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• Conditional Generation
• Inpainting
• Outpainting
• Image to Image Generation
• Text to Image Generation 

A street sign that 
reads “Latent Diffusion”

A zoombie in the style 
of Picasso

An image of an animal 
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Diffusion Model
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• A 3D diffusion process can 
be used to generate an 
object from point clouds, 
meshes, or latent spaces.
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Diffusion Model

2021~
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• Extend the diffusion process domain to 4D, including space and time.
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Background
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Diffusion Process

• Diffusion models are inspired by non-equilibrium thermodynamics.
• For a small fraction of the time, it is difficult to determine whether 

particles are moving in the direction of mixing or in the opposite 
direction.
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• If we look at the movement of a single molecule on a very short time scale, 
it follows a Gaussian distribution. 
• Since the direction of mixing and the opposite direction are the same in a 

very short time, the opposite direction also follows a Gaussian distribution. 

Diffusion Process
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• Just as we viewed the molecule's motion as a Gaussian-distributed 
noise, we add a Gaussian-distributed noise to the pixel.

Diffusion Process

Molecule Noise 
movement

Movement

Pixel Noise Pixel
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Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)

Denoising Diffusion Models
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Denoising diffusion models consist of two processes:

• Forward diffusion process that gradually adds noise to input

• Reverse denoising process that learns to generate data by denoising

Tutorial on Denoising Diffusion-based Generative Modeling: Foundations and Applications, CVPR 2022



Denoising Diffusion Models : Training
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Tutorial on Denoising Diffusion-based Generative Modeling: Foundations and Applications, CVPR 2022



T-10

Denoising Diffusion Models : Sampling
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Tutorial on Denoising Diffusion-based Generative Modeling: Foundations and Applications, CVPR 2022



Forward Diffusion Process
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The formal definition of the forward process in T steps:

Tutorial on Denoising Diffusion-based Generative Modeling: Foundations and Applications, CVPR 2022

Markov
Property Diffusion Kernel←



Reverse Denoising Process
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Formal definition of forward and reverse processes in T steps:

Tutorial on Denoising Diffusion-based Generative Modeling: Foundations and Applications, CVPR 2022

Model

❓



Results

Diffusion
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Diffusion Model

• Pros
• Intuitive Understanding: Diffusion in pixel space directly affects 

image pixels, making the changes visually easy to understand.

• Cons
• Computational Cost
: The larger the number of pixels, the greater the computation.
• Memory Usage
: Handling high-resolution images requires substantial memory.
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Latent Diffusion Model

• Latent spaces typically have lower dimensions than pixel spaces, 
resulting in lower computational costs.
• Pixel Space >> Latent Space

Latent Noise Latent

Pixel Noise Pixel
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Latent Diffusion Model

• Runs the diffusion process in the latent space instead of pixel space
• 2 Stage Training : Auto-Encoder + Latent Diffusion
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• Autoencoders can be particularly valuable as they enable a compressed 
yet remaining semantic and conceptual meaning of an image.

Encoder Decoder

Compressed Data

Latent Diffusion Model
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Latent Diffusion Model

• Runs the diffusion process in the latent space instead of pixel space
• 2 Stage Training : Auto-Encoder + Latent Diffusion

23

feature



Results

D
ec
o
d
er

Diffusion

24



Our Goal
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Diffusion Probabilistic Models for Scene-Scale 3D 
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Our Goal
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• Firstly apply the diffusion 
model at the 3D scene level 
not at the 3D object level.
• Show meaningful results. 

Jumin Lee, Woobin Im, Sebin Lee, Sung-Eui Yoon, 
Diffusion Probabilistic Models for Scene-Scale 3D 

Categorical Data, IPIU 2023 (grand prize)

3D Scene-level Generation
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• Enhance generation power.
• Extend our model with several 

applications ( inpainting, 
outpainting, semantic scene 
completion refinement ), as in 
the image domain.

