

much higher dimensions than common task spaces (e.g. three dimensions when a task is positioning an

end-effector in a 3D workspace). Normally more than 10-dofs for rigid link manipulators are considered

– 1 –



to be hyper-redundant. These extra redundant dofs give the manipulator greater dexterity and potential

for maneuvering within tight environments. Therefore robots for disaster relief or medical surgery are

representative applications for hyper-redundant manipulators, to name a few. One example of hyper-

redundant manipulators is the 30-dofs robot by Chirikjian and Burdick [CB93].

Recently, a concept of utilizing the task space has received a strong attention for boosting the

performance of planners. Some of them use a task space distance function [BKDA06] , exploit the task

space as a goal bias [VWFS07], or perform direct task space exploration [ST09]. Specifically, directly

exploring the task space can enable planners to effectively solve high dimensional problems by using a

much lower dimensional task space.

1.3 Motion Planning with Kinodynamic Constraints

Planning for real world robots which move and interact with environments under the physical

laws, requires another class of constraints, kinodynamic constraints [DXCR93], which includes non-

holonomic constraints for underactuated systems and differential constraints for dynamical systems.

The kinodynamic motion planning can provide valuable solution in a wide variety of applications such

as space robots, mobile robots with wheels, humanoids, underwater robots, helicopters, etc.

There are two main approaches in robotics research for solving the kinodynamic planning prob-

lem. The first approach decouples the problem by solving basic path planning in robot’s configuration

space and then finding a solution path with proper controls that satisfies the dynamics and other con-

straints [SD91, KJKN+02, DRF+08a]. A solution found in the first step, considers only kinematics and

geometric constraints while ignoring the dynamics systems, therefore the path would be impossible to

track under kinodynamic constraints in the second step.

The second approach is a generalization of planning in configuration space by employing the state

space that includes both configuration spaces components and its velocity components. By the general-

ization, many sampling-based motion planning techniques can be used for kinodynamic problem [LK01,

HKLR02a] with a suitable metric and extension methods under dynamics systems, and resultant planner

become probabilistically complete as the sampling-based planners are.

– 2 –



Chapter 2. Related Work

2.1 Sampling-based Motion Planning

The sampling-based algorithms have been successfully used to solve various motion planning prob-

lems in practice. Among them, Probabilistic Roadmap Method (PRM) [KSLO96] and Rapidly-exploring

Random Tree (RRT) [KL00] are the most widely used approaches [LaV06]. These techniques have been

extensively studied and an excellent survey is available [HLK06].

Specifically, RRT methods have been extended to solve a wide variety of practical single-query

problems in robotics and other related domains. [BV02, FKS06, BCLM06, CJS07]. RRT methods have

been improved in many different directions by considering workspace information [KH06, BB07], bias-

ing sampling strategies [YJSL05, LL04], decomposing environments and focusing sampling on critical

paths [GFC09], taking into account the optimality of solutions [KF10], etc.

2.2 Handling Narrow Passages for Rigid Body Robot

One of the most difficult challenges for sampling-based methods is to efficiently handle narrow

passages in the free space of a robot. Uniform sampling commonly used in both PRM and RRT has been

identified to show poor performance on environments with narrow passages or bug trap shapes [LaV06].

Many strategies have been proposed to improve the performance on these difficult problems [HLK06].

At a high level, there have been two groups of PRM or RRT variations. One group focuses on

diversifying expansions of local planners such as penalizing nodes for extension by recording expan-

sion success rate [CL01, KE05], reducing already-explored space expansions by a regression-prevention

mechanism [KvdP06], and regulating expansions in an adaptive manner [WB11b, WB11a].

Another group tries to alter the sampling distribution to efficiently guide the expansion of roadmaps

or trees inside narrow passage regions by the use of the workspace geometric information [KH06,

RTPA06], dynamic sampling distributions [MTP+05], simultaneously mapping roadmaps at C-free and

C-Obstacle spaces [DA11], utilizing local free space information [DL11], filtering (or adaptive sampling)

techniques towards important regions including narrow passages [ABD+98, BOvdS99, SLN00, HJRS03,

YJSL05, SHJ+05, YTEA12, ST11], and retraction-based approaches [RTLA06, RL05, ZM08, HSAlCL06,

SL05].

2.2.1 Filtering techniques

Filtering techniques aim to generate lots of samples at the robot’s free space and filter out some

of them that are not located near difficult regions such as narrow passages, leading to adaptive sam-

pling. Boor et al. [BOvdS99] proposed the Gaussian sampling strategy that distributes samples near

the boundary of the free space. The Bridge test proposed by Hsu et al. [HJRS03] uses three sampled

configurations to boost the sampling density inside narrow passages. Yershova et al. [YJSL05] proposed a

dynamic-domain RRT that adapts its sampling domain to bias toward the visibility domain by obstacles.

Obstacle-based PRM proposed by Amato et al. [ABD+98] generates a ray from invalid samples to find
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a surface configuration, and UOBPRM [YTEA12] improves the performance by generating surface con-

figurations uniformly. Shkolnik and Tedrake [ST11] proposed the ball tree algorithm that approximates

the reachable free space in a similar way to our non-colliding line-test.

2.2.2 Retraction-based techniques

The main idea of the retraction-based approach is to retract initial samples normally generated

from uniform sampling on C-space towards more useful regions such as the boundary of C-Obstacle, the

medial axis of the free space, and so on. Its final sample distribution, therefore, is not uniform, but

biased toward more useful regions. Some of retraction-based algorithms utilize the contact information

for retraction [RTLA06, RL05, ZM08], dilate the free space [HSAlCL06, SL05], or use approximation of

medial axes or boundary of the motion for the robot [FL04]. These techniques can efficiently handle

narrow passages, however these can run slower than a simple method, when the free space does not have

such difficult regions because of their computational overheads for retraction operations.

2.3 Path Planning for Redundant Manipulators

Sampling-based single query motion planning algorithms (e.g., RRT [KL00] and EST [HKLR02b])

have been used to solve various motion planning problems including high-dimensional manipulation

planning. For overcoming the high dimensionality of redundant manipulators, many techniques have

been proposed to improve the performance of a planner by utilizing the task space, which has much

lower dimensions compared to the configuration space of a robot.

Yao et al. [YG07] proposed ATACE, which first generates end-effector paths in the task space, and

then tries to track the paths in the configuration space by using an end-effector trajectory tracking

planner such as Jacobian-based techniques [MK85, NHY87] as a local planner. Bertram et al. [BKDA06]

used a heuristic goal function that estimates a distance from a sample to goals, in order to bias sampling

in the configuration space. JT-RRT [VWFS07], proposed by Weghe et al., combined the Jacobian

transpose method with the standard RRT exploring the configuration space. Especially this method

used a task space goal bias that attempts to connect nodes in the configuration space and the goal end-

effector position by a local planner based on the Jacobian transpose method. Diankov et al. [DRF+08b]

proposed BiSpace Planning, which explores both configuration and task spaces in a similar manner to the

bidirectional RRT approach; two different trees are grown from initial and goal states and the planner

periodically attempts to connect them.

While planners mentioned above used workspace goal positions for biasing the configuration explo-

ration so that planners could find a solution effectively, techniques exploiting the task space as its main

exploration space have been proposed [ST09, BHG10]. A concept of directly exploring the task space is

very helpful especially for a hyper-redundant manipulator, which has many dofs, because the dimension

of the task space remains the same, while the dimension of the configuration space increases. As a

result, the task space exploration is scalable with respect to the dof of robots. In order to reconstruct

samples of the configuration space from ones of the task space, Shkolnit et al. [ST09] uses the Jacobian

Pseudoinverse method, which is widely used for the task space control [Lie77]. Behnisch et al. [BHG10]

further exploits the concept of the direct task space exploration by utilizing the null space velocity for

avoiding obstacles.

Many sampling bias or adaptive sampling techniques have been proposed in order to improve the
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performance of sampling-based motion planners. The common idea of these techniques is to bias the

sampling distribution towards more important regions. Some of them use visibility domain by obsta-

cles [YJSL05], boundary of obstacles in the configuration space [RTLA06, ZM08], regions inside narrow

passages [HJRS03, DL11], boundary of obstacles near narrow passages [LKZY12], etc. While a bias-

ing technique in the configuration space has been widely researched, biasing the task space sampling

distribution has not been studied well, especially for a redundant manipulator.

2.4 Kinodynamic motion planning problems

The classic approach for kinodynamic motion planning in robotics is to decouple the problem as

two stages: firstly solving basic path planning problem by a geometric planner, then computes a global

solution near the basic path, satisfying the dynamics and other constraints [BDG85, SD91, LJTM94,

LSL99, SB02]. However, these approaches can result in a susceptibility to local minima when intractable

paths are generated from the first state, because of limits on forces and torques for the robot in the

environments.

In order to cope with the local minima problem, a number of approaches were proposed. Svestka and

Overmars [SO97] proposed extension of randomized holonomic planning technique to the non-holonomic

planning assuming proper steering method for a system, and LaValle and Kuffner [LK01] proposed

generalization of sampling-based method into the state space. Randomized kinodynamic planning have

been extended to improve the performance [CFL04, SWT09, PKV10, SK12]. However, the state space

dimensions is increased two-fold, the complexity of planning algorithms scales more than holonomic

planning. Also, selecting a suitable metric and extension methods still are remained challenging.

Discrete planning methods also have been proposed for simple environments by discretization of

the environment or the state space and then applying simple efficient graph search techniques to find

a solution path [LFG+05, PK05, KK06, LF09, GSL12]. However, approaches are restricted to simple

environments and low degree-of-freedom robots and shows low efficiency in planning for large distances

and complex planning.
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Chapter 3. Selective Retraction-based RRT

Planner for a Rigid Body Robot

3.1 Overview

In this chapter, we propose a novel retraction-based planner for rigid robots, Selective Retraction-

based RRT (SR-RRT), for a wide variety of environments that have or do not have narrow passages.

Our method performs the optimization-based retraction operations in order to explore more important

regions. Instead of performing retraction operations exhaustively, we selectively perform retraction

operations, only if samples to be retracted are deemed to be around narrow passages. To decide whether

a sample is near a narrow passage, we propose a bridge line-test, an inexpensive filtering operation, which

checks whether narrow passages exist along a line segment. In order to achieve a high accuracy even in

high dimensional configuration spaces, we perform principal component analysis (PCA) and generate the

line with a higher probability to cross narrow passages. Also, in order to generate more random samples

near narrow passages, we present a non-colliding line-test that detects wide-open free spaces and cull

samples near such spaces (Sec. 3.3).

We have implemented our SR-RRT method integrated with these two line-tests. In order to demon-

strate benefits of our method, we have tested SR-RRT with various types of benchmarks that have

different characteristics (Sec. 4.4). For these tests we assume free-flying systems because the same as-

sumption is also used for the retraction method. Our method achieves up to 21 times, 31 times and 3.5

times performance improvement (6.7 times, 6.8 times and 2 times on average) over a basic RRT [KL00],

a Dynamic-Domain RRT [YJSL05], and an optimization-based retraction method [ZM08], respectively.

Moreover, while the basic RRT and the optimization-based retraction method show lower performance

than the other tested methods in some benchmarks, our method consistently improves the performance

across all the tested benchmarks that have or do not have narrow passages. As a result, we can conclude

that our method is more robust and general in free-flying systems than other tested methods.

The contents of this chapter is based on the article presented in ICRA 2012 [LKZY12].

3.2 Backgrounds

In this section we give a brief review on the basic RRT and its variant based on an optimization-

based retraction, RRRT [ZM08], which is designed for efficiently handling narrow passages. We then

discuss their issues that arise when we apply them to various environments, some portions of which

contain narrow passages, but other portions of which do not have such difficult regions.

