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Class Objectives
●Understand different spaces and basic 

OpenGL commands
●Understand a continuous world, Julia sets

● Review of prior class:
● Student activities (programming assignments, 

paper/video summary submission every week, 
paper presentation, etc.)

● Grading policy 
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Your New World
● A 2D square ranging from (-1, -1) to (1, 1)
● You can draw in the box with just a few 

lines of code
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Code Example (Immediate Mode)

Legacy OpenGL code:

glColor3d(0.0, 0.8, 1.0);

glBegin(GL_POLYGON);

glVertex2d(-0.5, -0.5);

glVertex2d( 0.5, -0.5);

glVertex2d( 0.5,  0.5);

glVertex2d(-0.5,  0.5);

glEnd();
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OpenGL Command Syntax
● glColor3d(0.0, 0.8, 1.0);

Suffix Data Type Corresponding 
C-Type

OpenGL 
Type

b 8-bit int. singed char GLbyte
s 16-bit int. short GLshort
i 32-bit int. int GLint
f 32-bit float float GLfloat
d 64-bit double double GLdouble
ub 8-bit unsinged int. unsigned char GLubyte
us 16-bit unsigned int. unsigned short GLushort
ui 32-bit unsigned int. unsigned int GLuint
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OpenGL Command Syntax
● You can use pointers or buffers

●Using buffers for drawing is much more 
efficient
● Buffers can be cached in GPU

glColor3f(0.0, 0.8, 1.0);

GLfloat color_array [] = {0.0, 0.8, 1.0};
glColor3fv (color_array);
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OpenGL Code:

glColor3d(0.0, 0.8, 1.0);

glBegin(GL_POLYGON);

glVertex2d(-0.5, -0.5);

glVertex2d( 0.5, -0.5);

glVertex2d( 0.5,  0.5);

glEnd()

Another Code Example
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Drawing Primitives in OpenGL

The red book 
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OpenGL Code:
glColor3d(0.8, 0.6, 0.8);

glBegin(GL_LINE_LOOP);

for (i = 0; i < 360;i = i + 2)

{

x = cos(i*pi/180);

y = sin(i*pi/180);

glVertex2d(x, y);

}

glEnd();

Yet Another Code Example

You can ask chatgpt to make it a recent one
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OpenGL as a State Machine
●OpenGL maintains various states until you 

change them

// set the current color state
glColor3d(0.0, 0.8, 1.0);

glBegin(GL_POLYGON);
glVertex2d(-0.5, -0.5);
glVertex2d( 0.5, -0.5);
glVertex2d( 0.5,  0.5);

glEnd()
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OpenGL as a State Machine
●OpenGL maintains various states until you 

change them

●Many state variables refer to modes (e.g., 
lighting mode)
● You can enable, glEnable (), or disable, 

glDisable ()

● You can query state variables
● glGetFloatv (), glIsEnabled (), etc.
● glGetError (): very useful for debugging
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Debugging Tip
#define CheckError(s) \
{ \
GLenum error = glGetError(); \
if (error) \
printf("%s in %s\n", gluErrorString(error),s); \

}

glTexCoordPointer (2, x,  sizeof(y), (GLvoid *) TexDelta);
CheckError ("Tex Bind");

glDrawElements(GL_TRIANGLES, x, GL_UNSIGNED_SHORT, 0);
CheckError ("Tex Draw");
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OpenGL Ver. 4.3 (Using Retained 
Mode)

#include <iostream>
using namespace std;
#include "vgl.h"
#include "LoadShaders.h"
enum VAO_IDs { Triangles, NumVAOs };
enum Buffer_IDs { ArrayBuffer, NumBuffers };
enum Attrib_IDs { vPosition = 0 };
GLuint VAOs[NumVAOs];
GLuint Buffers[NumBuffers];
const GLuint NumVertices = 6;

Void init(void)  {
glGenVertexArrays(NumVAOs, VAOs);
glBindVertexArray(VAOs[Triangles]);
GLfloat vertices[NumVertices][2] = {
{ -0.90, -0.90 }, // Triangle 1
{ 0.85, -0.90 },
{ -0.90, 0.85 },
{ 0.90, -0.85 }, // Triangle 2
{ 0.90, 0.90 },
{ -0.85, 0.90 } };
glGenBuffers(NumBuffers, Buffers);

glBindBuffer(GL_ARRAY_BUFFER, Buffers[ArrayBuffer]);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices),
vertices, GL_STATIC_DRAW);

