
Parallel Continuous Collision Detection for High-Performance GPU Cluster

Peng Du∗

Nanyang Technological University, Singapore
Hangzhou Dianzi University, China

Elvis S. Liu†

Nanyang Technological University, Singapore

Toyotaro Suzumura‡

IBM Thomas J. Watson Research Center, USA

Abstract

Continuous collision detection (CCD) is a process to interpolate
the trajectory of polygons and detect collisions between successive
time steps. However, primitive-level CCD is a very time-consuming
process especially for a large number of moving polygons. Over the
years, a number of approaches have been proposed to improve the
computational efficiency of CCD by culling out the non-colliding
primitives before exact overlap tests. These approaches have two
fundamental disadvantages. First, they are mainly designed for self-
and pairwise CCD and thus the performance gain would be limited
when they are applied to large-scale scenes that contain thousands
of moving polygons. Second, they are designed as sequential pro-
cesses appropriate for execution on a single processor. Therefore,
deploying them on high-performance parallel computing systems
would not increase their computational efficiency.

In this paper, we present a parallel CCD algorithm, which aims
to accelerate N-body CCD culling by distributing the load across
a high-performance GPU cluster. Our implementation integrates
frameworks such as Message Passing Interface and CUDA, which
is particularly suitable for large-scale distributed simulations. Ex-
perimental results, based on simulations conducted on a supercom-
puter, demonstrate that our approach is more computationally effi-
cient than existing sequential CCD approaches.

Keywords: Continuous Collision Detection; Parallel Collision
Detection; GPU Cluster; Supercomputer; Load Balancing; N-body

Concepts: •Computing methodologies→ Collision detection;

1 Introduction

A virtual environment (VE) is a three-dimensional (3D) computer
simulation that provides sensory information in such a way that
users can visualize, explore, and interact with virtual entities in the
environment. In recent years, large-scale VE simulations, such as
military simulations [Neyland 1997; Perumalla et al. 2002] and dis-
tributed virtual environments [Steed and Oliveira 2010], have been
developed to support hundreds of thousands, if not millions, of en-
tities. This enables the application of parallel and distributed simu-
lations (PDS) [Fujimoto 2000], which facilitates workload sharing

∗e-mail:dupengtomas@gmail.com
†Corresponding author, e-mail:elvisliu@ntu.edu.sg
‡e-mail:tsuzumura@us.ibm.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
I3D ’17, March 04-05, 2017, San Francisco, CA, USA
ISBN: 978-1-4503-4886-7/17/03. . . $15.00
DOI: http://dx.doi.org/10.1145/3023368.3023384

by distributing the objects among a cluster of workstations.

One of the major challenges of large-scale PDS is providing scal-
able 3D collision detection service, which is a technique designed
to detect collision of geometric polygons. Traditional discrete col-
lision detection (DCD) is a process to detect collisions at every
simulation time step, while continuous collision detection (CCD)
is a technique to detect not only the discrete collisions, but also
the missing collisions between discrete time steps. CCD has been
widely used in physical simulations [Tang et al. 2012], motion plan-
ning [Lee et al. 2014], and virtual assembly [Du et al. 2015] to avoid
missing collisions. However, this technique is usually more compu-
tationally intensive than DCD and involves decompositions of ver-
tex/face (VF) and edge/edge (EE) intersection tests at the primitive-
level.

Over the years, a number of approaches have been proposed, which
sought to improve the computational efficiency of CCD by culling
out the non-colliding primitives before exact overlap tests [Tang
et al. 2008; Tang et al. 2010b; Tang et al. 2011a; Wong et al. 2013].
These approaches have two major disadvantages when applying on
large-scale PDS. First, they are mainly designed for self- and pair-
wise collisions. Therefore, the performance gain would be limited
when they are applied to large-scale VE simulations that contain
thousands of objects (i.e. N-body scenes). Second, they are de-
signed as sequential processes appropriate for execution on a single
processor, which is unsuitable for PDS since their workload can-
not be shared among the cluster of workstations. Although paral-
lel DCD for distributed-memory systems has been discussed in the
literature [Lawlor and Kalée 2002], the need of high-performance
parallel CCD is still largely unmet.