3.2.1 Review of RRT

A basic RRT algorithm starts with a single or multiple random trees [KL00]. The basic RRT

method randomly generates a sample, qr, in the configuration space and finds its nearest neighbor node,

qn, among nodes of existing random trees. It then attempts to connect qn with qr. If qr is in collision

or there are any obstacles in between qr and qn, a first in-contact configuration, qc, that touches the
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boundary of C-Obstacle is computed along a straight line from qr to qn [LaV06, pp. 189–192]. qc is then

added to the tree and is connected with qn (Fig. 3.4-(a)). The pseudo code of the basic RRT is shown

at Algorithm 1.

Algorithm 1 The basic RRT Planner

Require: tree T

T .AddVertex (qinit)

repeat

qr ← RandomState()

qn ← NearestNeighbor(qr, T )

qc ← RRTExtend(qn, qr)

T .AddVertex (qc)

T .AddEdge (qn, qc)

until a collision-free path between qinit and qgoal is found

It has been known that the basic RRT explores the free space with a bias related to the Voronoi

diagram [KL00]. Especially, a probability that a node of a random tree is chosen as the nearest neighbor

node is proportional to the volume of the Voronoi region associated with the node.

This basic RRT or its variants, however, can take a prohibitively long planning time, when the free

space of a robot contains narrow passages. This is because the volume of regions associated with narrow

passages are significantly smaller than other regions. As a result, the probability of exploring and getting

out the narrow passage region is quite low.

3.2.2 Review of RRRT

In order to address the problem of the basic RRT, an optimization-based retraction technique,

RRRT [ZM08], was proposed recently by Zhang and Manocha. Its pseudo code is shown at Algorithm 2.

Its main idea is to iteratively retract a randomly generated in-colliding sample to a more desirable place,

which is the nearest boundary of the free space, in other words, contact space. To overcome computational

prohibitiveness, RRRT formulates the retraction computation to an optimization problem based on a

local contact analysis, while iteratively minimizing an objective function (i.e. a distance metric is used

here); for example, Fig. 3.1 shows that qc′ is a newly retracted from in-contact configuration from qc.

OptimizedRetraction (·) used in the pseudo code of Algorithm 2 is performed as follows: Firstly, the

closest feature pairs are computed between qc, the first in-contact configuration from qn to qr, and the

obstacles. It then computes a new sample qc′ , which is not in-collision and minimizes the distance to

qr by searching over the local contact space constructed implicitly from the closest feature pairs. These

steps are repeated by replacing qn with qc′ until the distance to qr is converged or the maximum number

of iterations has been reached. Even though this optimization technique behaves in a greedy manner, this

technique has been demonstrated to work well in environments that have narrow passages. For example,

this optimization-based retraction technique shows two times higher performance than the basic RRT in

the wiper 1.0 benchmark (Fig. 3.8), which has narrow passages.

3.2.3 Issues with Optimization-based Retraction

The optimization-based retraction technique works quite well with scenes that have narrow passages.

This result is achieved by performing extra operations to the basic RRT, such as local contact analysis,
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Figure 3.1: Sampling generation of an optimization-based retraction: RRRT incrementally

retracts a randomly generated in-colliding sample qr to a more desirable place in order to generate more

samples in the narrow passages. This figure shows that the original random sample qr is in-colliding,

and it is then incrementally retracted from qc to qc′ and so on.

Algorithm 2 RRRT Planner

Require: tree T

T .AddVertex (qinit)

repeat

qr ← RandomState()

qn ← NearestNeighbor(qr, T )

if HaveCollisionFreePath (qnqr) then

qnew ← RRTExtend(qn, qr)

T .AddVertex (qnew)

T .AddEdge (qn, qnew)

else

qc ← the first in-contact configuration from qn to qr

OptimizedRetraction (qc)

end if

until a collision-free path between qinit and qgoal is found

Figure 3.2: Wiper 1.0 Benchmark: The left two figures show two animation sequences of getting a

wiper out of the windscreen model. Since there are not much rooms between two models, this benchmark

has narrow passages. The rightmost graph shows the average planning time of different methods performed

in 100 times.
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Figure 3.3: S-tunnel Benchmark: The leftmost figure shows the S-tunnel benchmark. The right two

figures show the average performance of two variations of the S-tunnel benchmark. 0.85 and 1.3 indicate

the scaling factor of the cubic robot. S-tunnel 0.85 does not include any narrow passages, while S-tunnel

1.3 includes them.

additional sampling, etc. These operations have relatively higher computational overheads, compared to

other operations of the basic RRT method [ZM08]. Also, while this technique explores and gets out of

narrow passages efficiently by generating samples on the contact space, it covers all the contact spaces

equally well. In other words, this technique tends to generate many samples near the contact space, even

though the contact space is not on narrow passages.

As a result, if an environment does not have narrow passages or have many obstacles that create the

contact space without generating narrow passages, the optimization-based retraction technique can show

even lower performance than the basic RRT, because of both the computational overhead and excessive

sampling on the contact space. For example, it shows 84% lower performance than the basic RRT in the

S-tunnel benchmark 0.85 (Fig. 3.3) that does not have narrow passages.

3.3 Selective Retraction-based RRT

Our technique is based on the optimization-based retraction method, RRRT [ZM08]. To efficiently

handle various types of environments that have or do not have narrow passages, it is critical to identify

regions that are likely to be narrow passages and to selectively perform the expensive retraction operation

only on those regions.

In order to efficiently identify such narrow passages within our RRT-based planner, we present

a bridge line-test, which is inspired by the bridge test [HJRS03], originally proposed for probabilistic

roadmap techniques. Our bridge line-test uses a line passing through an in-contact configuration to test

whether it is likely to have narrow passage around the configuration. We also propose a non-colliding

line-test, a dual operator to the bridge line-test, to generate more samples near narrow passages.

3.3.1 Selective Retraction-based Extension

We first explain our extension method of SR-RRT, whose pseudo code is at Algorithm 3. Once

a random sample qr and its nearest neighbor node qn are computed as mentioned in Sec. 3.2.1, then

we perform our extension method, SRExtend (qn, qr), shown in Algorithm 3. The first step of our

extension method is exactly the same to the extension method of the basic RRT explained in Sec. 3.2.1.

Note that at this step, we may create an in-contact configuration qc.
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Algorithm 3 SRExtend(qn, qr)

if HaveCollisionFreePath (qnqr) then

return RRTExtend(qn, qr)

end if

qc ← the first in-contact configuration from qn to qr

if BridgeLineTest (qc) then

OptimizedRetraction (qc)

end if

return qc

As the second step of our extension method, we perform our bridge line-test to decide whether we

need to perform the retraction operation. If the bridge line-test indicates that there is a narrow passage

around the in-contact configuration qc, we perform the retraction operation and generate another in-

contact configuration qc′ in a way that we can reduce the distance between qr and the newly generated

in-contact configuration qc′ . This operation is represented as OptimizedRetraction (·) in the pseudo code

of our extension method (Algorithm 3) and explained in Sec. 3.2.2.

3.3.2 Bridge line-test

The bridge line-test, BridgeLineTest (qc), determines whether a narrow passage exists around an

in-contact configuration qc. To perform the bridge line-test, we first generate a line whose one end is

located at qc. The line can have an arbitrary line direction. Instead of generating the line direction in a

uniform manner, we take into account available local information around qc to make the line direction

to cross narrow passages with higher probability.

Note that it has been identified that a collision-free path exists from qc to qn (see the left image

of Fig. 3.4-(a)). As a result, we can assume that there are no narrow passages along that particular

direction, ~ld, which is qn − qc. On the contrary, a line segment between qc and qr is in C-Obstacle. As a

result, we can also assume that there are no narrow passage along a line direction, ~l′d = (qr − qc), from

qc. This local information leads us to generate an arbitrary line direction with a higher probability in

these intervals defined between these two line directions, to make the randomly generated line to cross

potentially-existing narrow passages.

Generating a bridge-line

In particular, we use a line generating function as a probability distribution function (PDF), pl(·),
a mixture of two reflected Gaussians, each of which has near zero probability at these two line directions

~ld and ~l′d, while they peak at a plane whose normal is either ~ld or ~l′d; Fig. 3.4-(b) shows the 2D example

of this distribution function.

Once we generate a line direction starting from qc, then we compute the other end point, qe of

the line by computing a random distance, d, according to another probability function, pd(·). We use

the Gaussian function whose mean is the average distance between successive in-contact configurations

computed by the retraction operation (e.g., DR in Fig. 3.4-(a)). We set the standard deviation of the

Gaussian function to be small, but to have a meaningful probability (e.g., DR/2) to identify very small

narrow passages; we make sure that pd(0) has a non-zero probability to detect narrow passages with

infinitely small width,
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(a) Procedure of the bridge line-test

(b) PDF for the line direction

Figure 3.4: (a) Two figures show the procedure of generating and performing a bridge line-test. (b) A

probability distribution function (PDF) for the line direction parameterized with θ.

After computing a line whose two end points are qc and qe, i.e. qcqe, we check whether there is a

narrow passage in the line. Specifically, the narrow passage is defined by collision regions at both ends

of the line with a free space in the middle of the line. Since qc is an in-contact configuration, we mainly

check whether there are a free space in the middle and collisions in the other end qe of the line. If we

have such a case, in other words, there is a bridge line that connects two obstacle regions, we treat the

region around these two configurations of qc and qe as they are in a narrow passage, and thus perform the

retraction operation. We ignore the case where the tested line is located in obstacles, i.e. penetrates the

obstacles, since this is not considered as to be within a narrow passage. For detecting collisions on the

line, we can use either continuous or discrete collision detection methods. For discrete collision detection

methods, we check a fixed number of intermediate configurations on the line.

Re-testing

Our bridge line-test can fail with a low probability to identify a region to be in a narrow passage, even

though the region is in a narrow passage. This failure is mainly because our bridge line-test considers

only one dimensional line in multiple dimensional configuration spaces to check whether a node is in a

narrow passage. Instead of performing the bridge line-test only one time for each node, we perform the

bridge line-test, whenever an in-contact configuration that was not identified as narrow passages with

earlier bridge line-tests is chosen as a nearest neighbor node of a random sample. This re-testing is

defined as Re-test(qn) shown in Algorithm 4.

Note that it is quite reasonable to re-test the node with the bridge line-test, since the node selected

as a nearest node to others many times implies that the tree expansion may be stuck there by potentially-
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Algorithm 4 Re-test(qn)

if qn is in-contact configuration and did not pass earlier bridge line-tests then

if BridgeLineTest (qn) then

OptimizedRetraction (qn)

end if

end if

existing narrow passages around the node. Moreover, by allowing multiple re-testing, the bridge line-test

can correctly identify the existence of narrow passages in a probabilistic manner with many random

samples.

3.3.3 High-Dimensional Configuration Spaces

Our bridge line-test is very efficient, since the line-test considers whether there are collisions between

the line of robot configurations and the environment. However, its accuracy degrades as the dimension

of the configuration spaces goes higher because of its one dimensional nature of checking collisions. In

order to ameliorate this problem, we consider how local free spaces grow, and generate random lines of

bridge line-tests more frequently in dimensions that may contain narrow passages.

Inspired by a recent dimension reduction technique developed for random motion planning ap-

proaches [DL11], we perform the principal component analysis (PCA) [Jol86] to see how local free space

is distributed, and treat a region to be in a narrow passage when the local free space is not uniformly

distributed in the configuration space. For example, if the free space is located in a narrow passage, we

can assume that the free space is not uniformly distributed, but is severely constrained and thus has an

elongated shape (see the left image of Fig. 3.5).

The PCA is a well-known statistical procedure that transforms a set of points to a new coordinate

system whose first axis corresponds to the direction with maximum variance of the input data and second

axis maximizes the variance in subspace orthogonal to first axis and so on [Jol86]. The PCA is commonly

used for dimensionality reduction preserving most of the information. The PCA can be computed by using

the covariance matrix of input points and finding the eigenvectors and their corresponding eigenvalues

of the matrix. The computed eigenvectors are treated as principal components of input points.