Jumin Lee*, Sebin Lee*, Changho Jo, Woobin Im, Ju-
Hyeong Seon, Sung-Eui Yoon, SemCity: Semantic Scene 

Generation with Triplane Diffusion, CVPR 2024

3D Scene-level Generation
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SSD: Diffusion Probabilistic Models 
for Scene-Scale 3D Categorical Data

CS380

Jumin Lee, Woobin Im, Sebin Lee, Sung-Eui Yoon, Diffusion Probabilistic Models for Scene-Scale 3D Categorical Data, IPIU 2023
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• Diffusion process on 3D latent space.

Segmentation Map

Reverse Process

Stage 2: Latent Diffusion Forward Process

Segmentation Map
Stage 1: VQ-VAE
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Method
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• Show quite good results on synthetic datasets. 

• Limitation
• Suffers heavy computation burden.
• Have to represent redundant empty region like sky. 
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Results
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• Scene-level dataset
• High resolution.
• A lots of empty region (e.g., sky).
• Sensor limitations.

e.g., occlusions, range constraints.
• Different size of objects.
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Challenges
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SemCity: Semantic Scene Generation 
with Triplane Diffusion

CS380

Jumin Lee, Sebin Lee, Changho Jo, Woobin Im, Ju-Hyeong Seon and Sung-Eui Yoon, SemCity: Semantic Scene Generation with Triplane Diffusion, 
CVPR 2024
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• Decompose a scene into 3 orthogonal 2D planes.
• Utilized in 3D object reconstruction.

Ideas
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• Leverage the triplane representation for the generation of real 
outdoor scenes.
• Efficient and expressive.
• Better focus on objects rather than empty region. 
• Spatial awareness representation helps capture semantic and geometric 

complexity within a scene.

Scene generation
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avg pool

Triplane

…
Triplane Triplane

(b) Triplane diffusion for outdoor scene generation

(a) Triplane learning for efficient outdoor scene compression

EncoderScene Decoder Class
probabilities

Scene 
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Diffusion
…
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Method : Training
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…
Triplane Triplane

Triplane diffusion for outdoor scene generation

Denoising
Decoder Scene 

Method : Sampling 

37



CarlaSC

SS
D

 
O

ur
s

SemanticKITTI

motorcycle
bicyclist

parking
bicycle
person

sidewalk
truck
terrain

road
vehicle
trunk

ground
vegetation
fence

building
motorcyclist
traffic-sign

empty (air)

car
pole

Generation Results

38



DiversityFidelityDiversity & Fidelity

Quantitative results of semantic scene generation

Generation Results
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SSD SemCity

• Overall contours : road, building
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SSD SemCity

• Overall contours : road, building
• Finer structures : trunk and leave, traffic light and pole, car
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Scene inpainting

• We extend our model to refine the 
predictions of SSC models.

SSCSensor 
observation

Semantic scene completion refinement

SSC refinement(Ours)

• We propose to manipulate triplane features during our diffusion process for 
scene outpainting and inpainting.
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Completeness
Semantic segmentation 
of completed scene

Quantitative results of semantic scene completion refinement

Inferred Scene

Semantic Scene Completion Refinement
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256 x 256 x 32 → 1792 x 2816 x 32 Original Overlapping Outpaint

Scene Outpainting
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Original Overlapping Outpaint

Scene Outpainting
256 x 256 x 32 → 1792 x 2816 x 32
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Scene Outpainting
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Add object : car

Remove object : bicyclelist

Add object : traffic sign

Modify scene

Remove object : car

Modify scene

Add object : car

Add object : truck

Modify object : truck → car Modify scene

Add object : car

Modify object : car → car

Given 
scenes

inpaintScene Inpainting
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Generated scene Generated image Generated scene Generated image

• Exploit ControlNet to generate RGB images by conditioning semantic 
and depth maps rendered from our generated scene.

Image to Image Generation 
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Conclusion
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Conclusion
• Open Source : https://github.com/zoomin-lee
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• Firstly utilized the diffusion model on a 3D outdoor dataset. 

• Enhancing outdoor scenes generation through a triplane 
representation.

• By manipulating triplane, our model can both inpaint and outpaint
scenes.

• Our model can refine the outcomes of existing semantic scene 
completion model by utilizing learned 3D scene prior.

Diffusion Model for Scene-level Generation
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Thank you.

CS380
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