Main contributions: To improve the performance of N-body CCD
and facilitate workload sharing in PDS, this paper presents a paral-
lel N-body CCD acceleration approach. This approach is designed
especially for high-performance GPU clusters. It first employs
a spatial decomposition method to distribute the entities across a
GPU cluster (hereafter referred to as nodes), and then uses a number
of efficient GPU-based culling methods to get the colliding entity
pairs. We have implemented our approach with Message Passing
Interface (MPI) and CUDA and performed experimental evaluation
on the supercomputer TSUBAME [GSIC 2016], which is ranked
No. 31 on the TOP500 list [TOP500 2016] (as of October 2016).
Experimental results demonstrate that our approach is more compu-
tationally efficient than existing sequential CCD approaches when
applying on a high-performance GPU cluster.

The rest of this paper is organized as follows. Section 2 briefly re-
views the related work of collision detection. Section 3 describes
an GPU-based N-body CCD approach. Section 4 presents a parallel
CCD algorithm for distributed-memory systems. Section 5 evalu-
ates the performance of the proposed algorithm. Finally, Section 6
concludes this paper and briefly describes the future work.

http://dx.doi.org/10.1145/3023368.3023384

2 Related Work

In this section, we briefly review the prior work of collision detec-
tion, particularly CCD, N-body DCD, and parallel collision detec-
tion approaches.

2.1 Continuous Collision Detection

Over the years, many efficient culling algorithms have been pro-
posed to improve the performance of CCD, which can be divided
into high-level culling and low-level culling. High-level culling in-
dicates the culling method works on polygons, while the low-level
culling works on primitives.

High-level culling: A number of culling methods aim to bound
the polygon by simple-shaped bounding volumes (BVs), in or-
der to reduce the complexity of CCD. Representative examples
include spheres [Bradshaw and O’Sullivan 2004], axis-aligned
bounding boxes (AABBs) [Bergen 1998], discrete oriented poly-
topes (k-DOPs) [Klosowski et al. 1998] and oriented bounding
boxes (OBB). And then bounding volume hierarchy (BVH) is built
for the scene filled with thousands of virtual entities [Tang et al.
2008] to speedup collision detection.

Low-level culling: A class of culling methods is to remove re-
dundant primitive pairs (VF or EE) and in turn reduces the prim-
itive tests for the potentially colliding set (PCS). Representative-
triangles [Curtis et al. 2008] and orphan sets [Tang et al. 2008]
are two influential methods for culling redundant primitives. The
former assigns each primitive to a unique triangle to guarantee no
redundant collision pairs would be processed. The latter builds an
orphan sets for adjacent collision pairs since they are difficult to cull
out. Furthermore, many efficient culling methods for the PCS are
based on separating axis. Representative examples include continu-
ous separating axis [Tang et al. 2011b], deforming non-penetration
filter [Tang et al. 2010a], and non-collinear filter [Du et al. 2012].

2.2 N-body Collision Detection

Some existing approaches use simple-shaped BVs for fast N-body
culling, but they are all designed for DCD process. Most notably,
a sorting-based technique known as sweep and prune (S&P) [Co-
hen et al. 1995] has been proven to be very efficient in N-body
culling, especially in an environment of high spatial coherence. Liu
et al. extended this method by using GPU for performance accel-
eration. They combine a space decomposition method and S&P for
N-body culling [Liu et al. 2010]. In our previous work [Du and Liu
2016], we proposed an N-body CCD approach, which is designed
especially for rotational rigid bodies. These approaches, however,
cannot be directly deployed on a computer cluster since they only
work on shared-memory systems, which are supposed to be exe-
cuted on a single computer. As the number of entities grows, using
these algorithms does not satisfy the scalability requirement since
the single computer may eventually become a bottleneck.

2.3 Parallel Collision Detection

A number of algorithms have been proposed to exploit parallelism
to accelerate the collision detection process. Most of them are de-
signed for shared-memory platforms. Kim et al. proposed a hybrid
CCD to utilize the computational capabilities of a multi-core CPU
and a GPU [Kim et al. 2009]. Tang et al. proposed another parallel
algorithm based on fine grained dynamic task assignment, which
exploits temporal coherence to guarantee load balance for self- and
pairwise CCD [Tang et al. 2010b; Tang et al. 2011a]. Zhang and
Kim proposed a collision detection approach for many-core plat-
forms [Zhang and Kim 2014]. It utilizes a partitioning approach

called ‘p-partition front’ to enable even partitioning of the work-
load and avoid complex dynamic load balancing. Pan and Manocha
proposed a GPU-based method [Pan and Manocha 2011], which
employs a clustering scheme and collision-packet traversal to per-
form collision queries on multiple configurations simultaneously.
Lawlor and Kalée presented a space decomposition method for
DCD in distributed-memory system, which uses trivial data transfer
to maintain load balance [Lawlor and Kalée 2002].