We apply the PCA in a similar manner as used in the PCA-RRT [DL11]. When we need to

generate a random line from qc, we first collect k nearest neighbors from qc by a breadth-first search, and

then perform the PCA on those nearest neighbors. We assume that the principal component with the

maximum eigenvalue, i.e. variance, aligns with the longest axis of the elongated-shaped narrow passage.

Our goal of choosing the random line direction is to increase a probability that the generated direction

crosses the longest axis of the narrow passage.

To meet our goal, we transform ~dr, computed in the line generating PDF pl(·) in Sec. 3.3.2, into a

new line direction ~d′r based on the following equation:

~d′r =

k∑
i=1

(
1

λi
~dr · Ui)Ui,

where Ui is i-th eigenvector and λi is its corresponding eigenvalue. This equation transforms ~dr to follow

principal components more that have lower variances, leading to crossing a potentially-existing narrow

passage, since 1/λi, a transforming weight, becomes bigger as we have lower variances.
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Figure 3.5: The left figure shows shapes of local free spaces (green and red ones) computed from two

nodes. The red one located in a narrow passage has elongated shape, while the green one located in

wide-open free space is uniformly distributed in the space. The right figure shows the transformed line

direction ~d′r from an initially generated direction ~dr. Note that orange vectors are eigenvectors scaled by

the corresponding eigenvalues computed from the local region of qn.

The accuracy of the PCA-based technique for transforming the line direction depends on how well

our assumption is valid given a local configuration. Moreover, this technique makes a bias for generating

line directions for our bridge line-test. In order to mitigate the negative effects of our PCA-based

technique, we adopt the transformed line direction ~d′r with a probability pl( ~d′r), the line generating PDF.

If ~d′r is rejected, we generate a line direction according to pl(·) as mentioned in Sec. 3.3.2. As a result,

the PCA-based bias has (1−pl( ~d′r))pl( ~d′r) higher probability over our prior line generating function pl(·),
given the PCA-based computed line direction ~d′r.

3.3.4 Non-Colliding line-test

We can generate more samples near narrow passages by using both the bridge line-test and the

optimization-based retraction operator. However, these retraction operations can be performed, once a

random sample is located closely to such regions. In order to increase the probability to generate samples

near such regions in an efficient manner, we propose a sampling bias technique using the non-colliding

line-test, which is a dual operator to our bridge line-test.

Our main idea is that once we identify wide-open free spaces in the configuration space, it is more

desirable to discard samples generated within such free spaces and to generate more samples outside

those areas and potentially towards narrow passages.

It is, unfortunately, challenging to exactly define wide-open free spaces in high-dimensional configu-

ration spaces. Instead of constructing them deterministically, we define them in a probabilistic manner.

At a high level, we generate a line segment from a node (similar probabilistic manner used in the bridge

line-test) and check whether the line is a collision-free path. If so, we treat the region around the node

as a wide-open free space.

Let us first define a free hypersphere in the configuration space to be a hypersphere, whose contained

configurations do not have any collisions against the environment. Specifically, we define the center of

each hypersphere to be located at a node of the random tree, except for in-contact configurations; in-

contact configurations have contacts by the definition and thus we do not consider them as wide-open

free spaces. Also, we set the radius of each hypersphere to be the distance computed between the center

node of the hypersphere and its nearest neighbor node (Fig. 3.6). Note that when we add a new node to

the random tree, we compute the distance, dNN , between the new node and its nearest neighbor node,
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Figure 3.6: The left figure shows free hyperspheres that approximate wide-open free spaces. Dotted

circles represent to the hypersphere with the center of node and radius of it. The right figure shows an

example that a node qc is generated from a random sample qr, generated outside of hypersphere (dotted

circle) by a basic RRT expansion.

and use the distance for the radius of each hypersphere associated with the new node and its nearest

neighbor node.

In order to determine whether a hypersphere of a node is free hypersphere or not, we use the

non-colliding line test in order to approximate. NonCollidingLineTest(qn) generates a random line

starting from the center node, qn, of the hypersphere. If there are no collisions in the random line, we

treat the hypersphere to be free hypersphere. Note that the non-colliding line- test acts as an efficient

probability function in terms of identifying whether a region can be classified as a wide-open free space;

even though performing the non- colliding line-test one time may incorrectly identify a hypersphere as

a free hypersphere, performing it whenever a node is chosen as the nearest neighbor node can identify a

region correctly in a probabilistic manner.

To generate a line used for a non-colliding test, we uniformly generate a random direction for the

line segment starting from the center node qn of a hypersphere. Then we compute another end point, qe,

of the line along the chosen line direction. qe is computed by a random distance generated by a Gaussian

distribution function, whose mean and standard deviations are set to be the half of the radius of the

hypersphere associated with qn.

Once we have a set of approximated free hyperspheres, we discard a random sample if the random

sample is within the free hypersphere of its nearest neighbor node.

3.3.5 Overall algorithm

A pseudo code of the overall algorithm of our SR-RRT planner is shown at Algorithm 5. We

randomly generate a sample qr and find its nearest neighbor node qn. Then we discard it if the random

sample qr is inside the wide-open free spaces probabilistically defined by performing the non-colliding

list-test. Otherwise, we perform our extension algorithm (Algorithm 3) after performing the re-testing

process (Algorithm 4). As the last step of our method, we update the nearest neighbor distance, dNN ,

and the tree, T . We iteratively perform these steps until we find a collision-free path between the initial

and goal configurations.
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Algorithm 5 SR-RRT Planner

Require: tree T

T .AddVertex (qinit)

repeat

qr ← RandomState(); qn ← NearestNeighbor(qr, T )

if qn is not an in-contact AND dist(qn, qr) < qn.dNN then

if NonCollidingLineTest(qn) then

CONTINUE

end if

end if

Re-test(qn)

qnew ← SRExtend(qn, qr)

if qn.dNN > distance(qn, qnew) then

qn.dNN ← distance(qn, qnew)

end if

qnew.dNN ← distance(qn, qnew)

T .AddVertex (qnew); T .AddEdge (qn, qnew)

until a collision-free path between qinit and qgoal is found

3.4 Experimental Results

We have implemented SR-RRT for three dimensional rigid body robots on an Intel i7 desktop

machine that has 3.33GHz CPU. Our method is built upon a basic RRT integrated with an efficient

optimized-based retraction method, RRRT [ZM08]. For the local planning, we use a linearly interpo-

lated motion between two configurations and check whether we have collisions on a fixed number of

intermediate configurations on the linearly interpolated motion.

3.4.1 Benchmarks

We test our method against ten benchmarks that have different characteristics. We classify our

benchmarks as three types in terms of relative difficulty: environments with a tight narrow passage and

thus requiring longer computation time to find a solution (Hard), environments consisting of relatively

wide spaces, i.e. environments that are relatively easy to solve (Easy), and in-between environments

(Moderate). The S-tunnel model (Fig. 3.3) has a S-shape of tunnel and we change its characteristics by

scaling a cubic-shaped robot; S-tunnel x uses a scaling factor of x for the robot. Benchmarks with an

easy type include S-tunnel 0.85, whose robot is quite small enough to pass through the tunnel easily.

Benchmarks with a hard type include S-tunnel 1.3, bug-trap (Fig. 3.7-(a)), flange (Fig. 3.7-(b)), wiper 1.0

(Fig. 3.8), pipe (Fig. 3.9), and living room (Fig. 3.10), which all include narrow passages in environments.

Finally, S-tunnel 1.0 and wiper 0.9 benchmarks belong to the class of moderate; Wiper x uses a scaling

factor of x for the robot (wiper). The dimensions of the configuration spaces in all of these benchmarks

are six. The benchmark information is summarized in Table 3.1.
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(a) Bug-trap (b) Flange

Figure 3.7: This figure shows two different benchmarks that have narrow passages. Note that a robot

of a bug-trap benchmark is initially located outside of a trap.

Figure 3.8: Three image shots that show animation sequences of getting a wiper out of the windscreen

model. Since there are not much rooms between two models, this benchmark has narrow passages.

Figure 3.9: Four image shots are shown for moving the pipe out of an industrial environment (clockwise

starting from the top left).
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Figure 3.10: Living room benchmark: This figure shows three image shots of getting a sofa out

through a door, which creates narrow passages in 6-dofs configuration space. Our method achieves ten

and two times improvements over a basic RRT and an optimization-based retraction method, respectively.

3.4.2 Results and comparisons

In order to demonstrate the relative benefits of our method, we have also implemented the basic

RRT, called RRT, and the optimization-based retraction RRT, called RRRT, which are described in

Sec. 3.2.1. We use the same values for parameters (e.g., the collision checking frequency used in a

local planner) that are shared between different versions of RRT methods. We run all the methods

including ours, SR-RRT, with each of our benchmarks in 100 times and report the average running time

in Table 3.1 for a fair comparison by removing the randomness in the performance inherited from the

random sampling procedure.

For all the benchmarks, our method computes collision-free paths in less than three minutes. In

the pipe and living room benchmarks, our method spends over one minute on average to compute a

collision-free path, since these models consist of more than 40 K triangles and have narrow passages.

For the Hard-typed benchmarks, our method shows higher (e.g., 72% higher on average) performance

over RRRT and much higher (e.g., 7.7 times higher on average) over RRT. Since RRT does not bias its

sampling towards narrow passages, it runs quite slowly in Hard-typed benchmarks. RRRT shows higher

performance than RRT. However, because of its higher computational overheads caused by performing

retractions on all the contact spaces, RRRT runs slower than our method.

For the Easy-typed benchmarks, RRRT shows lower (e.g., 46% on average) performance over RRT,

because RRRT excessively generates many in-contact configurations, most of which do not capture a

new connectivity of free spaces, but pose the computational overheads. On the other hand, our method

still shows 91% improvements on average over RRT. Even though its improvement over RRT is weaker

than improvements made with Easy-typed benchmarks, our method shows improvements over RRT even

in these benchmarks that do not have narrow passages. Furthermore, our method shows 3.51 times

improvements over RRRT, since our method selectively performs retraction operations. These results

indicate that the overheads of our line-tests are small and demonstrate the robustness of our methods.

For the Moderate-typed benchmarks, RRRT shows slightly lower (e.g., 15% on average) performance

over RRT, while our method still shows 2.20 times improvement over them. Therefore, we can conclude

that our method works more robustly than RRT and RRRT for a wide variety of environments that have

or do not have narrow passages.

We have tested the Dynamic-Domain RRT [YJSL05] (DD-RRT) with all the benchmarks which

adapts is sampling domain to bias toward the visibility domain by obstacles. DD-RRT shows overall

1.57 times performance improvement over the basic RRT. Although performance of DD-RRT is very
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Table 3.1: Performance of our method, SR-RRT (SR-RRT), the basic RRT (RRT), the Dynamic-

Domain RRT [YJSL05] (DD-RRT) and the optimization-based retraction RRT (RRRT) [ZM08] for

each benchmark model with its representative image, and model complexity, and difficulty level. The table

also shows improvements (Imp.) of our method over RRT, DD-RRT and RRRT. See Sec. 4.4 for the

detailed information.

Model # Tri Difficulty RRT DD-RRT RRRT SR-RRT Rep. Image

S-tunnel 0.85 64 Easy 53.68 58.78 98.83 28.14 Fig. 3.3

S-tunnel 1.0 64 Moderate 96.21 129.92 141.22 65.57 See above

S-tunnel 1.15 64 Hard 406 405.93 129.5 52.08 See above

S-tunnel 1.3 64 Hard 646 849.92 134.72 78.9 See above

Bug-trap 2.7k Hard 145 35.45 39.72 22.17 Fig. 3.7-(a)

Flange 6.3k Hard 589.24 875.25 33.12 27.99 Fig. 3.7-(b)

Wiper 0.9 26.7k Moderate 107.57 63.99 107.75 48.05 Fig. 3.8

Wiper 1.0 26.7k Hard 283.56 143.27 141.5 82.91 See above

Pipe 48.4k Hard 639.99 1001.97 225.79 166.08 Fig. 3.9

Livingroom 137k Hard 776.54 242.94 140.94 77.2 Fig. 3.10

dependent on environments, our planner shows better performance with all the benchmarks with or

without narrow passages. Our planner shows 6.8 times performance improvements overall compared to

DD-RRT (See Table 3.1).