ShaderInfo shaders[] = {
{ GL_VERTEX_SHADER, "triangles.vert" },
{ GL_FRAGMENT_SHADER, "triangles.frag" },
{ GL_NONE, NULL } };
GLuint program = LoadShaders(shaders);
glUseProgram(program);
glVertexAttribPointer(vPosition, 2, GL_FLOAT,
GL_FALSE, 0, BUFFER_OFFSET(0));
glEnableVertexAttribArray(vPosition);
}

Void display(void) {
glClear(GL_COLOR_BUFFER_BIT);
glBindVertexArray(VAOs[Triangles]);
glDrawArrays(GL_TRIANGLES, 0, NumVertices);
glFlush();
}
Int main(int argc, char** argv) {
glutInit(&argc, argv);   glutInitDisplayMode(GLUT_RGBA);
glutInitWindowSize(512, 512); 
glutInitContextVersion(4, 3);
glutInitContextProfile(GLUT_CORE_PROFILE);
glutCreateWindow(argv[0]);
if (glewInit()) {
exit(EXIT_FAILURE); }
init();glutDisplayFunc(display);  glutMainLoop();
}
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Vulkan: A Recent Change 
(Explicit GPU controls)
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Benefits of Vulkan
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Educational Issue on CG SWs
● Recent real-time rendering add additional 

complexity/details for higher performance
● Away from easy entrance to its field; i.e., not 

good for educational purposes
● Physically-based rendering is getting 

more widely used
● Understanding 

principled concepts is
more important than
fast performance

●Many AI generation techniques
● Student’s motivation and participation is 

important

Pixar, good dinosaur
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My Approach
● Focus on fundamental concepts that will 

last in many coming years
●Use the legacy OpenGL version as a basic 

teaching tool, thanks to its simplicity

● Allow students to find their interest and see 
recent research trends
● Ask a student lecture on a small topic of CG
● Give a paper presentation
● All the students attend those talks and 

evaluate/share some feedback
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Classic Rendering Pipeline

CPU

GPU

Transformation: 
Vertex processing

Rasterization: 
Pixel processing

● Implemented in various SWs and HWs
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Prepare 
vertex array 

data

Vertex 
processing

Program on 
vertex: 

Model, View, 
Projection 
transforms

Subdivide 
(optional)

Catmull-Clark 
subdivisionAck. OpenGL and wiki
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Primitive 
clipping, 

perspective 
divide, 

viewport 
transform

Ack. OpenGL and wiki

Face culling

Depth test

Prepare 
vertex array 

data

Vertex 
processing

Subdivide 
(optional)

Program on 
vertex: 

Model, View, 
Projection 
transforms

Fragment 
processing
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Relation to Other CG related 
Tools/Languages

GPGPU (General-Purpose 
computing on Graphics 

Processing Units)

Shading languages (GLSL, 
HLSL for DirectX)

Game/rendering engine & 
modeling/animation tools
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● Study a visualization of 
a simple iterative 
function defined over 
the imaginary plane

● It has chaotic behavior
● Small changes have 

dramatic effects

Julia Sets (Fractal)

Demo
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Julia Set - Definition
● The Julia set Jc for a number c in the 

complex plane P is given by:
Jc = { p  | pP and pi+1 = p2

i + c  
converges to a fixed limit }

Complex numbers: consists of 2 tuples (Real, Imaginary)
E.g., c = a + bi

Various operations
c1 + c2 = (a1 + a2) + (b1 + b2)i
c1  c2 = (a1a2 - b1b2) + (a1b2 + a2b1)i
(c1)2 = ((a1)2 – (b1)2) + (2 a1b1)i
|c| = sqrt(a2 + b2)
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● Real numbers are a subset of complex 
numbers:
● Consider c = [0, 0], and p = [x, 0]
● For what values of x under xi+1 = xi

2 is 
convergent?

Convergence Example

x0-4 = 0.5, 0.25, 0.0625, 0.0039 

How about x0 = 0.5?
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● Real numbers are a subset of complex 
numbers:
● consider c = [0, 0], and p = [x, 0]
● for what values of x is xi+1 = xi

2 convergent?

Convergence Example

x0-4 = 1.1, 1.21, 1.4641,  2.14358

0 1

How about x0 = 1.1?
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Convergence Properties
● Suppose  c = [0,0], for what complex 

values of p does the series converge?
● For real numbers:

● If |xi| > 1, then the series diverges
● For complex numbers

● If |pi| > 2, then the series diverges 
● Loose bound

The black points are 
the ones in Julia set

Real part

Imaginary part
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class Complex {
float re, im;

}; 

viod Julia (Complex p, Complex c, int & i, float & r) 
{

int maxIterations = 256;
for (i = 0; i < maxIterations;i++)
{

p = p*p + c;
rSqr = p.re*p.re + p.im*p.im;

if( rSqr > 4 )
break;

}
r = sqrt(rSqr);

}

A Peek at the Fractal Code

i & r are used to assign a 
color
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How can we see more?

