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2D Domain

Diffusion Model for Conditional Generation
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* Conditional Generation
* |npainting
* Qutpainting
* Image to Image Generation
* Text to Image Generation




Diffusion Model

2021~
3D Diffusion

e A 3D diffusion process can
be used to generate an
object from point clouds,

meshes, or latent spaces. 5021 PVD
2021 2023 2023 2023 2023

Text2Mesh  Dreamfusion Magic3D  ProlificDreamer MVdream 7



Diffusion Model

2021~ 2023~
3D Diffusion 4D Diffusion

* Extend the diffusion process domain to 4D, including space and time.

"disgust high smile" "from neutral face to bareteeth"

2023 2023 2023
4D Facial Expression Align Your Gaussian 4DGen
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Diffusion Process

e Diffusion models are inspired by non-equilibrium thermodynamics.

* For a small fraction of the time, it is difficult to determine whether

particles are moving in the direction of mixing or in the opposite
direction.
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Diffusion Process
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* If we look at the movement of a single molecule on a very short time scale,
it follows a Gaussian distribution.

* Since the direction of mixing and the opposite direction are the samein a
very short time, the opposite direction also follows a Gaussian distribution.
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Diffusion Process

e Just as we viewed the molecule's motion as a Gaussian-distributed
noise, we add a Gaussian-distributed noise to the pixel.

N ®

Molecule Noise Movement
movement
o -+ - =

Pixel Noise Pixel
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Tutorial on Denoising Diffusion-based Generative Modeling: Foundations and Applications, CVPR 2022

Denoising Diffusion Models

Denoising diffusion models consist of two processes:
Forward diffusion process that gradually adds noise to input

Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)
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Tutorial on Denoising Diffusion-based Generative Modeling: Foundations and Applications, CVPR 2022

Denoising Diffusion Models : Training

Time Representatlon

b e i =

Fully-connected
Layers

o ep(xe 1)

Algorithm 1 Training

6:

1
g
3:
4
5

: repeat

X0 ~ q(Xo)
t ~ Uniform({1,...,T})
e ~ N(0,I)

Take gradient descent step on

Vo ||€ —zo(varxo + V1 — ace, t)||2

until converged
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Tutorial on Denoising Diffusion-based Generative Modeling: Foundations and Applications, CVPR 2022

Denoising Diffusion Models : Sampling
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> €p(X,1)
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Time Representatlon

Fully-connected
Layers

Algorithm 2 Sampling

. XT NN(O,I)
cfort=1T,...,1do
z ~N(0,I)ift > 1,elsez =10

1
2
C
4: x4_1 = \/% (xt - %zo(xt,t)) + o1z
5
6

: end for
: return xg 15




Tutorial on Denoising Diffusion-based Generative Modeling: Foundations and Applications, CVPR 2022

Forward Diffusion Process

The formal definition of the forward process in T steps:

q(xe|xt—1) = N(x¢; /1 — Bexi—1, Be])
Markov C
Property Q($t|330) = N(xt; ATHAE (1 = C_Yt)I) € Diffusion Kernel

xt =+var xg+ (1 —ay) e  where € ~N(0,1)

oy :=1— B and &y == szo g 16



Tutorial on Denoising Diffusion-based Generative Modeling: Foundations and Applications, CVPR 2022

Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:
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Diffusion Model

* Pros

* |ntuitive Understanding: Diffusion in pixel space directly affects
image pixels, making the changes visually easy to understand.

* Cons
 Computational Cost
: The larger the number of pixels, the greater the computation.
* Memory Usage
: Handling high-resolution images requires substantial memory.
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Latent Diffusion Model

* Latent spaces typically have lower dimensions than pixel spaces,
resulting in lower computational costs.

* Pixel Space >> Latent Space

o -+ -

Pixel Noise Pixel
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Latent Noise Latent




Latent Diffusion Model

* Runs the diffusion process in the latent space instead of pixel space

e 2 Stage Training : Auto-Encoder + Latent Diffusion

Vs R Latent Space )
a . Diffusion Process | )I
( Denoising U-Net €g N2
D |
T

gixel Spac9 ( )

A =

denoising step crossattention  switch  skip connection concat



Latent Diffusion Model

e Autoencoders can be particularly valuable as they enable a compressed
yet remaining semantic and conceptual meaning of an image.