Table 3.2 shows the number of iterations of RRT, RRRT, and SR-RRT needed to compute a collision-

free path for benchmarks. For all the benchmarks, RRT takes the largest number of iterations, while

RRRT takes the smallest number of iterations, and SR-RRT takes the middle. Overall one iteration

of RRRT (0.0040 sec) shows 4 times slower performance than one iteration of RRT (0.0168 sec). Our

planner, SR-RRT, reduces the number of retraction iterations, which takes relatively much time, and

increases the number of a basic RRT-like iterations exploring C-space. Overall, the total number of

iterations of ours is less than the one of RRT, and the average running time of one iteration (0.0042 sec)

is similar with RRRT. As a result, our method shows higher performance than RRT and RRRT.

3.5 Discussions

In this section we discuss a few important issues of our method.

3.5.1 Contributions of Each Component

We measure how much improvement we make with each component of our contributions. By enabling

bridge line-tests (Sec. 3.3.2) only, we observe 74.6% improvement over RRRT. We achieve 5.48% further

improvement on average by additionally enabling non-colliding tests (Sec. 3.3.4). Also, by adopting

the PCA-transformed line direction (Sec. 3.3.3), we observe additional 5.04% improvement on average.

Table 3.2 shows incremental effects by enabling each component on each tested benchmark.

The effectiveness of our PCA based operations is smaller than that of the bridge line-test in our
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Table 3.2: the number of iterations and The contribution of each component on SR-RRT (incremental

effects by enabling each component on each tested benchmark. BL-test, NC-test and PCA represent to

the Bridge-line test(Sec. 3.3.2) , Non-colliding line-test(Sec. 3.3.4), and PCA-transformed line direction

selection(Sec. 3.3.3), respectively.

Model RRT RRRT SR-RRT BL-test + NC-test + PCA

S-tunnel 0.85 17772 5034 8418 35.45 28.83 28.14

S-tunnel 1.0 40692 6259 21545 78.56 70.01 65.57

S-tunnel 1.15 112507 10914 24994 53.66 53.26 52.08

S-tunnel 1.3 233123 21425 56320 81.08 80.89 78.9

Bug-trap 51748 4512 8715 30.47 26.4 22.17

Flange 31571 715 1074 32.32 30.06 27.99

Wiper 0.9 281571 65124 110843 50.87 53.51 48.05

Wiper 1.0 683262 12047 312008 90.64 86.15 82.91

Pipe 378588 8142 144896 176.42 170.6 166.08

Livingroom 152451 12741 55920 94.15 84.17 77.2

Average 198328 14691 74473 72.36 68.39 64.91

tested benchmarks. This is mainly because we have tested only free-flying robots that have six dofs.

The PCA operation would be more effective for high-dimensional robots, where accuracy of the bridge

line-test would decrease. The non-colliding line-test is effective, when the configuration space consists

of widely open free spaces. For example, we observe about 20% improvement in S-tunnel 0.85, where a

robot is small and most of space are relatively wide open free spaces. Our tested benchmarks are mostly

hard-typed ones that include narrow passages and less widely open free spaces.

3.5.2 Breakdown of running time

Table 3.3 shows a breakdown of the running time of our method for different components including

the retraction, two types of line-tests, and other parts (e.g., computing in-contact configurations, con-

necting nodes, etc. related to the basic RRT); time spent for performing PCA is included in the bridge

line-test. Depending on benchmarks components take different portions of the overall running time.

In most of the benchmarks, two line-tests take about 7% to 17% of the overall running time. For the

bug-trap benchmark, these two tests take 37% of the overall running time, since many in-contact samples

are chosen as nearest neighbors for the tree expansion. Still retractions and basic RRT operations take

much larger portions than our two tests.

The culling ratios of samples due to the non-colliding line-tests are quite high (e.g., 78% to 97%)

across all the benchmarks. On the contrary, the culling ratios of retraction operations due to bridge

line-tests relatively vary a lot. The flange benchmark shows the lowest culling ratio (e.g., 35%) because

there are a lot of narrow passages, while getting the flange out of the curved pipe. In the S-tunnel 1.0

benchmark, we achieve up to 98% culling ratio, since the benchmark does not have any narrow passages.
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Table 3.3: Breakdown of the running time of SR-RRT. Cull % refers to the culling ratios of two types

of line-tests.

Model Flange S-tunnel S-tunnel Bugtrap Wiper Pipe Room

(scale) 1.0 1.3 1.0

Retraction 76% 24% 52% 51% 57% 50% 31%

BLTest 6% 13% 14% 28% 12% 6% 14%

NCTest 1% 3% 3% 9% 2% 1% 6%

RRT 17% 60% 31% 12% 29% 43% 49%

Cull % of

BLTest 35% 98% 83% 51% 72% 74% 83%

Cull % of

NCTest 87% 86% 84% 78% 97% 90% 89%

3.5.3 Statistical error of two line-tests

Proposed two line-tests, bridge and non-colliding line-tests, are approximations of narrow passage

and free hypersphere detection, respectively. Although we have shown that these tests work successfully

with our tested benchmarks in a probabilistic manner, both tests have certain statistical errors.

In the bridge line-test, the probability of making a type I error, a false positive, is zero, because

a bridge line is never found when there is no narrow passage (Sec. 3.3.2). On the other hand, we can

have a type II error, a false negative. We designed our method to have these characteristics, since a type

I error causes unnecessary retraction operations and lowers the overall performance, but an additional

computational overhead for a type II error is relatively small.

On the other hand, the probability of making a type II error, a false negative, is zero and a type

I error can occur in the non-colliding line-test (Sec. 3.3.4). When a type I error occurs, it rejects a

sample inside of a non-free hypersphere that may contain important regions and be useful for expanding

a random tree (e.g. an entrance of a narrow passage). The influence of this error is, however, reduced

as we generate nodes within hyperspheres.

Specifically, the influence of this error is limited by its corresponding hypersphere, whose radius

is set to be the distance from the nearest neighbor in the tree to the center of the hypersphere. As a

result, each hypersphere associated with a node is getting smaller and thus its influence of error is also

reduced. Although samples inside of hyperspheres can be rejected by an error of the non-colliding line-

test, nodes can be created inside of hyperspheres from samples generated outside of any hyperspheres

by constructing in-contact configurations during a basic RRT expansion (Sec. 3.2.1). The right figure of

Fig. 3.6 shows an example.

3.5.4 Implementation of PCA operations

Table 3.4 shows portions of time spent for performing PCA compared to the overall running time and

the bridge line-test. We implemented an incremental PCA [ERP+04], in order to reduce the running time

of PCA operation by eliminating re-computation of the diagonalization of the covariance matrix [DL11].

The PCA operation still takes a large portion of the bridge line-test, but its portion of the overall running
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Table 3.4: Breakdown of the running time of PCA operations.

Model Flange S-tunnel S-tunnel Bugtrap Wiper Pipe Room

(scale) 1.0 1.3 1.0

% of overall 1.78 6.59 7.29 14.17 6.27 2.85 7.66

% of BLTest 29.6 50.7 52.1 50.6 52.2 47.6 54.8

time is relatively low (6% on average).

A parameter k, the number of nearby nodes for performing PCA, should be large enough to approx-

imate a local shape of the free space. We have tested different parameter values and found that 10 to 30

for k works reasonably well and shows similar performance.

3.5.5 Implementation issues

When we compute a probability distribution function pd(·) to sample an end-point of a bridge line-

test (Sec. 3.3.2), we use the Gaussian function with the mean used for an optimization-based retraction

operation, DR. The main reason of choosing the mean in such a way is that since we go deeper on

average in the amount of DR in a narrow passage with a retraction operation, we aim to identify narrow

passages with that amount of width. A uniform distribution function also could be used for pd(·), but

we have observed that the accuracy of detecting a narrow passage is decreased.

In order to perform our two types of line-tests, we use a discrete collision detection method, which

checks for collisions in a fixed number of intermediate configurations on a line. For the frequency of

checking collisions for our line-tests, we simply use the same resolution of employed in the local planner.

3.5.6 Analysis with Varying Scaling Factors

We have tested S-tunnel models with varying scaling factors for the cubic-shaped robot (Table 3.1).

As we increase the scaling factor, the benchmark poses a more challenging narrow passage problem. In

this setting, our method achieves noticeably higher performance improvements over RRT, as we have

more challenging narrow passage problems (e.g., 1.9, 7.8, and 8.19 times improvements over S-tunnel

0.85, 1.15, and 1.3 respectively). On the other hand, our method shows slowly diminishing improvements

over RRRT as we increase the scaling factor. This is mainly because there are more narrow passages and

thus culling ratio of our line-tests decreases. For example, the flange benchmark has narrow passages

in most of its free space. As a result, our method shows almost similar, but still higher performance to

that of RRRT. These results also demonstrate both the low computational overheads and robustness of

our method.

3.5.7 Limitations

Our method works quite well with all the tested benchmarks. Even though the proposed line-tests

with PCA computations can be performed without much overheads, their accuracy in terms of identifying

narrow passages and wide-open areas may not be high in other scenes. This is mainly because we check

a fixed number of configurations on a line in the configuration space. Also, even though there are

no narrow passages, our bridge line-tests may treat sharp corners as narrow passages. Our method

does not guarantee to always improve the performance over the basic RRT and the optimization-based
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retraction RRT, because of these properties. Also, even though we identify narrow passages, they

may not contribute to the final solution. Nonetheless, among all the tested benchmarks, our method

shows improvements over other tested RRT methods, because of its low computational overheads and

probabilistically high accuracy.
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Chapter 4. Productive Regions Oriented Task

space path planning for hyper-redundant

manipulators

4.1 Overview

In this chapter, we propose a novel sampling strategy to improve the performance of a trajec-

tory planner that directly explores the task space for hyper-redundant manipulators. For our sampling

method, we propose to use a concept of productive regions, which effectively guide a random tree towards

a goal state. We then propose two sampling domains for each node in the random tree: a promising

maximum reachable area (MRA) and a detour sampling domain. We construct an MRA of a node in

the task space such that it approximates a region that a manipulator can reach from the node by using

an employed local planner ( e.g., a feedback controller with inverse kinematics solutions [ST09]) without

any collisions. When the MRA of a node contains the goal state, we classify it as a promising node and

use its MRA as its sampling domain. For other nodes that do not contain the goal state, we call them

unpromising and additionally construct a detour sampling domain for detouring obstacles constraining

the manipulator.

To show benefits of our method, we compared our method against the standard RRT and the

Task-Space RRT (TS-RRT) [ST09] across various dofs manipulators, which have R2 task space. Our

experimental results show that our planner gives a solution on complex scenes with many obstacles faster

by a factor of up to 3.54 than TS-RRT, which is the state-of-the-art task space planner. This improvement

is mainly caused by effectiveness and efficiency of our sampling bias technique that covers productive

regions towards the goal state. In addition, we have applied our method to a motion planning problem

of cabled mobile robots by approximating a cabled robot to a manipulator with high dofs. Experimental

results show that our planner gives higher success ratio (2.3 times) and better performance (3.6 times)

for a complicated environment than TS-RRT in this application.

4.2 Planning Algorithm

In this section, we give a brief overview of our global planner and its local planner as a preliminary.

We then discuss issues that arise when a task space distance function is used for the planner.

4.2.1 Global Planner

Our global planner is based on the Task-Space RRT (TS-RRT) [ST09]. TS-RRT is similar to the

standard RRT, but performs its sampling procedure in the task space. TS-RRT iteratively grows a

tree whose nodes consist of both task space and configuration space states. In each iteration, TS-RRT

generates a random sample, xr, in the task space and finds its nearest neighbor node from its random tree.