●Our world view 
allows us to see so 
much
● What if we want to 

zoom in?
●We need to define a 

mapping from our 
desired world view 
to our screen
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Mapping from World to Screen

World Monitor Screen

WindowCamera
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Screen Space

● Graphical image is 
presented by setting colors 
for a set of discrete samples 
called “pixels”
● Pixels displayed on screen in 

windows

● Pixels are addressed as 2D 
arrays
● Indices are “screen-

space” coordinates

(0,0) (width-1,0)

(width-1, height-1)(0,height-1)



31

Coordinate Conventions
(0,0) (width-1,0)

(width-1, 
height-1)

(0,
height-1)

Windows Screen 
Coordinates

(0,0)

OpenGL Screen 
Coordinates
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Normalized Device Coordinates
● Intermediate “rendering-space” 

● Compose world and screen space
● Sometimes called 

“canonical screen space”

-1

-1

1

1
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Why Introduce NDC?
● Simplifies many rendering operations

● Clipping, computing coefficients for 
interpolation

● Separates the bulk of geometric processing 
from the specifics of rasterization (sampling)

● Will be discussed later



34

Mapping from World to Screen

World

NDC

Screen

Window

xw xn xs
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World Space to NDC

-1
w.l

1
w.r

-1
w.b

1
w.t

xn?
xwxn = Axw+ B

A
2

w. r w. l ,    B
w. r w. l
w. r w. l
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● Same approach

● Solve for xs

NDC to Screen Space

origin.x
‐1 1

‐1

origin.y
1

width

height

xs = widthxn+ 1
2

+ origin.x

xs = Axn+ B

A= width
2

; B= width
2

+ origin.x

xs
xnx origin. x

width
x 1
1 1
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Homework: Programming 
Assignment 1
●Download the code, compile the code, and 

play it
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Homework
●Make it work if using the following code 

(just mapping the screen ratio to the world 
one):

void reshape( int w, int h)
{
width = w;
height = h;
glViewport(0, 0, w, h );

}

void reshape( int w, int h)
{
width = w;   height = h;
glViewport(0, 0, w, h );

float cx = 0.5*(world.r + world.l);
float dy = world.t - world.b;;
world.l = cx - 0.5*dy * w/h;
world.r = cx + 0.5*dy * w/h;
}

We got this 
issue. Fix it!
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Details on PA1 Codes
●Discussed more in 2020 youtube lecture of 

Basic OpenGL Structure
● Some info. is based on VS 2015
● TA will talk about recent VS, say VS 2022

● Try to cut down low-level details related to
OpenGL
● Focus more on recent topics such as AI 

techniques and Monte Carlo ray tracing
● 2020 CG lectures have more details
● https://www.youtube.com/watch?v=qTmS3jn

a0iQ&list=PLIyyVH0_VBOWI-
_oZuKKAIe5pVyudozWX&ab_channel=sglabkai
st
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Class Objectives were:
●Understand different spaces and basic 

OpenGL commands
●Understand a continuous world, Julia sets
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Any Questions?
● Come up with one question on what we 

have discussed in the class and submit at 
the end of the class
● 1 for already answered questions
● 2 for questions with thoughts or that surprised 

me

● Submit two times during the whole 
semester
● Multiple questions in one time are counted as 

once
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Homework
●Go over the next lecture slides before the 

class
●Watch 2 SIGGRAPH videos and submit your 

summaries before every Mon. class
● Submit online through our course homepage
● Just one paragraph for each summary

Example: (English or Korean is possible)
Title: XXX XXXX XXXX
Abstract: this video is about  accelerating the 
performance of ray tracing. To achieve its goal, they 
design a new technique for reordering rays, since by 
doing so, they can improve the ray coherence and thus 
improve the overall performance.
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Homework for Next Class
● Read:

● Chapter 1, Introduction
● Chapter 2, Classic Rendering pipeline

https://sgvr.kaist.ac.kr/~sungeui/render/
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Next Time
● Basic OpenGL program structure and how 

OpenGL supports different spaces
● Covered in a 2020 lecture, and left as an

optional lecture
● CS380: 3, Basic OpenGL Structure: 

https://youtu.be/2iACC87Soe8?si=Va5U77e7r
X1IaCsK

● 2D imaging and transformation