Encoder Decoder

v
Compressed Data

1 n
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Latent Diffusion Model

* Runs the diffusion process in the latent space instead of pixel space

e 2 Stage Training : Auto-Encoder + Latent Diffusion

> €g(x¢, )

s e o i

Time Representatlon

Fully-connected
Layers
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I road Isidewalk ' parking  lground building | traffic-sign lcar
I truck bicycle  Imotorcycle lvehicle I vegetation I motorcyclist pole
terrain Iperson  Ibicyclist  ltrunk | fence empty (air)

Our Goal

Diffusion
Model ::>

Building Vegetation Pedestrian Vehicle

(a) Object-scale generation

(c) Scene outpainting

Sensor
observation

Building Other Pedestrian m

Ground Sidewalk

(b) Scene-scale generation (Ours) (b) Semantic scene completion refinement (d) Scene inpintin
Jumin Lee, Woobin Im, Sebin Lee, Sung-Eui Yoon, Jumin Lee*, Sebin Lee*, Changho Jo, Woobin Im, Ju-
Diffusion Probabilistic Models for Scene-Scale 3D Hyeong Seon, Sung-Eui Yoon, SemCity: Semantic Scene

Categorical Data, IPIU 2023 (grand prize) Generation with Triplane Diffusion, CVPR 2024 26



3D Scene-level Generation

* Firstly apply the diffusion
~ model at the 3D scene level
Building Vegetation Pedestrian Vehicle nOt at the 3D ObjeCt IeVEL

(a) Object-scale generation

Diffusion
®

* Show meaningful results.

Diffusion
Model ::>

Building Other Pedestrian m

Ground Sidewalk

(b) Scene-scale generation (Ours)

Jumin Lee, Woobin Im, Sebin Lee, Sung-Eui Yoon,
Diffusion Probabilistic Models for Scene-Scale 3D
Categorical Data, IPIU 2023 (grand prize)
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I road Isidewalk ' parking  lground building | traffic-sign lcar
I truck bicycle  Imotorcycle lvehicle I vegetation I motorcyclist pole
terrain Iperson  Ibicyclist  ltrunk | fence empty (air)

3D Scene-level Generation

* Enhance generation power.

* Extend our model with several
applications ( inpainting,
outpainting, semantic scene
completion refinement ), as in
the image domain.

(c) Scene outpainting
Sensor

(b) Semantic scene completion refinement (d) Scene inpainting

Jumin Lee*, Sebin Lee*, Changho Jo, Woobin Im, Ju-
Hyeong Seon, Sung-Eui Yoon, SemCity: Semantic Scene
Generation with Triplane Diffusion, CVPR 2024 28
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SSD: Diffusion Probabilistic Models
for Scene-Scale 3D Categorical Data

Jumin Lee, Woobin Im, Sebin Lee, Sung-Eui Yoon, Diffusion Probabilistic Models for Scene-Scale 3D Categorical Data, IPIU 2023
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jj building | fence Jj other pedestrian
Il pole | road § ground sidewalk
empty (air) [| vehicle  [] vegetation

Method

* Diffusion process on 3D latent space.
Stage 1: VQ-VAE

Segmentation Map Segmentation Map
L ‘!‘\1\[ y // * \[\{
b VQ() N2l 3N ‘
= 2]1[3 |1 T
‘ 2| [3]N “
X Z Zq X
Stage 2: Latent Diffusion Forward Process
7 7 7 7 4 A ———————————————————————— \‘/ Z
7 — Z // 7| A
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Reverse Process 30
< Scene-scale Diffusion(SSD) >



jj building | fence Jj other pedestrian
Il pole | road § ground sidewalk
empty (air) [| vehicle  [] vegetation

Results

* Show quite good results on synthetic datasets.

* Limitation
 Suffers heavy computation burden.
* Have to represent redundant empty region like sky.
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I road
I truck
terrain

Challenges

Isidewalk ' parking  lground building | traffic-sign lcar
bicycle  Imotorcycle lvehicle I vegetation I motorcyclist pole

Iperson  Ibicyclist  ltrunk | fence empty (air)

* Scene-level dataset
* High resolution.
* A lots of empty region (e.g., sky).
e Sensor limitations.

e.g., occlusions, range constraints.
* Different size of objects.

Voxels
Hx W x Z x #Classes

32
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SemCity: Semantic Scene Generation
with Triplane Diffusion

Jumin Lee, Sebin Lee, Changho Jo, Woobin Im, Ju-Hyeong Seon and Sung-Eui Yoon, SemCity: Semantic Scene Generation with Triplane Diffusion,
CVPR 2024
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Ideas

 Decompose a scene into 3 orthogonal 2D planes.

 Utilized in 3D object reconstruction.

Ik i T T T T
I 1 i - | e |
TN Bl | ::E‘ el @
e T i::;f;_i;’ E gy e
e :
Voxel Bird’s-Eye View Triplane
Expressive Efficient Expressive & Efficient
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parking  lground building | traffic-sign lcar
Imotorcycle Dvehicle I vegetation I motorcyclist pole
Ibicyclist  ltrunk I fence empty (air) lroad

terrain Isidewalk | bicycle I person I truck

Ideas

* Leverage the triplane representation for the generation of real
outdoor scenes.
 Efficient and expressive.
* Better focus on objects rather than empty region.

* Spatial awareness representation helps capture semantic and geometric
complexity within a scene.