The nearest neighbor node is associated with [xn, qn], which encodes its task space and configuration

space states, respectively. An action u is then computed by a local planner (See 4.2.2) to connect the
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nearest neighbor node and the random sample in the task space. Finally, a new configuration space

state, qnew is computed by taking the action u from qn. If there is no collision in between qnew and qn,

then a new node [xnew, qnew] is added to the random tree, solving the forward kinematics equation with

qnew to get the corresponding task space state xnew. Its pseudocode is shown in Algorithm 6.

Algorithm 6 Task-Space RRT, TS-RRT

Require: tree T

T .AddVertex (xinit, qinit)

repeat

xr ← RandomStateInTaskSpace()

[xn, qn] ← NearestNeighbor(xr, T )

u ← Control([xn, qn], xr)

qnew ← NewState(qn, u)

if CollisionFree(qnew, qn) then

xnew ← ForwardKinematics(qnew)

T .AddVertex([xnew, qnew])

T .AddEdge([xn, qn], [xnew, qnew])

end if

until a collision-free path between xinit and xgoal is found

4.2.2 Local Planner

In sampling-based algorithms, a local planner is responsible for connecting two nodes in a sampling

space. Since sampling is performed on the low dimensional task space in the global planner, the local

planner should generate full trajectories in the configuration space following their task space trajecto-

ries. A naive way for generating such trajectories in the configuration space is to generate a random

action until a manipulator reaches to its local goal. Unfortunately, this is very inefficient, especially for

hyper-redundant manipulators whose configuration space has quite high dimensions. A better and well

established approach is to exploit a feedback controller with inverse kinematics solutions [ST09].

Among many models to solve the inverse kinematics problem, the Jacobian pseudoinverse method

is widely used in the control literature [SK08, pp. 245–268]. The Jacobian pseudoinverse solution for a

configuration space velocity vector q̇ can be written as:

q̇ = J†ṫ+ (I − J†J)q̇0,

where ṫ is a task space velocity vector representing the desired movement of an end-effector. Also, J and

J† represent the Jacobian and the Jacobian pseudoinverse, respectively.

The second term (I−J†J) represents an orthogonal projection matrix in the null-space of J and q̇0 is

an arbitrary configuration space velocity; therefore different configuration space velocities can be obtained

based on a null-space velocity, while fixing the same task space velocity. The null-space velocity is used

for solving redundancy resolution via local optimization of additional motion objectives by defining

a proper criterion such as joint limit avoidance, workspace centering [SK05], collision avoidance with

obstacles [Kha86], or a combination of multiple criteria [BHG10].
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Figure 4.1: (a) shows two different configurations of the manipulator, whose root is represented as the

black dot and end-effector as an arrow. Their distance in the configuration space is much farther than the

distance in the task space (represented as the dotted line) defined as the distance of end-effector position.

(b) shows an inefficiency of the task space distance function to the sampling-based planner. The planner

chooses n1 as the nearest neighbor to random samples (plus marks), not n2, while extensions from n1 to

these random samples are unlikely to succeed because of a nearby obstacle o shown as the square box.

4.2.3 Motivation

TS-RRT directly grows its random tree in the task space with a distance function defined also in the

task space (e.g., L2 distance function when the task space is defined for a position of an end-effector). It

is a common practice to use the distance function defined in its sampling space, the task space for the

TS-RRT.

This simple approach, however, does not consider behaviors of local planners considering the inverse

kinematics, as we discussed in Sec. 4.2.2. As a result, a task space distance function frequently leads

to unsuccessful local planning, because a pair of nodes has a close distance in the task space, but a

far distance in the configuration space; see its example shown in Fig. 4.1-(a). Such unsuccessful local

planning causes inefficient performance, since its operations include inverse kinematics computation and

several collision detection calls.

Fig. 4.1-(b) shows an example, where a planner tries to connect random samples shown in plus marks

to a node n1, which is selected as the nearest neighbor to these samples by the L2 distance function

defined on the task space. Extension trials from n1 to these random samples (i.e., plus marks) tend

to fail, because a nearby obstacle o restricts the movement of a manipulator. On the other hand, the

connection would very likely succeed if extensions are tried from n2 to those plus marks. This example

shows that the task space distance function can be ineffective, since it does not consider behaviors of the

local planner and obstacles.

The planner can be stuck into local minima, where further extensions do not lead to reach the goal,

unless extensions from the tree explore around obstacles constraining the manipulator. Especially in

environments with many obstacles, local minima arise very frequently and result in many unsuccessful

local planning operations and collision detection checks. This problem becomes more pronounced with

hyper-redundant manipulators, because of its high dimensionality.

– 25 –



init 

goal 

Figure 4.2: An example of an ideal productive region given init and goal states. Boxes represent

obstacles and the black dot represents the root of the manipulator. Sampling only in shaded regions is

sufficient and efficient to move an end-effector (the black arrow) from init to goal.

4.3 Sampling bias to Productive Regions

In this section we explain our sampling bias method for productive regions towards a goal state.

We first introduce the notion of productive regions and utilize a maximum reachable area (MRA) to

identify productive regions. Specifically we propose two sampling domains: a promising MRA and a

detour sampling domain, the union of which defines our productive regions. We then give an overview

of our algorithm, followed by a detail of how to compute the detour sampling domain and the MRA.

4.3.1 Productive Regions-Oriented Sampling Heuristic

In order to efficiently reach to the goal state, we define productive regions, a set of task space states

that have a high probability of leading the random tree to the goal state. Fig. 4.2 shows a conceptual

example of the productive regions given initial and goal states. We then bias our sampling distribution

such that random samples for exploration are more frequently generated on these regions, instead of

sampling the whole task space uniformly.

Correctly identifying those regions itself, unfortunately, is a very hard problem, and its complexity

is the same to that of the motion planning problem, because it requires full analysis of the whole

environment and the movement of the manipulator in the high-dimensional configuration space. Instead,

we approximately identify such productive regions considering only local geometry.

In order to bias our sampling on productive regions, we use a concept of MRA for each node in the

random tree. An MRA of a node is defined as a group of task space states where a manipulator can

reach from the node by an employed local planner without having collisions. The MRA serves as an

upper bound of a region in the task space where the node can be extended to, given a local planner and

nearby obstacles around the node.

Fig. 4.3 shows a conceptual example of an MRA. Gray lines represent examples of manipulator

configurations that can be extended from a configuration n by the local planner without collisions. The

node n cannot be directly extended to g, because a obstacle o constrains the movement of the manipulator.

The planner should generate a path by detouring the obstacle o in order to reach g. Fig. 4.6 shows a

diagram on how to construct an MRA for the node n. We will explain how to compute the MRA in

Sec. 4.3.3. In this section we give our overall algorithm utilizing MRAs.

We classify the MRA of a node to be promising or unpromising. We call the MRA promising, when

the goal state is included in the area. Other MRAs are called unpromising. When the MRA of a node
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Figure 4.3: A node n represents the end-effector of the manipulator (shown as line segments). Gray

lines represent positions that the manipulator can reach by a local planner. On the other hand, the node

n cannot reach to another node g by running a simple local planner because of a nearby obstacle o.
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Figure 4.4: (a) This figure shows a detour sampling domain for an unpromising node nu in the R2 task

space. (b) A detour sampling domain in R2 task space used for preventing to enter the local minima. In

this case the manipulator passes multiple times through the virtual line (shown in the dotted black line)

between two obstacles.

contains the goal state, exploration in that area is clearly productive for reaching the goal, since we can

easily reach the goal state by using the local planner with those samples generated for exploration. As

a result, the union of all the promising MRAs are a subset of approximated, productive regions; detour

sampling domains are another subset of approximated, productive regions.

The random tree, however, tends not to have any promising MRAs during iterations, especially in

its early stage, when the exploration has not been spread much. Sampling an unpromising MRA of

a node is unlikely to lead the random tree to reach the goal state. Consequently, it is more desirable

to bias our sampling in a way that we detour from the unpromising MRA constrained by obstacles,

and extend towards other potentially promising regions. We therefore propose to use a simple detour

sampling domain for an unpromising node, in order to detour obstacles constraining the manipulator.

Fig. 4.4 shows an example of a detour sampling domain for an unpromising node nu.

In order to generate samples in approximated productive regions, we first generate a sample from

the task space in a uniform manner, and confine it to our productive regions, which are approximated by

the union of promising MRAs and detour sampling domains. The resulting distribution becomes uniform

in the approximated productive regions. The pseudocode of our algorithm is shown in Algorithm 7.

By exploring promising MRAs and detour sampling domains for unpromising nodes that approxi-
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Algorithm 7 PROT-RRT

Require: tree T , qinit, xgoal

xinit ← ForwardKinematics(qinit)

[xinit, qinit].MRA ← ComputeMRA()

T .AddVertex ([xinit, qinit])

repeat

repeat

xr ← RandomStateInTaskSpace()

[xn, qn] ← NearestNeighbor(xr, T )

until inProductiveRegion(xr, [xn, qn])

u ← Control([xn, qn], xr)

qnew ← NewState(qn, u)

if CollisionFree(qnew, qn) then

xnew ← ForwardKinematics(qnew)

[xnew, qnew].MRA ← ComputeMRA()

T .AddVertex([xnew, qnew])

T .AddEdge([xn, qn], [xnew, qnew])

end if

until a collision-free path between xinit and xgoal is found

mate productive regions, we efficiently reach the goal state even for scenes with complex configurations

of obstacles.

4.3.2 Computing Detour Sampling Domains

For an unpromising node, we first identify principal movement directions of an end-effector based

on instantaneous directions computed by changing its joint values. In R2 space, principal movement

directions of an end-effector are turning the end-effector into either its left or right directions, denoted as

dL and dR, respectively (Fig. 4.4-(a)). We then compute an obstacle most constraining the manipulator in

each movement direction. Fig. 4.4-(a) shows an example of our detour sampling domain of an unpromising

node n in R2 task space. Constraining obstacles in directions of dL and dR are noted as oL and oR,

respectively.

Computation of constraining obstacles to a certain direction can be implemented in many different

ways. For example, we can compute the nearest obstacle overlapped with the span of the manipulator’s

movement to the given direction (dL or dR). Exact but expensive computation, fortunately, is unneces-

sary, mainly because we probabilistically bias our sampling based on computed obstacles. Among many

alternatives, we chose to identify them by a simple method considering local geometry only. For each

movement direction, we identify the nearest neighbor from the manipulator along the direction (e.g.,

dL or dR). When the nearest neighbor is located within a certain distance d from the end-link of the

manipulator, we define it as the constraining obstacle in that direction.

We assume that obstacles farther than d do not constrain the local movement of the manipulator.

When obstacles are not found in distance d for a node, we use uniform sampling around the node instead.

The distance d can be chosen depending on environments and manipulator’s configurations. We set d

to be 40% of the maximum distance of any two points in the task space. Fig. 4.5 shows an example
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goal 

Figure 4.5: In this case the manipulator should detour two obstacles (boxes) to reach the goal state.

Shaded regions indicate detour sampling domains of nodes (blue dots) clipped by their Voronoi regions

(black lines).

of detour sampling domains for a set of unpromising nodes on regions constrained by nearby obstacles.

Note that actual detour sampling domains are also clipped by the Voronoi regions of nodes, since each

detour sampling domain is used when its node is chosen as the nearest node to a random sample.

An underlying assumption made so far for the detour sampling domain is that the manipulator

passes only a single time through a virtual line drawn between two constraining obstacles oL and oR.

There is, however, a case when the end-effector passes through the virtual line multiple times as shown in

Fig. 4.4-(b). This kind of complication arises mainly because of the redundancy of the manipulator. In

this case the sampling domain should be generated in an opposite direction, to prevent the manipulator

re-entering the virtual line between two constraining obstacles. It can be distinguished simply by counting

the number of links that pass through the virtual line between the constraining obstacles. When the

number is even then the detour sampling domain is generated in an opposite direction.

