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Background: Novel View Synthesis
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Neural Radiance Fields eccv 2020 oral - Best Paper Honorable Mention

Input: images from various 1 Output: images from novel

camera viewpoints camera viewpoints

Examples (synthesized from novel views)

Videos: https://www.youtube.com/watch?v=JuH79E8rdKc&t=191s




Implicit Representation

f () is a parameterized 2D/3D scalar field

x: coordinate

flo) = llx*ll -1

* |

Neural Network
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Represent 3D Scene as Continuous functions

Signed Distance Function (SDF) or Occupancy Fields
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NeRF 3D Representations

Neural Network as a continuous shape representaiton.
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How do we learn 3D representations from 2D images? [\ )
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https://www.matthewtancik.com/nerf



Method Overview

Cast Rays => Estimate 3D Representations => Volume Rendering => 2D Photometric Loss

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
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Neural Volumetric Rendering
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Rendering

computing color along rays
through 3D space

e .

What color is this pixel?
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Cameras and rays

* We need the mathematical mapping
from (camera, pixel) — ray

* Then can abstract underlying problem

as learning the function ray — color
(the “plenoptic function”)

Camera




Coordinate frames + Transforms: world-to-camera

Orientation + Location of How the camera maps a
the camera in the World point in 3D to image
Extrinsics (R, T) Intrinsics (K)
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World coordinates Camera coordinates Image coordinates

Figure credit: Peter Hedman
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Calculating points along a ray
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\ Scalar t controls distance

along the ray
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Volumetric

continuous, differentiable
rendering model without
concrete ray/surface intersections

A
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Surface vs. volume rendering

Ray

Camera Scene
representation

Want to know how ray interacts with scene
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Surface vs. volume rendering

Ray

Camera Scene
representation

Surface rendering — loop over geometry, check for ray hits
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Surface vs. volume rendering

Ray

Camera Scene
representation

Volume rendering — loop over ray points, query geometry
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Volumetric formulation for NeRF

Ray r(f) = 0 + 1d

Camera If a ray traveling through the scene hits
a particle at distance f along the ray,
we return its color ¢(7)

17
https://sites.google.com/berkeley.edu/nerf-tutorial/home



What does it mean for a ray to “hit” the volume?

This notion is probabilistic: chance that ray hits
a particle in a small interval around t is o(%) dt.

o is called the “volume density”
/ A
/ A\
[ 19))
| ¢/
N 4
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Probabilistic interpretation

P[no hits before t] = T(7)

To determine if t is the first hit along the ray,

need to know T(?): the probability that the

ray makes it through the volume up to .

1(¢) is called “transmittance” [/

/| A
DRINI
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https://sites.google.com/berkeley.edu/nerf-tutorial/home




PDF for ray termination

P[no hits before 1] = T(

Finally, we can write the probability that a ray terminates at ¢ as a function of only sigma

P[first hit at 1] = P[no hit before t] X P[hit at ¢]

Plhit att] = o(?) dt

= T(H)o(t)dt
1
= exp <—[ o(s) a's> o(t)dt |
Io 2R\
[\ 9 ‘,;:,’s:‘ ||
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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Expected value of color along ray

This means the expected color returned by the ray will be

J | T(t)o(t)c(r) dt

0

Note the nested integral!

21



KAIST

Approximating the nested integral

4

We use quadrature to approximate the nested integral,

1N
splitting the ray up into n segments with endpoints {#,, %, ..., .} [/ 5>))
Wlth |ength5 5i = ti-l-l - ti \\ ////22

https://sites.google.com/berkeley.edu/nerf-tutorial/home
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Approximating the nested integral

We assume volume density and N
color are roughly constant within ( ) )
each interval R

https://sites.google.com/berkeley.edu/nerf-tutorial/home



Summary: volume rendering integral estimate

Rendering model for ray r(¢) = o + td:

n Ray
C~ Z Tiaici\
i=1 colors
weights
How much light is blocked earlier along ray: 3D volume

i—1
ri=110-a)
Lo P

How much light is contributed by ray segment i:

a; = 1 — exp(—0;5) -

N 4

KAIST 24

Detailed derivatioT QA



https://vimeo.com/766415501

Volume rendering is trivially differentiable

Renderina n:odel foua%r f)=o0+1td:

n
- differentiable w.r.t.c,c
e~ ) Tag;, TN
~ =1

colors
weights

Ray

How much light is blocked earlier along ray:

i—1
T,=[]a-o
j=1

How much light is contributed by ray segment i:

3D volume

‘Zamera

& = 1 - exp(~o5) ~

/) ) \\
O\ \\
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Mildenhall et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020 2



Novel View Synthesis & View Dependency

KAIST 21

https://www.matthewtancik.com/nerf




Resources

ECCV'22 Tutorial: Neural
Volumetric Rendering for
Computer Vision

Neural Radiance Fields (NeRFs), presented in ECCV 2020 just two years ago demonstrated exciting potential for photo-realistic

and immersive 3D scene reconstruction from a set of calibrated images. It was followed by a surge of works that explore the

potential of using Neural Volumetric Rendering as a technique for enabling many excitir T o I

problems in Computer Vision, Graphics, Robotics and more. In this tutorial, we will pres s - l

Volumetric Rendering from the first principles, including its relation to the history of ima @ Radlance Fle dS Xomoo
core components and their derivations, common practices, future challenges, and hanc

half-day tutorial is not to present a series of talks on recent papers in this area, but to p

novice and intermediate researchers to deeply understand the material by abstracting ¢ .