The CCD algorithms reviewed so far are some of the most effi-
cient approaches. However, most of them are designed for pair-
wise CCD or should be deployed on shared-memory single com-
puters. The needs of a parallel N-body CCD approach for high-
performance distributed-memory systems are largely unmet. In this
paper, we present a parallel CCD algorithm, which aims to acceler-
ate N-body culling by distributing its load across a GPU cluster (i.e.
a distributed-memory system). This algorithm employs a dynamic
partitioning method to balance the load in the system and utilize a
series of culling methods to enhance the computational efficiency.

3 GPU-based N-body Continuous Collision
Detection

As discussed previously in Section 2, most existing CCD accelera-
tion approaches are designed for self- and pairwise CCD, and there-
fore the performance gain would be limited when they are applied
to large-scale scenes that contain thousands of moving entities on
a parallel computing system. In this section, we present the design
of a GPU-based N-body CCD algorithm, which can efficiently de-
termine a potentially colliding set (PCS) in a scene that contains a
large number of entities. This approach is designed for single-node
shared-memory system that consists of multi-core GPUs and CPUs
and exploits parallelism and multi-threading capabilities to enhance
its computational efficiency. It also forms the basis of the proposed
distributed-memory CCD algorithm presented in Section 4.

3.1 Overview

The GPU-based N-body CCD process is given in Alg. 1. In the
initialization stage, the algorithm first computes the center and ra-
dius of the objects as described in Section 3.2. During runtime, it
projects the trajectory of entities onto a Cartesian coordinate axis
according to their motion equation. Next, it performs a GPU-based
parallel S&P to efficiently obtain all intersected trajectories, which
are regarded as the PCS. It then builds a BVH for each entity in the
PCS and traverses the bounding volume traversal tree (BVTT) [Du
et al. 2015] for further culling. Finally, it employs an interval-
iteration method to solve the primitive collision equation [Redon
et al. 2002].

3.2 Construction of Sphere Bounding Volume

For any rigid body (entity) composed of small triangles, a fixed size
Sphere Bounding Volume (SBV) can be constructed in the initial-
ization stage. The construction algorithm first calculates the centre
Pc of the entity by averaging the vertex coordinates of the triangles.
This is given in Eq. 1.

Pc =

∑n
i=1 (Ai +Bi + Ci)

3n
(1)

where Ai, Bi, and Ci are the three vertices of the triangle, and n
is the number of triangles in the entity. The max distance Lmax

Algorithm 1 GPU-based N-body CCD

1: Create a SBV for each entity
2: for each time step do
3: Project the trajectory of the SBVs onto the Cartesian coor-

dinate axis and create CBVs
4: Perform GPU-based S&P to obtain a PCS
5: for each colliding trajectory pair in the PCS do
6: Perform stream-based pairwise CCD (Alg. 2)

between the centre Pc and the entity’s vertex Pi can be calculated
by Eq. 2.

Lmax = max{||Pc − Pi||, 1 ≤ i ≤ m} (2)

where m is the number of vertices. Although this is a conservative
method, it can guarantee that the size of the SBV will always re-
main unchanged during runtime, regardless of the orientation of the
entity. Hence, we can use a continuous bounding volume (CBV) to
bound the trajectory of the SBV during the time interval.

3.3 GPU-based Parallel Sweep and Prune

The original S&P approach [Cohen et al. 1995] is designed for
DCD only. In this section, we present an extension of the origi-
nal approach in order to support the parallel CCD process based on
GPU.

x

y

o a1 a2b1 b2 c1 c2

Figure 1: CBVs are projected onto a coordinate axis.

The parallel CCD approach begins by projecting the CBVs (con-
tinuous bounding volume, which are formed by the SBVs’ trajec-
tories) onto a coordinate axis (see Fig. 1). A list L containing the
projections end points is constructed. By sorting L, it can determine
which projections overlap. The original S&P uses insertion sort for
this process. However, this approach is not suitable for single-node
multi-core GPU systems, since it would be difficult to parallelize
the insertion sort. To solve this problem, a GPU-based radix sort
[Liu et al. 2010] is employed, which can determine the overlaps
for each projection in a parallel manner. Specifically, a GPU core
(as well as a thread) is used to determine a potentially colliding set
(PCS) Pi = {(Oi, Oj),Mi > mj ,mi < Mj} for each CBV pro-
jection by sweeping L (mi and Mi are the minimum and maximum
boundaries of Oi). All Pi are then combined to obtain a final PCS
P = ∪Pi.