4.3.3 Approximating the MRA

The exact computation of an MRA for each node is also challenging, because it requires to predict the

movement of the high-dimensional manipulator by the local planner. Furthermore considering all those

possible movements is an expensive computational operation. To reduce its complexity, we propose

a simple approximation method for constructing the MRA. Our approximation considers only local

geometry around the manipulator, instead of using global geometry information.

We identify obstacles that constrain the movement of the manipulator’s end-effector. Specifically,

we identify the nearest obstacles from a node in the same manner for computing constraining obstacles

used for defining the detour sampling domain. Fig. 4.6 shows a schematic view on how to approximate

the MRA for a node n. oL and oR represent two identified obstacles and the red line represents a base

line for detouring in R2 task space. Moving the end-effector below the line is regarded as detouring from

a region constrained by those two obstacles, and thus the regions below the line is not included in the

MRA.

The MRA is approximately constructed by one circular sector (a), and two half-circles (b) and

(c), shown in Fig. 4.6. The circular sector (a) represents an area where the end-effector can reach by

stretching its joints. We thus compute the circular sector with its center located at the root of the

manipulator and its radius is the length of the manipulator. Each side of the circular sector is computed

by either one of two obstacles. One left half-circle (b) represents an area where the manipulator can

reach with a physical contact between the left obstacle oL and the manipulator. Its radius is set to the
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Figure 4.6: Approximately constructed Maximum Reachable Area (MRA)

manipulator’s length minus the distance between the root and the obstacle. In a similar manner the

right half-circle (c) is computed with the right obstacle oR.

The overhead of computing approximated MRA is relatively very small, because the approximated

MRA for each node is constructed with only few obstacles and simple geometric operations. In addition,

this computation is performed only once for each node, when a node is newly added to the random tree.

4.4 Experimental Results

We implemented our method, PROT, and performed various experiments on an Intel i7 desktop

machine that has 3.6GHz CPU. Additionally, we compared PROT to the standard RRT and TS-RRT

against a planning problem for a serial rigid link manipulator, which has n number of revolute joints. A

given initial pose is defined in the configuration space as a rest pose, and a goal end-effector position is

defined in R2 task space. Any goal configurations are acceptable, when the end-effector locates at the

goal position in the task space. For simplicity, we assume that the problem does not involve dynamics,

and joints are unconstrained.

Constructed MRA and detour sampling domains for our productive regions are approximate by

using only local geometry. This inaccuracy can aggravate the completeness of sampling-based planners.

In order to avoid this issue and guarantee the probabilistic completeness for our method, we set our

planner to enable our sampling bias with probability α and uniform sampling with probability 1 − α.

We set α to 0.8 in our experiments.

4.4.1 Results and Comparisons

We tested PROT against two different benchmarks: one has a few number of obstacles and thus is

relatively easy to solve, and another has complex configurations of obstacles that lead to local minima

regions, which make the problem difficult. We ran each test 100 times and report the mean of those

results. For our experiments, we perform collision detection in a brute-force way checking all obstacles

with every link of the manipulator. We can also use a more advanced and efficient collision detection

technique [KHH+09]. Nonetheless our current collision detection unit takes a negligible cost.

Easy benchmark. We tested 8- and 20-dofs manipulators in an easy environment (Fig. 4.7-(a)) with

three obstacles that do not interfere with the movement of the manipulator to reach goal state (red

dot). The standard RRT takes much less time per node (about 0.94ms) than PROT (about 4.51ms)

for the 20-dofs manipulator. The standard RRT quickly spreads the random tree in the configuration
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(a) Easy benchmark (b) Difficult benchmark

Figure 4.7: Tested environments with a 8-dofs manipulator. The initial pose is shown in blue, and the

goal state is shown in red. (a) An easy benchmark contains three obstacles (black rectangles) which do

not interfere with the movement of the manipulator to reach goal state. (b) This benchmark contains

many obstacles (black rectangles) and gives rise to many potential local minima. A solution trajectory of

the end-effector is shown in red.

space, because of its cheap cost of generating a node. On the other hand, the local planner of PROT

consisting of the Jacobian pseudoinverse and null-space calculations is expensive, leading to a higher

cost for each node. Nonetheless, for the 8-dofs manipulator, the standard RRT does not give a solution

within 60 s, while PROT finds a solution in 0.818 s on average. This is mainly because the sample

process of PROT is performed in the task space, more efficiently leading to reach the goal state. The

performance improvements go higher as the dimensionality of the configuration space goes up. For the

20-dofs manipulator, PROT takes 2.436 s on average, while the standard RRT fails to solve the problem

in 10 minutes. In the literature of motion planning, it is well known that the complexity of planning grows

exponentially as the dimension grows. This phenomenon is also known as the curse of dimensionality.

On the other hand, PROT avoids this problem by performing the sampling process in the task space,

which is in R2 for the tested benchmark.

Compared with TS-RRT that also performs the sampling process in the task space, our planner

does not show considerable improvements in this simple benchmark. This is mainly because obstacles do

not cause any local minimum cases or constrain the manipulator’s movement. As a result, the union of

productive regions in our method are almost same to the whole task space. Note that this is the worst

case for our approach that emphasizes the overhead of our method. The overhead of our method includes

computing MRAs and performing bias sampling, but it is small since it deals with only local geometry.

Overall, our method showed a minor degradation, 12%, over TS-RRT for the 8-dofs manipulator and

showed a slight improvement, 3% for the 20-dofs manipulator (Table 4.1). These results acquired from

the simple benchmark demonstrate the low overhead of our method even compared to TS-RRT.

Difficult benchmark. We also compared different planners on a more challenging benchmark, which

has many obstacles and gives rise to many potential local optima. This benchmark is shown in Fig. 4.7-

(b) with 8-dofs manipulator. In this benchmark the standard RRT was unable to compute a solution

in 300 s. As a result, we did not test 20-dofs manipulator for the standard RRT. In this difficult

benchmark, productive regions are much smaller than the whole task space, because of many obstacles

in the environment. For 8-dofs manipulator, PROT shows 1.87 times improvement over TS-RRT with
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Table 4.1: Experiment results for the simple benchmark

8-dofs RRT TS-RRT PROT

# of iterations - 571.3 603.5

# of nodes >53698 491.6 507.6

time (s) >60 0.723 0.818

20-dofs RRT TS-RRT PROT

# of iterations - 708.7 666.8

# of nodes >638295 510.9 540.1

time (s) >600 2.519 2.436

Table 4.2: Experiment results for the difficult benchmark

8-dofs RRT TS-RRT PROT

# of iterations - 1342.2 529.9

# of nodes >789120 661.9 401.7

time (s) >300 13.43 7.19

20-dofs RRT TS-RRT PROT

# of iterations - 1832.0 723.9

# of nodes - 690.4 417.6

time (s) - 66.94 18.89

a uniform distribution (Table 4.2). This result demonstrates that our planner with biased sampling can

explore the task space more efficiently and find a solution much faster than the planner with the uniform

distribution. Furthermore, our method shows 3.54 times improvement for the 20-dofs manipulator.

The improvement increases as we have a higher dimensional space, because the computation for one

iteration consisting of local planning and several collision detections, takes higher portions of the overall

computation time with a higher dimensional space.

4.5 Discussion

According to our experimentation, the computation of the Jacobian pseudoinverse local planner

occupies a large portion (about 70%) of the total running time, while the portion of collision detections

is relatively small. The main benefit of our biased sampling distribution is to reduce the number of

expensive local planning trials for expanding the random tree.

Our method shows its strength over TS-RRT, especially for handling complicated environments,

where many obstacles exist such that the movement of the manipulator is highly restricted by those

obstacles and thus the random tree is likely to be stuck in local minima regions. In Table 4.2, the

numbers of iterations and nodes represent to the total number of trials and their successes of local

planning, respectively. TS-RRT generates more nodes in the random tree than our planner to solve the
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Figure 4.8: The graph shows the total number of generated nodes in the tree after a first solution is

found. Values in the Y-axis is on a log scale.

problem, which implies that the TS-RRT spends more time for generating ineffective nodes (e.g. in local

minimum) to find a solution.

Scalability. PROT can efficiently compute a solution for high dofs manipulators, even for more than

fifty dimensions. This is because the dimension of the task space where the sampling process is performed

is independent from the dimensionality of manipulators. Fig. 4.8 shows a graph showing the number of

nodes of the random tree generated after finding a solution, as a function of dimensions of manipulators

with different methods. This experiment was conducted in the difficult benchmark. Although the number

of nodes required for finding a solution grows super-linearly for the standard RRT, our method uses a

much smaller number of nodes, which are within an almost fixed range across different dofs tested up to

a 100-dofs manipulator. Overall TS-RRT has a similar tendency but the total number of nodes is larger.

Furthermore, our method shows faster performance than TS-RRT across all of tested dofs. This result is

attributed to our productive sampling regions that effectively avoid the local minima. The scalability of

our method could lend itself to other problems such as high dimensional snake-arm robots or continuum

manipulators that might be used for diverse fields including medical surgery, collapse search and rescue,

and inspection [Buc02]

4.6 Application to Cabled Mobile Robots

We have applied our method to a cabled mobile robot problem whose goal is to find a trajectory

of a mobile robot that is connected to a fixed point by an under-actuated constant length cable. This

problem is difficult, since the cable imposes constraints on the movement of the mobile robot: the cable

can collide with obstacles and make the robot moving no further than the cable length. Fig. 4.9 shows

an example where the cabled robot should detour obstacles constraining the cable to reach the goal

position, because the direct movement to the goal is restricted by the contacts between the cable and

obstacles. The motion planning problem that the cabled mobile robot faces is essentially same to that

of our redundant manipulators. The difference is that the cable cannot be actuated directly but follows

the mobile robot’s movement by respecting only the kinematics of links representing the cable.

We approximate the cabled robot problem by the manipulator planning problem. Specifically we

treat a cabled robot as a redundant manipulator that has an infinite number of dimensions. In practice,

we have found that one hundred dimensions are enough to approximate the movement of the real cable.

The end-effector of our manipulator then represents the position of the mobile robot. In other words,
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Figure 4.9: (left) An example where the cabled mobile robot should detour the obstacle (squared box)

to reach to the goal position (the plus mark). (right) An approximated 33-dofs manipulator from the

cabled mobile robot. The end-effector is represented by the same-sized circle as the mobile robot, and dots

represent to joints of the manipulator.

Figure 4.10: This figure shows a test environment for a cabled mobile robot. The robot should reach

goal positions (red dots) sequentially by avoiding obstacles (squared boxes). The start position is located

near the large box and the robot’s cable (blue lines) is approximated by a 100-dofs manipulator. The cable

is piled initially. The computed solution trajectory is shown in the red curve. The end-effector is moved

back to reach g4 from g3.

the trajectory of the manipulator’s end-effector acts as a feasible path for the mobile robot that guides

the cable to move around obstacles. We let the cabled mobile robot to follow the solution trajectory of

the manipulator’s end-effector.

Fig. 4.10 and Table 4.3 show a test environment used for the cabled mobile robot and its results,

respectively. In the test the robot starts from its base and visits four goal positions sequentially. We

approximate the cabled robot with a 100-dofs manipulator. We compared our method and TS-RRT;

we ran 100 times for each algorithm with a maximum running time of 800 seconds. PROT shows 3.61

times faster performance than TS-RRT. We also measure a success ratio of finding a solution given

the maximum running time out of 100 tests. Our planner’s success ratio, 80%, is much higher than

that, 35%, of TS-RRT. These results demonstrate advantages of our method over TS-RRT in the tested

application.
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Table 4.3: Experiment results for the cabled mobile robot benchmark

TS-RRT PROT

# of iterations 6563.9 2752.8

# of nodes 1300.5 527.3

time (s) 250.46 69.24

Success ratio 35% 80%
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Chapter 5. RRT planner with motion database for

continuous kinodynamic motion planning problem

with complex dynamics

5.1 Overview

In this chapter, we propose a novel kinodynamic motion planner, which is designed for complex

dynamics environments with many obstacles. Our method builds motion database as a preprocessing

in order to eliminate duplicated simulation and increase the efficiency of the planner (Sec. 5.3.1). We

then propose efficient tree extension method using motion database (Sec. 5.3.2) and propose validating

conditions to efficiently update the interpolated motions during iterations (Sec. 5.3.3). Constructed

motion database can be used with our planning method for other problems such as different composition

of obstacles or different start/goal state.

