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Background: Novel View Synthesis 

Images from multiple camera viewpoints

Images from Novel Viewpoints
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Source: https://theaisummer.com/nerf/

Input: images from various 
camera viewpoints

Output: images from novel 
camera viewpoints

Examples (synthesized from novel views)

?

https://www.matthewtancik.com/nerf

Videos: https://www.youtube.com/watch?v=JuH79E8rdKc&t=191s

Neural Radiance Fields ECCV 2020 Oral - Best Paper Honorable Mention
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𝑓 𝑥 = 𝑥! − 1

𝑓 ⋅  is a parameterized 2D/3D scalar field

𝑓 𝑥 = ?

𝑥

𝑥: coordinate

Implicit Representation
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Signed Distance Function (SDF) or Occupancy Fields

Represent 3D Scene as Continuous functions

Occupancy networks, Mescheder et al.
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NeRF 3D Representations

Neural Network as a continuous shape representaiton.

How do we learn 3D representations from 2D images?

https://www.matthewtancik.com/nerf
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Cast Rays  => Estimate 3D Representations => Volume Rendering => 2D Photometric Loss

Method Overview

https://www.matthewtancik.com/nerf
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
11



https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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Detailed derivation

https://vimeo.com/766415501


https://sites.google.com/berkeley.edu/nerf-tutorial/home
25



Video

Mildenhall et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020 26



Novel View Synthesis & View Dependency 

https://www.matthewtancik.com/nerf
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https://radiancefields.com/
https://sites.google.com/berkeley.edu/nerf-tutorial/home28

Resources



Resources 

https://docs.nerf.studio/
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Limitations /
Applications
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1. Slow rendering / optimization time => Fast Rendering

3. Per-Scene Optimization => Generalizable Methods

2. Assume static scene => Dynamic NeRF

4. Not a mesh => Surface Reconstruciton

NeRF’s Limitations and Applications 

List goes on and on…!
NeRF has been cited 6800+
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Fast Optimization / Rendering : Plenoxel [CVPR’22]

32
https://alexyu.net/plenoxels/



Fast Optimization / Rendering : Plenoxel [CVPR’22]
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https://alexyu.net/plenoxels/



The world we capture is usually Dynamic / Deformable
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Simple baseline for adding time

(𝑥, 𝑦, 𝑧, 𝜃, 𝜙, 𝑡) (𝑟, 𝑔, 𝑏, 𝜎)

𝐹!

Hard without simultaneous multiple view!
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(𝑟, 𝑔, 𝑏, 𝜎)(𝑥, 𝑦, 𝑧)
Camera Coordinate 
Frame

(𝑥!, 𝑦!, 𝑧!)
Canonical 
Coordinate Frame

Deformation Network NeRF

D-NeRF [Pumarola et al. CVPR 2021], Nerfies [Park et al. ICCV 2021], HyperNeRF, NR-NeRF, etc.. 

Still very under constrained

Through a deformation network
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D-NeRF: Neural Radiance Fields for Dynamic Scenes
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https://www.albertpumarola.com/research/D-NeRF

https://www.albertpumarola.com/research/D-NeRF


Dynamic NeRFs

38
https://www.albertpumarola.com/research/D-NeRF

RoDynRF, Liu et al. CVPR’23 DynlBaR, Li et al. CVPR’23

https://www.albertpumarola.com/research/D-NeRF


NeRF requires Per-Scene Optimization 
Generalizable Methods with Prior Knowledge
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2. Sparse input camera viewpionts

1. Scene-specific representation

MLP

Not Generalizable
Cannot share representations across 
scenes or views

e.g., N=3

NeRF requires Per-Scene Optimization with Dense Views

NeRF
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PixelNeRF

Few-Shot / One-Shot NeRF

NeRF

• One-Shot NeRF (pixelNeRF [Yu et al. CVPR’21])

Few-shot (3~10 views): pixelNeRF, IBRNet [Wang et al. 
CVPR’21], MVSNeRF [Chen et al. ICCV’21], etc…

Challenging for predicting completely unseen real 
large scenes
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Volume Density Fields thresholding 𝜎 > 𝑐

NeRF + Signed Distance Function (SDF)
Learn SDF field as a scene representation

Surface not satisfactory

No explicit definition of surface

NeRF’s
Volume 
Density

Surface Extraction from NeRF
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𝑓 𝑥 = &−𝑑 𝑥, 𝜕Ω 𝑥 ∈ Ω
𝑑 𝑥, 𝜕Ω 𝑥 ∉ Ω

Signed Distance Function

𝑆 = 𝑥 ∈ 𝑅" 𝑓 𝑥 = 0}

Surface

Zero-level set

Minimum distance to the closest surface with sign (positive, negative).