3.4 Primitive Test

After the PCS is obtained from the previous stage, we employ a
parallel stream-based approach to perform primitive-level CCD, in

order to obtain the exact CCD results. In this approach, the geo-
metric data are represented as streams. The underlying functional
modules used in the algorithm (i.e. BVs and BVHs updates and
BVH traversals) are mapped to computational kernels.

Five types of data streams are used in this process, namely collision
pair stream Sc, transformation matrix stream Stm, vertex stream
Sv , BV stream Sbv , and BVH stream Sbvh.

• Collision pair stream Sc: after S&P traversal, all collision
pairs in the PCS are put into Sc.

• Vertex stream Sv: it contains the geometric coordinates of the
vertices of the components; in order to perform CCD between
two discrete time steps, two vertex streams Svn and Svn+1

are used to store the vertex coordinates in the time interval
[tn, tn+1]; in addition, Sv0 is used to represent the initial ver-
tex coordinate stream.

• BV stream Sbv and BVH stream Sbvh: all bounding volumes
of triangles are represented by Sbv; all components of an en-
tity are enclosed by a single BVH Sbvh; Sbv and Sbvh are
updated at each simulation time step based on Sv .

• Transformation matrix stream Stm: when the coordinates of
entities change, the transform matrices Stm are sent to GPU,
and a new vertex stream Svn+1 is computed with Sv0 and
Stm.

The algorithm of the parallel stream-based CCD is given in Alg.
2. It decomposes the process into several computation kernels, in-
cluding Sv , Sbv and Sbvh update kernels, and Sc collision detection
kernel. Due to the data independence of the sub-processes, all com-
putation kernels can be processed on the GPU cores in a parallel
manner.

Algorithm 2 Streams-based pairwise CCD.
1: for each simulation time step do
2: Update Sv with Stm

3: Update Sbv and Sbvh with Sv

4: for each collision pair c in Sc do
5: if the leaf nodes of two Sbvh in c intersect then
6: Return true
7: else
8: Return false

4 Parallel CCD for Distributed-Memory Sys-
tems

In this section, we present the design principles of the parallel CCD
algorithm for distributed-memory systems. This algorithm aims to
be deployed on a high-performance computing system that contains
multiple working nodes. It employs a novel spatial decomposition
method to distribute the workload of CCD across the nodes in order
to enhance the overall runtime efficiency. It can also perform load-
balancing at runtime based on dynamic task assignment.

4.1 Space Decomposition

With the use of spatial decomposition, the virtual space can be par-
titioned in multiple sub-spaces, which can localize the CCD tasks.
Over the years, a number of non-uniform decomposition method
such as k-d tree and octree have been proposed [Samet 2006].
However, uniform decomposition is the simplest and most suitable
strategy for parallel implementation and dynamic task assignment.

X

Y

Z
X

Y

0 1 2 3 0 1 2 3

3

(a) (b) (c)

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Figure 2: Spatial decomposition: the virtual space is decomposed
into n uniform sub-spaces (Fig. (b)). Each sub-space is then di-
vided into m×m cells (Fig. (c)).

Therefore, we adopted uniform decomposition in our implementa-
tion.

After decomposing the virtual space, in each sub-space the CCD
process would become an individual sub-problem, and therefore the
single-node GPU-based CCD process described in Section 3 can be
applied.

In the initialization phase, the parallel algorithm uses a two-level
space decomposition approach to partition the virtual space. As-
sume that the distributed-memory system that hosts the virtual en-
vironment has n nodes. The algorithm first decomposes the vir-
tual space into n uniform sub-spaces, and labels them with ID i,
0 ≤ i ≤ n− 1. Each of these sub-spaces is distributed to the node
at runtime (see Fig. 2(b)).

The algorithm then divides the sub-space into m ×m cells in the
X-Y plane, where m is a user-defined granularity. It labels the cells
with ID j from the bottom-left to the top-right of the sub-space,
where 0 ≤ j ≤ m×m−1 (Fig. 2(c)). Hence, a cell can be located
by the combination of IDs i and j.