Neural Volumetric Rendering.

PLATFORMS

3 3 : ] SuperSplat adds new Features
6 rgan izers lrrea;llx GaUSSIan Splattlng PlayCanvas's Super Splat, the online
Plugll‘l for After Effects editor and viewer for Gaussian...

Adobe After Effects has welcomed a new addition to its suite G a u S S I a n s . R s
—Radiance Fields, via the newly introduced irrealix plugin. S p I att | n g
—

Michael Rubloff ~ Apr 23,2024

After Effects plugin ” RefFusion: Inpainting with 3DGS
NVIDIA's recently announced
RefFusion, however, takes a...

Michael Rubloff ~ Apr19, 2024

5

Matt Tancik Ben Mildenhall Pratul Srinivasan Jon Barron Angjoo Kanazawa

UC Berkeley Google Google Google UC Berkeley

KAIST
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Resources
] cocs [passing | pypi package |1.0:3 | C) Core Tests. |passing | License Apache 2.0)

nerfstudto

A collaboration friendly studio for NeRFs

[ Documentationj[ ﬁi Viewer J[ () Colab J

0| [@ amvus | [ B bocumenTaTion L (nerfstudio

> RESUME TRAINING

& LOAD PATH

1080 1920 50
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Limitations /
Applications
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NeRF’s Limitations and Applications

1. Slow rendering / optimization time => Fast Rendering
2. Assume static scene => Dynamic NeRF
3. Per-Scene Optimization => Generalizable Methods

4. Not a mesh => Surface Reconstruciton

List goes on and on...!

NeRF has been cited 6800+ -
KAIST 31




Fast Optimization / Rendering : Plenoxel [CVPR’22]

Training
Image

a) Sparse Voxel Grid

KAIST
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b) Trilinear Interpolation

Predicted
o, Al Color

-l

Ray Distance

c¢) Volumetric Rendering

minimize L, ccon + ALTv
{0, @}

d) Optimization
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Fast Optimization / Rendering : Plenoxel [CVPR’22]

KAIST
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The world we capture is usually Dynamic / Deformable

KAIST




Simple baseline for adding time

(x,y,2,0,0,t) 9 | P (9Db0)
Fq

Hard without simultaneous multiple view! F
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Through a deformation

network

Deformation Network NeRF
! ! !
(x,¥,2) (x,y,2z) (r,g9,b,0)
Camera Coordinate Canonical
Frame Coordinate Frame

Still very under constrained

36

D-NeRF [Pumarola et al. CVPR 2021], Nerfies [Park et al. ICCV 2021], HyperNeRF, NR-NeRF, etc.



D-NeRF: Neural Radiance Fields for Dynamic Scenes

(x+AX,y +AY,2+02,6,9) _’DDDD_'(RG,B,U)“.

(e2t) = [ (o, 5,29)

Deformed Scene

KAIST

https://www.albertpumarola.com/research/D-NeRF



https://www.albertpumarola.com/research/D-NeRF

Dynamic NeRFs

RoDynRF, Liu et al. CVPR’23 DyniBaR, Li et al. CVPR'23

KAIST R

https://www.albertpumarola.com/research/D-NeRF



https://www.albertpumarola.com/research/D-NeRF

NeRF requires Per-Scene Optimization
Generalizable Methods with Prior Knowledge

39



NeRF requires Per-Scene Optimization with Dense Views

1. Scene-specific representation

Not Generalizable

Cannot share representations across
SCEeNnes or views




Few-Shot / One-Shot NeRF

* One-Shot NeRF (pixelNeRF [Yu et al. CVPR’21])

N /

o
\\\'\\\\\\\\\\
( &
&
¥
C—1

CNN Encoder Target View

PixelNeRF NeRF

Few-shot (3~10 views): pixelNeRF, IBRNet [Wang et al.
CVPR’21], MVSNeRF [Chen et al. ICCV’21], etc...

Challenging for predicting completely unseen
large scenes

%

QA
Q Q\\\“
(‘/' ./II,J VVIIJAI
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41



Surface Extraction from NeRF

NeRF’s
Volume
Density

KAIST

Volume Density Fields thresholding o > ¢
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g=1 g = 10 F = 9l &= 100 g = il

» No explicit definition of surface

P Surface not satisfactory

NeRF + Signed Distance Function (SDF)
Learn SDF field as a scene representation
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NeRFs with Sighed Distance Function (SDF)

Minimum distance to the closest surface with sign (positive, negative).