𝑥, 𝑑 ∈ 𝑅# 𝒄𝜽, 𝒔𝜽 ∈ 𝑹𝟒

MLP

NeRFs with Signed Distance Function (SDF)

Volume Density -> SDF
NeuS, VolSDF, Neuralangelo, etc.
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- Reconstruct from unseen objects or scene
- Few-Shot (3-5 images)

MLP

Scene generalizability

Cannot share representations 
across different scenes or views Dense-view Reconstruction

(~100 images)
Sparse-view Reconstruction

Viewpoints Generalizability

Generalizable Surface Reconstruction
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Unfavorable View SetFavorable View Set

Only consider Predefined Optimal Camera View Set as inputs both in train and test time.
Optimal Camera view is defined by view-selection score [1] or nearest neighbors.

Train Test Test

[1]: MVSNet: Depth Inference for Unstructured Multi-view Stereo

Assumption: Optimal View Set Assumption
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Best View Set
(common Protocol) Unfavorable View Set

Estimated Depth Estimated Depth

Test with VolRecon [CVPR’23] shows that unfavorable pair outputs degenerate solution.

Not View-Combination 
Generalizable

Observation: Degenerate Solution for Unfavorable Sets
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• In practice, we can’t always guarantee Optimal View Sets

• View Sets in train time ≠ View Sets in inference time

Train Test

View-Combination Generalizability

Generalizability:  Scene + Viewpoints + View Combination

Rethinking Inference Scenario
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Challenging View SetBest View Set

Bridging the Gap

Inter-image relationship

Utilizing inter-image relationship as robust prior

Inter-image relationship

Same Scene
Different Views

Modeling Correlation between input Views
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𝑉 = {𝑉!, 𝑉", … , 𝑉#}

N-1 pairs

…

…

…

𝑉$ = 𝑉 − {𝑉%}𝑉% …

N-1 cross-view features

128 x H x W

128 x H x W

Extract feature considering the relationship across the images

Reference Sources

Cross View
Matching

Transformer

Pair-wise Cross Transformer
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3D
U-Net

Global
Cross-view

Features

Building Correlation Volume from cross-view features.

1×𝑑×ℎ×𝑤

W

: Differentiable WarpingW

⋅

⋅
Correlation 

Volume

: Vector Dot Product

Cross-view Features

𝑐×𝑑×ℎ×𝑤

For all depths hypothesis 
𝑑

Learn global correlation among all source images.

Trilinear 
Interpolation

𝒇𝒈

Cross View
Matching

Transformer

Global Correlation Frustums
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𝑙 = 2
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𝑵 Correlation Frustum

Reconstruction
Transformer

Geometry-aware
Similarity Encoding

SDF

Volume 
Rendering

Blending Color∗

FPN

Unfavorable set of 𝑁 
images 

⋯ ⋯

Dept
h

W : Differentiable Warping

: Concatenation

Cross-view features

𝑙 = 1

𝑙 = 0

𝑙 = 1

𝑙 = 2

: 3D U-Net

Overall Pipeline of UFORecon
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Results

53



VolRecon
(CD: 1.56)

ReTR
(1.44)

Ours
(1.31)

VolRecon
(2.89)

ReTR
(2.54)

Ours
(1.51)

VolRecon
(4.26)

ReTR
(3.78)

Ours
(1.65)

Favorable Set Unfavorable SetNormal Set
Results
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Radiance Fields with Generative Models
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Generating NeRFs from 2D Generative Models

DreamFusion [Poole et al. arXiv 2022]
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Enabling specific edits

https://zju3dv.github.io/sine/
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Semantic Editing

ClipNeRF Wang et al. CVPR 2022, Feature Field Distillation - Kobayashi et al. NeurIPS 2022 … Many more papers here!!
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Manipulating captured scenes

Artistic Radiance Fields Zhang et al. ECCV 2022
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Radiance Fields in 2024

https://github.com/MrNeRF/awesome-3D-gaussian-splatting

NeRF showed various possibilities and potentials but rendering is SLOW..

Next Representations?

Check out yourself!

Short Video

Long Video
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https://www.youtube.com/watch?v=HVv_IQKlafQ
https://www.youtube.com/watch?v=VkIJbpdTujE


Thank you
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yjna2907@kaist.ac.kr