4.2 Load Balancing

The load of the nodes may become uneven over time due to the
arbitrariness of the entities’ movement pattern. Therefore, load-
balancing should be carried out in order to maximize the utilization
of computational resources.

The basic idea of our load-balancing approach is to transfer the cells
from a heavily loaded node to a less loaded node. It first sorts the
nodes by the number of colliding entity pairs in the node. It then
transfers the cells from the most loaded node to the least loaded
node if the difference between them is larger than a pre-defined
threshold. This is an adaptive process, which allows only one cell
transfer at each time step, in order to avoid a drastic change of work-
load.

4.3 Entity Migration

Entity may need to be transferred between nodes during runtime.
When an entity moves out of its current cell, we first check whether
the target cell is on the same node. If this is not the case, we put the
entity into a migration list and remove the entity from its current
cell. After all migrating entities are obtained, we transfer them to
the corresponding target nodes according to the migration list.

If an entity lies on the border of two cells, it would be assigned
to both of them. Moreover, if the two cells are on two different
nodes, the entity would exist on both of the nodes. Since we use
lock-step synchronization in our implementation, there would be
no ambiguity in the collision detection results.

Figure 3: Nanorobots simulation. In this simulation, a large mount
of nanorobots move randomly in an virtual space. Each robot con-
sists of 0.3K vertices and 0.7K triangles. There are many inter-
object collisions.

Furthermore, during the load-balancing process, if a cell is trans-
ferred to another node, all entities that it contains would be put into
the migration list.

5 Experimental Evaluation

We have implemented and performed an experimental evaluation
for the proposed parallel CCD algorithm on the supercomputer
TSUBAME [Shimokawabe et al. 2011; GSIC 2016], which oper-
ates at the GSIC Center at the Tokyo Institute of Technology and is
currently ranked No. 31 on the TOP500 list (as of October 2016).
Each node of TSUBAME is comprised of 2 × 6-core Intel Xeon-
E5670 CPUs and 3 × Nvidia Tesla K20X GPUs (1.31TFLOPS
each) with 54GB main memory. The GPU computations of our
algorithm were implemented with CUDA and the message passing
protocols were implemented based on OpenMPI [MPI 2015]. Fur-
thermore, lock-step approach were implemented to synchronize the
working nodes.

5.1 Benchmarks and Approaches

Since currently there is no widely used benchmark for N-body CCD
in a scene that contains thousands of entities, our evaluation is based
on a nanorobots simulation [Liu 2015]. This simulation is com-
prised of a scene of hundreds of thousands of moving nanorobots
(rigid bodies), with each nanorobot consists of 0.3K vertices and
0.7K triangles (see Fig. 3). A simple collision response mecha-
nism is also implemented (There are many inter-object collisions,
when collision occurs, the direction of entity’s velocity is reversed).

Three approaches were implemented and tested in the nanorobots
simulation to evaluate the performance of the proposed algorithm:

• Parallel GPU-based N-body CCD for distributed-memory
systems with load balancing (PGCCD+LB): This approach
is the algorithm that is proposed in this paper, which dis-
tributes the workload of CCD across multiple nodes in a high-
performance computing system, and carries out GPU-based
N-body and primitive-level cullings in order to efficiently ob-
tain a final collision set. Dynamic load-balancing based on
the approach described in Section 4.2 is performed to better
utilize the computational resources in the computing system.

• Parallel GPU-based N-body CCD for distributed-memory
systems without load balancing (PGCCD): This approach is

Figure 4: Speedup of PGCCD over PCCCD (Number of Robots
varies)

the same as PGCCD+LB, except that the load-balancing pro-
cess is not performed.

• Parallel CPU-based N-body CCD for distributed-memory sys-
tems (PCCCD): This approach is an extension of Lawlor’s al-
gorithm [Lawlor and Kalée 2002]. We chose it as a subject
of comparison since, among the algorithms we review in Sec-
tion 2, it is the only approach that is designed for distributed-
memory systems. However, since Lawlor’s original approach
is a DCD algorithm, for the sake of fairness, we converted it to
a CCD algorithm that supports primitive-level CCD. Its work-
load distribution mechanisms remain completely unchanged.