5.2 Background

5.2.1 Problem Definition

In the kinodynamic motion planning, the state space is used for the same purpose as the configuration

space for the holonomic planning problem, which represents a transformation that could be applied to

a geometric model of the robot. The state space for the kinodynamic planning is defined as x = (q, q̇),

where q denotes a state in the configuration space. The differential or non-holonomic constraints can

be described by a forward propagation function f : X × U → Ẋ, where X is the state space and U

represents a set of allowable controls, or the control space. A solution path to the planning problem

consists of a sequence of controls and its durations, and states which can be obtained sequentially by the

integration of propagation function f .

In order to integrate the propagation function f , firstly a set of motion equations should be provided

and the dynamics in-between environments and a robot, and the property of the robot also should be

derived. For many problems, the propagation function might not be derived because of its complexity, or

the function is provided with simplified and approximated form that causes inaccuracy of the planning

environments. In order to provide more generality and accuracy, a complicated physics-based simulation

engine, which works as a black box to the motion planner, is used for generating motions instead of the

propagation function integration [SK12], although the physics-based simulation is more computationally

expensive than the integration of propagation function.

5.2.2 Physics-based simulation engine

Many libraries are provided for performing physics-based simulation. These libraries usually assume

all objects in environments are rigid and apply the numerical integration of the differential equations. In

physics-based simulator, a simulation duration is discretized and the propagation function is evaluated
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for this duration only. This discretization interval, called a simulation step, normally does not change

during whole simulation. Simulating for specific duration is achieved by executing simulation for several

numbers of single simulation step. The simulation step has a trade-off between the quality of solution

paths and the running time of the planning. The typical simulator setting fix the simulation step all

time and we use default value as suggested by the simulator community. We use the Open Dynamic

Engine [ope] for the current implementation among well known libraries such as PhysX, Bullet, Vortex

etc. Please note that our planner is not restricted to specific library. Any library can be coupled to our

method.

5.2.3 Kinodynamic RRT planner

Kinodynamic RRT planner is derived from the RRT for holonomic planning [LK01]. Given a random

tree which is initialized from a start state, it incrementally expands the random tree by randomly

choosing an existing node and a control. In order to satisfy the principal property of RRT probabilistic

completeness from rapid exploration of the space, selection of an existing node is conducted by finding

the nearest neighbor in the random tree, xn of a random state, xr in the state space. Then a control u is

selected as the one that pulls the node xn toward the random state xr. In order to calculate the control

that satisfies this condition, integration of the propagation function is required. In this chapter we target

to solve the problem with complex dynamics, and for that reason the propagation of motion in time

should be executed by the physics-based simulator. In order to find the control u satisfying requirement

that pulling the node xn toward the random state xr among all available controls, we compute the best

control ubest after trying all available controls and choosing the one which extends the state xn as close

as possible to the xr. In practice, searching to the best control is achieved iteratively in which the

finite number of controls are generated randomly and the best one is selected. We call this approach

as a n-control Kinodynamic RRT, where n denotes the fixed number of trials to find the best control.

Finally, a new state xnew is generated by taking ubest from xn, and its control ubest are added to the

random tree if there is no collision in between xn and xnew. Its pseudocode is shown in Algorithm 8.

Algorithm 8 n-control Kinodynamic RRT

Require: tree T , n

T .AddVertex (xinit)

repeat

xr ← RandomStateInStateSpace()

xn ← NearestNeighbor(xr, T )

ubest ← FindBestControl(xn, xr, n)

xnew ← Extend(xn, ubest)

if CollisionFree(xnew, xn) then

T .AddVertex(xnew)

T .AddEdge(xn, xnew, ubest)

end if

until a collision-free path between xinit and xgoal is found
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Figure 5.1: Motivational example

5.2.4 Motivation

The kinodynamic RRT can solve the problem if iterations go to infinity [LK01]. The running time for

each iteration is decomposed into propagation, nearest neighbor search and other parts such as collision

detection, tree expanding, etc. When simulator is used for propagation process, the executing simulations

take the highest portion of the running time (about 75%, See Table 5.1)

For an iteration of RRT, the simulator is executed several times for computing controls given source

and target states. We found that many duplicated simulation occurs during overall iterations when

environments consist of objects which have similar dynamics property such as the friction constant.

The number of duplication becomes especially large from the perspective of simulator where the robot’s

property in global coordinate is often ineffective to the simulation results. For example, when a mobile

robot moves around on the infinite floor which have same material property, the dynamics of the robot

in the environment are same for all spaces, therefore the simulations are identical for states of which

properties in robot’s local coordinate are same. In Fig. 5.1, two stationary robots have distinct state:

position and orientation are different. However, the properties in local coordinates such as velocity, are

identical. We can use same simulation results for both states instead of executing simulations twice, if

the same control is applied to both states such as applying force toward heading direction.

Eliminating duplicated simulations can decrease the overall performance of the kinodynamic plan-

ning problem because of its high portion in the total running time. Furthermore, several simulations

are precomputed and constructed as the database, then the overall efficiency of the planner in run-time

can be improved much. The constructed database also can be used for other problems sharing same

dynamics model such as different composition of obstacles and different initial/goal states.

5.3 Algorithm

In this section we explain our kinodynamic sampling-based planner with precomputed motion

database. Our planner is based on the RRT-based kinodynamic planner [LK01] which have a simi-

lar manner of exploration in the state space. We first show the structure of proposed motion database

and how to construct it. We then explain our extension algorithm with motion database and how to

validate interpolated motions during planning. Finally, we give an overall planning algorithm.
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5.3.1 Building motion database

For constructing simulation database, we define the local state space that is projected space from

the global state space used for planning process. The local state space is a set of states which can be

described in robot’s local coordinate such as velocities, local geometric configuration such as joint angle

for an articulated robot. The defining projections could be done automatically by analyzing state space

components or specified by the user. In most case, the specification can be done easily because the

classification whether robot’s component is embraced in local or global coordinate is intuitive. After the

local state space is defined, proper converting function fc : X → Xlocal should be defined, where X is

the original state space, or global state space and Xlocal denotes the local state space. The converting

can be easily defined by several geometric transformations.

An input of a motion consists of a source state and a control to execute. And results of simulation

are stored in the motion as a trajectory of the robot and a final state after propagation. Every states of

motion is represented in the local state space and the trajectory is generated as a set of relative geometric

configurations of the robot from an initial position to a final position. When a motion is applied to a

state xsource in the global state space, the trajectory and the final state of the motion are converted in

the global state space by using the information of x.

In order to build the motion database, motions can be generated randomly or provided from the

user. Richer database consisting of motions which is more useful to solve the problem can be generated

by carefully analyzing environments and a robot, we use the random generation in current experiments.

We randomly generate a source state, a control, and control duration, then store results of simulation

for a fixed amount of time. We maintain the data as the lookup table indexed by a state in the local

state space. Constructed database return a set of motions from a given state by the nearest neighbor

search that retrieves motions that the distance of given state and source state of motion are less then

some threshold, tsim. When the state of retrieved motion is not same as the input state, we interpolate

a motion in order to fit the motion for the input state. tsim determines an allowable similarity of states

in the local state space.

5.3.2 Exploration with the motion database

Our planner is based on the n-control kinodynamic RRT planner (Sec. 5.2.3). For each iteration,

we randomly generate a sample xr in the global state space, and find its nearest neighbor node xn in

the random tree. We then compute the best control input ubest by retrieving a set of controls from the

motion database that stores the precomputed propagation results by simulator (Sec. 5.3.1) instead of

executing simulator. xnew is computed from the control and the state xn, then a new node and edge are

appended to the random tree if there is no-collision.

The number of retrieved controls for calculating the best control to extend from xn varies depending

on the precomputed motion database. More times are spent for building database, the number of

retrieved controls from the database would increase. However, covering all the local state space is

impossible and inefficient because the size of the state space grows exponentially as the dimension of

the state space grows. Therefore, the number of retrieved controls for a given state would be less than

n or zero at worst case. Searching the best control among only limited number of controls might bias

the expansion of the tree in the global state space and interfere the rapid exploration of the state space,

therefore affects the overall performance of the planner. In order to solve this inefficiency, we selectively

use our control generation method as a probability function, p(nfound), where nfound represents to the
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Figure 5.2: A probability distribution function to decide whether the motion database is used.

number of controls found from the database for a given state. We use the probability function as follows:

p(nfound) = (nfound/n)
α

where n is the maximum number of control trials and α is a parameter in range of (0,1). Fig. 5.2 shows

a plot of function when α is 0.5. We use a FindBestControl(·) (Sec. 5.2.3) with probability 1− p(nc).

5.3.3 Validating interpolated motions

The states computed by the motion database could be incorrect because interpolation is occurred

for retrieving motions (Sec. 5.3.1). We define an interpolation error as the distance between a query

state and a source state of retrieved motion. The interpolation error of a single extension by the motion

database is at most tsim, because tsim defines the maximum allowable distance for interpolated motion

(Sec. 5.3.1). Therefore, tsim decides the quality of the path in our planning method. The interpolation

error can be accumulated as the tree is expanded. If a newly appended motion is added to the node

that already have an error, then the distance of interpolated motion and actual motion becomes large.

The error likely becomes larger and larger as more nodes are appended by interpolated motion. For

simplicity, we define an accumulated error of a node as the sum of the current error and parent node’s

error.

When a solution path is found, we validate every motions in the solution path using the simulator in

order to make sure that it achieves the goal. If validated path does not satisfy the goal of the problem, we

update validated motions in the random tree then continue iterations until new solution is found. When

the validated motion is changed from the interpolated motion, collision detections are also performed

again. If collision occurs for the validated motion, we remove the colliding edge and all nodes connected

from the edge in the random tree.

The validation of motions affects the efficiency of the planner, because the validation requires a

simulation and spends a lot of time. However, invalid interpolated motion that would cause collision

in validation time could mislead exploration or incur a mass deletion of nodes in the tree, because all

children nodes should be deleted if a parent node is disabled by collision. If tsim is set small enough, a

single motion interpolation does not affect the exploration of the state space in most case, therefore it is

efficient to validate a solution path only.

However, the interpolation error could become problematic when error is accumulated much or many

obstacles exist in environments. A node with high accumulated error could affect the exploration of RRT

to be biased with a wrong information. Moreover, small interpolation error can cause the same negative

effect when the tree is expanded near obstacle region, specially around narrow passages. Fig. 5.3 shows
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Figure 5.3: This figure shows an example when an interpolated motion causes a collision with small

error. The interpolated motion m successfully extends the tree toward a node n (a solid line), the real

motion (a dotted line), however, causes a collision with obstacles.

an example. The interpolated motion m successfully extends the tree toward a node n (a solid line).

However, the real motion (a dotted line) causes a collision although the interpolation error of m is small.

In order to maintain the effectiveness of our planner, validations should be done during iterations

occasionally considering accumulation error and obstacles around. We check three conditions for decision

of validation when a new node is added to the random tree. If any of condition is satisfied, then we validate

a path from the root to the newly inserted node. Three conditions are as follows: 1. if accumulated

error of the node is larger than thresholda, 2. if the distance from the node to the nearest obstacle

are less than thresholdo, 3. if the distance from the node to the goal is smaller than thresholdg For

overall efficiency of the planner, the number of validations should be as small as possible. Therefore

three parameters should be carefully chosen depending on the environments.

5.3.4 Overall algorithm

A pseudocode of the overall algorithm of our planner is shown at Algorithm 9.