Scene generation 35



Method : Training

Scene X

decode

ge

Scene X

axis-wise

Y — 5 9 OB w

Encoder Triplane h Decoder Class
probabilities

(a) Triplane learning for efficient outdoor scene compression

Diffusion ¢(h;|h;_,)

N decode

ge

—» Dy »,,» Dy —>
Triplane hT Denoising Triplane ho

(b) Triplane diffusion for outdoor scene generation
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Method : Sampling

—» Dy »,,» Dy —» '}@)ﬁ@* 90 —»

Denoising
Triplane hy Triplane h, Decoder c(p) Scenex

Triplane diffusion for outdoor scene generation




I road Isidewalk ' parking  lground building | traffic-sign lcar
I truck !bicycle  Imotorcycle lvehicle [l vegetation Imotorcyclist pole
terrain Iperson  Ibicyclist  ltrunk | fence empty (air)

Generation Results

CarlaSC

g



Generation Results

Diversity & Fidelity Fidelity Diversity
Model FID | KID || |IST Prect| |Rec T
SemanticKITTI [6]
SSD [24] 112.82  0.12 2.23  0.01 0.08
SemCity (Ours) 56.55 0.04 3.25 0.39 0.32
CarlaSC [50]
SSD [24] 87.39 0.09 244 0.14 0.07

SemCity (Ours)  40.63 0.02  3.51 0.31 0.09
Quantitative results of semantic scene generation
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I road Isidewalk ' parking  lground building | traffic-sign lcar
I truck bicycle  Imotorcycle lvehicle I vegetation I motorcyclist pole
terrain Iperson  Ibicyclist  ltrunk | fence empty (air)

Generation Results : Comparison
SSD SemCity

e Overall contours : road, building

40



I road Isidewalk ' parking  lground building | traffic-sign lcar
I truck bicycle  Imotorcycle lvehicle I vegetation I motorcyclist pole
terrain Iperson  Ibicyclist  ltrunk | fence empty (air)

Generation Results : Comparison

SSD

e Overall contours : road, building
* Finer structures : trunk and leave, traffic light and pole, car

41



I road Isidewalk ' parking  lground building | traffic-sign lcar

I truck bicycle  Imotorcycle lvehicle I vegetation I motorcyclist pole
terrain Iperson  Ibicyclist  ltrunk | fence empty (air)
[ ] [ ] [ ]
Conditional Generation

_ Sensor SSC SSC refinement(Ours)
* We extend our model to refine the observation

predictions of SSC models.

Topview SES

Scene outpainting Scene inpainting

* We propose to manipulate triplane features during our diffusion process for
scene outpainting and inpainting. 42



I road Isidewalk ' parking  lground building | traffic-sign lcar
I truck bicycle  Imotorcycle lvehicle I vegetation I motorcyclist pole
terrain Iperson  Ibicyclist  ltrunk | fence empty (air)

Semantic Scene Completion Refinement (-, *) : loU, mloU
| | SSA-SC |

MonoScene

L/

OccDepth

SSC

37.22%)

(33.95%, 12.37%)

Ours

GT



Semantic Scene Completion Refinement

Completeness

Semantic segmentation

of completed scene

SSC Input Method [oU 1| ImloU 7
MonoScene [9] 37.12 11.50
MonoScene + Ours  50.44 17.08
RGB
OccDepth [32)] 41.60 12.84
OccDepth + Ours 50.20 16.79
SSA-SC [54] 58.25 24.54
. SSA-SC + Ours 60.71 25.58
Point Cloud
SCPNet [52] 50.24 37.55
SCPNet + Ours 59.25 38.19

e o/ i
- pern,

Infer

Quantitative results of semantic scene completion refinement

red Scene X

v

I hSSC

SsC
ht
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Scene Outpainting
256 x 256 x 32 — 1792 x 2816 x 32
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Scene Outpainting
256 x 256 x 32 — 1792 x 2816 x 32

| Overlapping | Outpaint

46



Scene Outpainting
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Modify object : truck = car

Modify scene Modif scene |



Image to Image Generation

* Exploit ControlNet to generate RGB images by conditioning semantic
and depth maps rendered from our generated scene.

]
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Generated imag
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I road Isidewalk ' parking  lground building | traffic-sign lcar
I truck bicycle  Imotorcycle lvehicle I vegetation I motorcyclist pole
terrain Iperson  Ibicyclist  ltrunk | fence empty (air)

Conclusion

* Open Source : https://github.com/zoomin-lee

Building Vegetation Pedestrian Vehicle

(a) Object-scale generation

(c) Scene outpainting

Sensor SSC
observation

Building Other Pedestrian m

Ground Sidewalk

= . B

(b) Semantic scene co
refinement

(b) Scene-scale generation (Ours) (d) Scene inpainting 51



Diffusion Model for Scene-level Generation

* Firstly utilized the diffusion model on a 3D outdoor dataset.

* Enhancing outdoor scenes generation through a triplane
representation.

* By manipulating triplane, our model can both inpaint and outpaint
scenes.

* Our model can refine the outcomes of existing semantic scene
completion model by utilizing learned 3D scene prior.

52
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Thank you.
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