• GPU based N-body CCD for a shared-memory single com-
puter: To the best of our knowledge, GPU based N-body CCD
has not been proposed in the literature. The closest approach
is [Liu et al. 2010], which performs GPU-based N-body DCD
on a shared-memory single computer, but omits the process
of primitive-level CCD. Therefore, comparing this approach
with our approach would not be fair. We instead compared
the performance of PGCCD on a single node and multiple
nodes, in order to demonstrate the strength of the proposed al-
gorithm over similar single-node shared-memory GPU-based
algorithms such as Liu et al.’s approach.

Furthermore, in order to evaluate the algorithms under even and
uneven distribution of workload, we define two movement patterns
for the entities.

• Random Movement Environment: The entities are uniformly
distributed to the scene and move randomly during runtime.

• Skewed Environment: The entities tend to move to the eight
corners of the scene during runtime. When they reach a cor-
ner, they would stay for a period of time before moving to
a random new corner. It is expected that more entities will
concentrate at the corners of the scene over time.

5.2 Number of Entities

The first set of experiments evaluates the runtime efficiency of the
proposed approach in both random movement and skewed environ-
ments, with the number of robots extending from 10,000 to 40,000.
In the simulations, 4 nodes of TSUBAME were used and the pre-
defined threshold of load-balancing was set to 15%.

Since the execution time of PCCCD obtained from the experiments
is many times larger than that of the proposed algorithm, it would

Figure 5: Execution Time of PGCCD (Number of Nodes varies)

be difficult to include the results of both approaches in the same fig-
ure. Therefore, we calculated the speedup of our approaches over
PCCCD, which is shown in Figure 4. It is not difficult to see that the
performance of PGCCD+LB and PGCCD is much better than that
of PCCCD, as both approaches have a large speedup over PCCCD
in all cases. This indicates that the proposed approach is more scal-
able than PCCCD (i.e. the extension of Lawlor’s approach) when
deploying on a high-performance computing system.

Moreover, PGCCD+LB is only slightly faster than PGCCD in the
random movement environment, which implies that although load-
balancing can improve the performance of the proposed approach,
its effect is not very significant in this setting. This may be due to
the fact that load imbalance rarely happens in a scene of random
moving entities.

Furthermore, we can see from the results that if load-balancing is
not employed, the speedup of PGCCD in the skewed environment is
slightly worse than that of the random movement environment. This
confirms our expectation that the performance of PGCCD would
be affected if the workload is uneven among nodes. On the other
hand, if load-balancing is employed, the performance of PGCCD in
both environments becomes similar. This also indicates that the im-
provement of PGCCD+LB over PGCCD is more significant in the
skewed environment than in the random movement environment.

5.3 Number of Nodes

The second set of experiments evaluates the runtime efficiency of
the proposed approach in random movement and skewed environ-
ments, with the number of working nodes extending from 1 to 4.
The number of robots was set to 40,000 in the experiments.

Figure 5 shows the results of this evaluation. Since the execution
time of PCCCD is many times larger than the proposed approach,
its results are not included in the figure. The first observation is
that the execution time of PGCCD+LB and PGCCD drops gradu-
ally with the increase in the number of working nodes. In particu-
lar, PGCCD+LB was able to complete the whole CCD process for
100,000 entities in 300ms. This suggests that the proposed algo-
rithm is scalable when running on a high-performance computing
system.

Furthermore, as mentioned previously, the results of PGCCD on a
single node represents the performance of similar shared-memory
GPU-based algorithms such as [Liu et al. 2010]. The fact that
PGCCD on four nodes has a speedup of 2.6 over PGCCD on a
single node suggests that the proposed algorithm has much better

Figure 6: Execution Time of PGCCD+LB (Threshold varies)

performance than the shared-memory algorithm when deploying on
a high-performance computing system.

However, the parallel efficiency of PGCCD drops significantly
when more nodes are involved in the experiments. We can see from
the results that when we increased the number of nodes from 3 to
4, the execution time reduction of PGCCD in all cases was less
than 10%. Therefore, it can be expected that even if we add more
nodes to the experiments, the performance gain of PGCCD would
be insignificant.

5.4 Threshold

In the last set of experiments, we evaluate the performance of the
proposed load-balancing method based on different threshold val-
ues. In our implementation, the threshold, which extends from 5%
to 30%, was used to control the percentage of workload difference
between the most and least loaded nodes. We used four nodes in
this evaluation and the number of robots was set to 10,000.