5.3.5 Completeness issue

Our planning method can efficiently explore the state space postponing the time-consuming propa-

gation simulation by using precomputed motion database. However, the lack of the number of retrieved

controls and errors can degrade the exploration of the state space, although we provide a decision proba-

bility function (Sec. 5.3.2) and validation conditions. In order to guarantee the probabilistic completeness

for our method, we set our planner to use our extension method with precomputed data with probability

α and uniform sampling with probability 1− α. We set α to 0.85 in our experiments.

5.4 Experimental Results

We implemented our method on an Intel i7 desktop machine that has 3.6GHz CPU and 16Gb main

memory. Our method is built upon an Open Motion Planning Library (OMPL [SMK12]) and we use a

Proximity Query Package (PQP) library [LGLM99] for the collision detection. We compared our method

to the kinodynamic RRT with n control trials, called n-RRT (Sec. 5.2.3) against a kinodynamic planning

problem for a rigid robot with dynamics.
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Algorithm 9 n-control Kinodynamic RRT with motion database

Require: tree T , n, motion database db

T .AddVertex (xinit)

repeat

xr ← RandomStateInStateSpace()

xn ← NearestNeighbor(xr, T )

controls ← RetrieveControls(db, xn)

if with probability of p( size of controls ) then

ubest ← FindBestControlAmong(xn, xr, controls)

xnew ← ExtendFromDatabase(xn, ubest)

else

ubest ← FindBestControl(xn, xr, n)

xnew ← Extend(xn, ubest)

end if

if any of three validation conditions satisfied then

ValidatePath (xnew)

end if

if CollisionFree(xnew, xn) then

T .AddVertex(xnew)

T .AddEdge(xn, xnew, ubest)

end if

until a collision-free path between xinit and xgoal is found
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Figure 5.4: Tested environment for the space shuttle robot. An initial state of the robot is in the bottom.

The robot has to move around the obstacles and pass through the hole behind.

5.4.1 Benchmark Model

We conducted experiments for a three dimensional space shuttle robot in a space environment

where no gravity exists and many obstacles generate narrow passages. Fig. 5.4 shows our experiment

environment.

In our model, the global state space has the following components of the robot:

x = (p, θ,v, ω)

where p denotes global position in a three dimensional space (x, y, z), θ denotes an orientation which is

represented as a unit quaternion in SO(3) space, v denotes linear velocity (vx, vy, vz), and ω denotes

angular velocity (ωx, ωy, ωz). The local state space, which is used in the motion database, is defined as

linear velocity and angular velocity in local coordinate space of a robot:

xlocal = (vlocal, ωlocal)

where vlocal, ωlocal represent to the converted linear and angular velocities into the robot’s local coordi-

nate space.

We use a simple metric for computing the distance between states based on a weighted Euclidean

distance for all components of states. The equation of distance can be defined as:

d(x1,x2) = wp(‖p1 − p2‖)2 + wo(1− | θ1 · θ2 |)2 + wv(‖v1 − v2‖)2 + wω(‖ω1 − ω2‖)2

where wp, wo, wv, wω are weights for each components.

Finally, the control space of the robot has three dimensions: force along to x-axis in robot’s coordi-

nate which represents to the forward and reverse engine of the space shuttle, pitch torque and yaw torque

(See Fig. 5.5). Combining of three controls, the robot can reach to any place in the three-dimensional

workspace with complex maneuverer.
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Figure 5.5: Space shuttle model [NAS] and its control dimensions

Figure 5.6: Solution path of our benchmark

5.4.2 Results and Comparisons

We tested two different experiments in which various times are used for preprocessing, therefore the

number of generated motions are different. We ran the experiment 100 times and report the mean of

those results. Table 5.1 shows experimental results for those two experiments and the kinodynamic RRT

with 30 control trials. In first experiment (ours 1), we generate about 40,000 motions for the database,

and about 120,000 motions are generated in second experiment (ours 2). Fig. 5.6 shows a one of solution

path by our planner.

n-RRT consumes many portion of time for simulation queries (about 76%) to solve the problem, while

ours uses smaller portion of time for simulation as more motions are stored in the motion database. Richer

database decreases the portion of time for simulation, because many expensive simulation execution can

be replaced to database retrieval which is relatively faster. ours2 is about 1.42 times faster than n-RRT,

in which 30 s are used for preprocessing. Note that the generated motion database can be reused for

different problems such as different composition of obstacles or initial, goal states.
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Table 5.1: Performance comparison table between the kinodynamic RRT with n controls (n-RRT,

Sec. 5.2.3) and our method (ours, Sec. 5.3.4). In ours 1, 40,000 motions are generated and in ours 2,

120,000 motions are generated in preprocessing phase.

n-RRT ours 1 ours 2

# of iterations 7693.88 13943.44 10484.78

# of nodes 311.10 437.08 281.48

Total time (s) 125.11 140.96 88.22

Simulation time (s) 94.61 50.53 25.51

% of simulation 75.62 35.85 28.92

Table 5.2 shows a breakdown of the running time of kinodynamic RRT with n controls and our

method with the different amounts of preprocessing time, for different components including the simu-

lation, data retrieval from the database, collision detections, and other parts (e.g., maintaining graph,

validating nodes based on update rules in Sec. 5.3.3, etc.).

Table 5.2: Breakdown of the running time

n-RRT ours 1 ours 2

Total time (s) 125.11 140.96 88.22

Simulation time (s) 94.61 50.53 25.51

% of simulation 75.62 35.85 28.92

Retrieval time (s) 0 10.92 8.99

% of retrieval 0.00 7.74 10.19

Validation time (s) 0 8.17 11.91

% of validation 0.00 5.80 13.50

etc. (s) 30.50 71.34 41.81

% of etc. 24.38 50.61 47.39
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Chapter 6. Conclusion

In this thesis, we propose novel sampling-based motion planning methods for different types of

robot and constraints: a free-flying rigid robot (SR-RRT in Chap. 3) , a manipulator robot with kine-

matic constraints (PROT in Chap. 4), and the kinodynamic planning problem with complex dynamics

(Chap. 5).

SR-RRT is designed for a wide variety of environments that have or do not have narrow passages.

Instead of performing retraction operations exhaustively, we selectively perform retraction operations,

only if samples to be retracted are deemed to be around narrow passages. To decide whether a sample

is near a narrow passage, we propose a bridge line- test, an inexpensive filtering operation. We perform

principal component analysis (PCA) and generate the line with a higher probability to cross narrow

passages in order to achieve a high accuracy even in high dimensional configuration spaces. Also, in order

to generate more random samples near narrow passages, we present a non-colliding line-test that detects

wide-open free spaces. Our method shows the highest performance among all the tested methods with

all the tested benchmarks, while the performance of other methods depend on the type of environments.

This result demonstrates higher robustness and generality of our method.

For a hyper-redundant manipulator robot with kinematic constraints, we propose a novel sampling

strategy, PROT, to improve the performance of a trajectory planner that directly explores the task space.

We propose to use a concept of productive regions, which effectively guide a random tree towards a goal

state. We then propose two sampling domains for each node in the random tree: a promising maximum

reachable area (MRA) and a detour sampling domain. When the MRA of a node contains the goal state,

we classify it as a promising node and use its MRA as its sampling domain. For other nodes that do not

contain the goal state, we call them unpromising and additionally construct a detour sampling domain

for detouring obstacles constraining the manipulator. Proposed sampling strategy shows up to 3.54 times

improvements on recent works for a 20-dofs manipulator in a challenging benchmark including narrow

passages. We have also applied our method to solve a cabled mobile robot problem by approximating

the problem as a 100-dofs manipulator planning problem.

For planning under kinodynamic constraint, we propose a novel extension method with a precom-

puted robot motion database for sampling-based planners with complex dynamics. We replace expensive

simulation executions with retrievals from the database which is defined in the local state space. In order

to increase the ratio of retrieval, we employ motion interpolation. We also perform validations during

iterations to reduce a bias exploration by interpolation errors. By using the motion database, many

redundant simulation executions can be saved, therefore the overall performance of the planner is im-

proved. Also, the database can be re-used for different composition of obstacles or different problem

definitions.

There are many avenues for future research directions. For SR-RRT, we would like to design more

accurate, yet efficient filtering methods. Also, we would like to identify collision- free paths in a multi-

resolution approach [GFC09, RTPA06] in order to more efficiently find such paths. It will be very

challenging to design a multi-resolution technique for environments that contain narrow passages. Our

planner requires some parameters including ones inherited from the retraction operation. Eliminating the

effort to tune the algorithm can be beneficial. Also, adopting GPU-based techniques can significantly
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accelerate the performance of our approach. Finally, the optimization-based retraction method has

been extended to articulated robots [PZM10]. We would also like to extend and test our method to such

cases. For PROT, we would like to compute productive regions in various task spaces. Currently, we have

experimented R2 task space and thus the manipulator has only two principal movement directions. In

order to extend the methods to R3 task space, a combinatorial analysis of the manipulator configuration

is needed to identify its principle movement directions for the computation of the MRA and the detour

sampling domain. We also would like to extend our method for various manipulators with prismatic joints

or multiple end-effectors. Finally, we would like to combine asymptotically-optimal algorithms [PKS+11]

within our method for finding the optimal solution. For the extension methods using the motion database,

we would like to increase the efficiency of the motion database by analysis of a robot’s movement.

The analysis of movements can be achieved by automatically or manually. Specially, learning from

human expert’s demonstration which has been research for many years in robotics [BS02, SIB03, BCG06,

YYN11], can build the database more useful for planning.
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Summary

Sampling-based motion planning algorithm to handle a narrow
passage problem

로봇 모션 플래닝은 부품 조립, 무인자동차, 컴퓨터 그래픽스 등 많은 분야에서 널리 사용되는 문제로 1970

년대 이래로 활발하게 연구가 된 분야이다. 그중에서도 확률적 완전성(probabilistically complete) 특징을

갖는 샘플링 기반 알고리즘이 다양한 종류의 로봇과 제약조건에 대해 많이 사용되어 왔다. 그러나, 샘플링

기반 알고리즘은 문제 환경 내에 좁은 길이 포함되는 경우에 성능이 저하되는 문제점을 가지고 있다. 이러한

경향은 운동학적 동역학적 제약조건들이 추가되거나, 로봇 매니퓰레이터(robot manipulator) 처럼 로봇의

자유도가 높아지는 경우 더욱 악화된다. 본 학위논문에서 자유비행 강체로봇(free-flying rigid robot)의 경

로를 다양한 특성을 가진 환경에 대해 효율적으로 수행하는 알고리즘과 로봇 매니퓰레이터를 위한 새로운

작업공간(task-space) 기반 알고리즘을 제안한다. 강체로봇을 위한 알고리즘에서 새롭게 제안하는 브리지

라인테스트를 이용해 환경에서 좁은길의 존재여부를 탐색하여 필요한 영역에서만 리트렉션 방법을 선택적

으로 수행한다. 또한 넓은 오픈 프리 스페이스(open free-space) 영역에서의 불필요한 샘플링을 제외시키는

방법으로 비충돌 라인테스트를 제안한다. 제안된 두개의 라인테스트는 계산량이 적으며, 이를 이용해 좁은

길을 포함한 경우나 그렇지 않은 경우 모두 기존에 알려진 방법보다 더 빠른 속도로 문제를 해결할 수 있다.

로봇매니퓰레이터를위한효율적인알고리즘을위해,먼저작업공간내에서로봇을목적하는지점까지옮기

기 위한 효율적인 위치의 집합을 생산적 구역(productive regions)으로 정의한다. 생산적 구역 내에 샘플이

포함되는지를 알기위해 해당 샘플 위치에서의 최대도달가능지역을 계산한다. 최대도달가능지역에 목적지

가 포함되는 경우에는 이를 유망한 지역으로 정의하고 유망한 최대도달가능지역들에서 샘플링을 집중한다.

반면에 목적지가 포함되지 않는 경우에는 비유망 지역으로 이를 정의하고 우회경로 구역을 계산하여 이곳에

서 샘플링을 집중한다. 우회경로 구역과 유망한 최대도달가능지역에 편향된 샘플링을 통해 더 효율적으로

경로를 계산해 낼 수 있다.
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