Signed Distance Function

_[=d(x,00) xe€Q
f(x) = {d(x, 00) xgQ

Surface

S ={x € R°|f(x) = 0}

Zero-level set

Our geometry
il )
(foreground only)

Our rendering
d &
(foreground only)

Volume Density -> SDF

(x,d) ER® HHUDUHH (cofsq) € R* [’




UFORecon: Generalizable Sparse-View
Surface Reconstruction from Arbitrary and
UnFavOrable Sets

CVPR 2024

Youngju Na, Woo Jae Kim, Kyu Beom Han, Suhyeon Ha, Sung-eui Yoon

KAIST
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Generalizable Surface Reconstruction

- Reconstruct from unseen objects or scene
- Few-Shot (3-5 images)

MLP

Cannot share representations

across different scenes or views . . . .
Dense-view Reconstruction Sparse-view Reconstruction

(~100 images)

Scene generalizability Viewpoints Generalizability

KAIST

Y
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Assumption: Optimal View Set Assumption

Only consider Predefined Optimal Camera View Set as inputs both in train and test time.
Optimal Camera view is defined by view-selection score [1] or nearest neighbors.

KAIST

&' g
‘a4

Train Test

- Favorable View Set

[1]: MVSNet: Depth Inference for Unstructured Multi-view Stereo

% Test

S

C]:] Unfavorable View Set




Observation: Degenerate Solution for Unfavorable Sets

Test with VolRecon [CVPR’23] shows that unfavorable pair outputs degenerate solution.

KAIST

- Best View Set i
(common Protocol) Unfavorable View Set

Estimated Depth

i inati Esti Depth
Not View-Combination stimated Dept

Generalizable



Rethinking Inference Scenario

* In practice, we can’t always guarantee Optimal View Sets

* View Sets in train time # View Sets in inference time

Test ‘ ‘

View-Combination Generalizability

Generalizability: Scene + Viewpoints + View Combination

KAIST 48




Modeling Correlation between input Views

= 1

Bridging the Gap

\
|
| Same Scene
| Different Views

>4
\ Best View Set | \ Challenging View Set |
| |
Inter-image relationship Inter-image relationship
[ ;H "\“\ )1
Utilizing inter-image relationship as robust prior N4

KAIST 49




Pair-wise Cross Transformer

Extract feature considering the relationship across the images

N-1 pairs

=

v , \ 128 x Hx W
@ ‘ 1 Vi V=V —{V} |:> Cross View

Matching -
N source views Transformer .
V ) {VO, Vl’ ."’VN} 1 ‘ 1 h x ©
\ / 128 x Hx W

Reference Sources
N-1 cross-view features

KAIST 50




Global Correlation Frustums

Building Correlation Volume from cross-view features.

Learn global correlation among all source images.

Cross-view Features

Correlation|
Volume

Cross View
Matching
Transformer

=

= P -

N source views

\ For all depths hypothesis/

“u

@ : Differentiable Warping
Q : Vector Dot Product

KAIST

1xXdXxXhxXw

=
U-Net
cXdXhXw
Global
Cross-view
Features
= fy
TriIinea!' ) N
Interpolation [/
D))
N\ J /)
AN V4
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Overall Pipeline of UFORecon

o
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Results

Unfavorable Source Views

KAIST

Volrecon

Results

Ours

Ours (Random Set Training)
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Unfavorable Set

Ours
1

ReTR
(3.78)

VolRecon

65)

(4.26)

Normal Set

Ours
(1

ReTR
(2.54)

VolRecon

51)

(2.89)

Y L ~N
P Sl

L

.

Results

Favorable Set

Ours

ReTR

VolRecon

31)

1

(1.44)

(CD: 1.56)
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Radiance Fields with Generative Models
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Generating NeRFs from 2D Generative Models
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Enabling specific edits

What we can do with SINE ?

* —— Moving Hands ——p &
L

Replacing Texture

2 -o-a

Stretching Back

‘ : ‘

Addmg Cook|e Tlres “Silver Round Table”

Source View Single-View Edited View Source View Text-prompt Edited View N '\\
2D Editing \\\Tw ‘||
/(// J/
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https://zju3dv.github.io/sine/



Semantic Editing

ClipNeRF Wang et al. CVPR 2022, Feature Field Distillation - Kobayashi et al. NeurlPS 2022 ... Many more papers here!!



Manlpulatlng captured scenes




Radiance Fields in 2024

NeRF showed various possibilities and potentials but rendering is SLOW..

Next Representations?

NeRF Gaussian Splatting

@ N (’6\5

Check out yourself!  https://github.com/MrNeRF/awesome-3D-gaussian-splatting

Short Video

Long Video
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https://www.youtube.com/watch?v=HVv_IQKlafQ
https://www.youtube.com/watch?v=VkIJbpdTujE

Thank you

yjna2907 @kaist.ac.kr
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