It is important to point out that the choice of threshold is a trade-
off and should always be application dependent. We measured the
execution time of PGCCD+LB in random movement and skewed
environments, which is given in Fig. 6. The first observation is that
the computational overhead of the skewed environment is higher
than that of the random movement environment even when load-
balancing is performed, due to the fact that it would be more diffi-
cult to balance the workload in the former case. However, the over-
head can be reduced by carefully choosing the value of threshold. It
can be observed that there is a significant computational overhead
when the threshold is smaller than or larger than 10%. Apparently,
if a small threshold is chosen, the chance of cell transfer would be
increased. On the other hand, a large threshold makes the load-
balancing process more tolerant to workload imbalance, resulting
in poor utilization of resources. Therefore, it can be concluded that,
the optimal threshold is 10% for the current setting of experiments.

6 Conclusion

CCD is a process to detect collisions of polygons between succes-
sive time steps, which is usually more time-consuming than a DCD
process. Over the years, a number of CCD approaches have been
proposed, which sought to improve its computational efficiency.
However, they are mainly designed for self- and pairwise CCD.
Moreover, they are either designed as sequential process, or are
only suitable to be executed on shared-memory single computers.
Therefore, deploying them on high-performance parallel comput-

ing systems would not increase their computational efficiency.

In this paper, we present a parallel CCD acceleration approach,
which is designed for distributed-memory GPU clusters. Our ap-
proach exploits parallelism by distributing the load of CCD across
a cluster of nodes and employs a dynamic partitioning method
to balance the load in the system. We also employ a number
of GPU-based culling methods to enhance the computational ef-
ficiency of the CCD process. We have implemented our approach
with MPI and CUDA and performed experimental evaluations on
the supercomputer TSUBAME. Experimental results demonstrate
that our approach is more computationally efficient than existing
sequential/shared-memory single-node approaches, and therefore is
more suitable to be applied to distributed simulation based virtual
environment.

For future work, we will extend our parallel CCD approach to sup-
port deformable 3D models, which may involve a large number of
self-collisions. Moreover, we will investigate other techniques to
improve the efficiency of GPU-based parallel CCD, such as replac-
ing the parallel S&P method by spatial decomposition methods.

Acknowledgments

This research has been partially supported by JST CREST (Core
Research for Evolutionary Science and Technology) and National
Nature Science Foundation of China (No. 61502130).

References

BERGEN, G. V. D. 1998. Efficient collision detection of com-
plex deformable models using AABB trees. Journal of Graphics
Tools 2, 1–14.

BRADSHAW, G., AND O’SULLIVAN, C. 2004. Adaptive medial-
axis approximation for sphere-tree construction. ACM Transac-
tions on Graphics 23, 1–26.

COHEN, J., LIN, M., MANOCHA, D., AND PONAMGI, M. 1995.
I-collide: An interactive and exact collision detection system for
large-scale environments. In I3D.

CURTIS, S., TAMSTORF, R., AND MANOCHA, D. 2008. Fast
collision detection for deformable models using representative-
triangles. In Proceedings of the ACM SIGGRAPH symposium on
Interactive 3D Graphics and Games. ACM Press, 61–69.

DU, P., AND LIU, E. S. 2016. RNCCD: Rotation-aware N-body
Continuous Collision Detection. In Proceedings of the 33rd
Computer Graphics International (CGI 16).

DU, P., TANG, M., AND TONG, R. 2012. Fast continuous collision
culling with deforming non-collinear filters. Computer Anima-
tion and Virtual Worlds 23, 6-8, 375–383.

DU, P., ZHAO, J., PAN, W., AND WANG, Y. 2015. GPU acceler-
ated real-time collision handling in virtual disassembly. Journal
of Computer Science and Technology 30, 3, 511–518.

FUJIMOTO, R. M. 2000. Parallel and Distributed Simulation Sys-
tems. John Wiley and Sons, Inc.

GSIC. 2016. TSUBAME 2.5 User’s Guide. Tokyo Institute of
Technology, September.

KIM, D., HEO, J. P., HUH, J., KIM, J., AND YOON, S. E. 2009.
HPCCD: Hybrid parallel continuous collision detection using
CPUs and GPUs. Computer Graphics Forum 28, 1791–1800.

KLOSOWSKI, J., HELD, M., MITCHELL, J., SOWIZRAL, H., AND
ZIKAN, K. 1998. Efficient collision detection using bounding
volume hierarchies of k-dops. IEEE Transactions on Visualiza-
tion and Computer Graphics 4, 21–37.

LAWLOR, O. S., AND KALÉE, L. V. 2002. A voxel-based parallel
collision detection algorithm. In ICS.

LEE, J., KWON, O., ZHANG, L., AND YOON, S. 2014. A selective
retraction-based RRT planner for various environments. IEEE
Transactions on Robotics 30, 4, 1002–1011.

LIU, F., HARADA, T., LEE, Y., AND KIM, Y. J. 2010. Real-time
collision culling of a million bodies on graphics processing units.
In SIGGRAPH ASIA.

LIU, E. S. 2015. On the Scalability of Agent-based Modeling
for Medical Nanorobotics. In Proceedings of Winter Simulation
Conference (WSC) 2015.

MPI, O., 2015. A high performance message passing library.
http://www.open-mpi.com/.

NEYLAND, D. L. 1997. Virtual Combat: A Guide to Distributed
Interactive Simulation. Stackpole Books.

PAN, J., AND MANOCHA, D. 2011. Gpu-based parallel collision
detection for real-time motion planning. Algorithmic Founda-
tions of Robotics IX, volume 68 of Springer Tracts in Advanced
Robotics, 211–228.

PERUMALLA, K., FUJIMOTO, R., MCLEAN, T., AND RILEY,
G. 2002. Experiences applying parallel and interoperable net-
work simulation techniques in on-line simulations of military
networks. In Proceedings of the 16th Workshop on Parallel and
Distributed Simulation.

REDON, S., KHEDDAR, A., AND COQUILLART, S. 2002. Fast
continuous collision detection between rigid bodies. Computer
Graphics Forum 21, 279–288.

SAMET, H. 2006. Foundations of Multidimensional and Metric
Data Structures. Kaufmann.

SHIMOKAWABE, T., TAKAKI, T., ENDO, T., YAMANAKA, A.,
MARUYAMA, N., AOKI, T., NUKADA, A., AND MATSUOKA,
S. 2011. Peta-scale phase-field simulation for dendritic solidifi-
cation on the tsubame 2.0 supercomputer. In International Con-
ference for High Performance Computing.

SMED, J., KAUKORANTA, T., AND HAKONEN, H. 2002. A Re-
view on Networking and Multiplayer Computer Games. Tech.
Rep. 454, Turku Centre for Computer Science, April.

STEED, A., AND OLIVEIRA, M. F. 2010. Networked Graphics:
Building Networked Games and Virtual Environments. Morgan
Kaufmann.

TANG, M., CURTIS, S., YOON, S. E., AND MANOCHA, D. 2008.
Interactive continuous collision detection between deformable
models using connectivity-based culling. In Proceedings of the
2008 ACM symposium on Solid and physical modeling. ACM
Press, Stony Brook, New York, 25–36.

TANG, M., MANOCHA, D., AND TONG, R. F. 2010. Fast contin-
uous collision detection using deforming non-penetration filters.
In Proceedings of the ACM SIGGRAPH symposium on Interac-
tive 3D Graphics and Games. ACM Press, 7–14.

TANG, M., MANOCHA, D., AND TONG, R. F. 2010. MCCD:
Multi-core collision detection between deformable models using
front-based decomposition. Graphical Models 72, 7–23.

TANG, M., MANOCHA, D., LIN, J., AND TONG, R. F. 2011.
Collision-streams: fast GPU-based collision detection for de-
formable models. In Proceedings of the ACM SIGGRAPH sym-
posium on Interactive 3D Graphics and Games. ACM Press, 63–
70.

TANG, M., MANOCHA, D., YOON, S. E., DU, P., HEO, J. P.,
AND TONG, R. F. 2011. VolCCD: Fast continuous collision
culling between deforming volume meshes. ACM Transactions
on Graphics 30, 111–125.

TANG, M., MANOCHA, D., OTADUY, M., AND TONG, R. 2012.
Continuous penalty forces. ACM Transactions on Graphics 31,
4, 107:1–107:9.

TOP500, 2016. TOP500 Supercomputer, October.

WONG, S., LIN, W., HUNG, C., HUANG, Y., AND LII, S. 2013.
Radial view based culling for continuous self-collision detection
of skeletal models. ACM Transactions on Graphics 32, 4, 114:1–
114:10.

ZHANG, X., AND KIM, Y. 2014. Scalable collision detection using
p-partition fronts on many-core processors. IEEE Transactions
on Visualization and Computer Graphics 20, 447–456.

