
CS380: Computer Graphics
Screen Space & World Space

Sung-Eui Yoon
(윤성의)

Course URL:
http://sgvr.kaist.ac.kr/~sungeui/CG

2

Class Objectives
●Understand different spaces and basic

OpenGL commands
●Understand a continuous world, Julia sets

● Review of prior class:
● Student activities (programming assignments,

paper/video summary submission every week,
paper presentation, etc.)

● Grading policy

3

Your New World
● A 2D square ranging from (-1, -1) to (1, 1)
● You can draw in the box with just a few

lines of code

4

Code Example (Immediate Mode)

Legacy OpenGL code:

glColor3d(0.0, 0.8, 1.0);

glBegin(GL_POLYGON);

glVertex2d(-0.5, -0.5);

glVertex2d(0.5, -0.5);

glVertex2d(0.5, 0.5);

glVertex2d(-0.5, 0.5);

glEnd();

5

OpenGL Command Syntax
● glColor3d(0.0, 0.8, 1.0);

Suffix Data Type Corresponding
C-Type

OpenGL
Type

b 8-bit int. singed char GLbyte
s 16-bit int. short GLshort
i 32-bit int. int GLint
f 32-bit float float GLfloat
d 64-bit double double GLdouble
ub 8-bit unsinged int. unsigned char GLubyte
us 16-bit unsigned int. unsigned short GLushort
ui 32-bit unsigned int. unsigned int GLuint

6

OpenGL Command Syntax
● You can use pointers or buffers

●Using buffers for drawing is much more
efficient
● Buffers can be cached in GPU

glColor3f(0.0, 0.8, 1.0);

GLfloat color_array [] = {0.0, 0.8, 1.0};
glColor3fv (color_array);

7

OpenGL Code:

glColor3d(0.0, 0.8, 1.0);

glBegin(GL_POLYGON);

glVertex2d(-0.5, -0.5);

glVertex2d(0.5, -0.5);

glVertex2d(0.5, 0.5);

glEnd()

Another Code Example

8

Drawing Primitives in OpenGL

The red book

9

OpenGL Code:
glColor3d(0.8, 0.6, 0.8);

glBegin(GL_LINE_LOOP);

for (i = 0; i < 360;i = i + 2)

{

x = cos(i*pi/180);

y = sin(i*pi/180);

glVertex2d(x, y);

}

glEnd();

Yet Another Code Example

You can ask chatgpt to make it a recent one

10

OpenGL as a State Machine
●OpenGL maintains various states until you

change them

// set the current color state
glColor3d(0.0, 0.8, 1.0);

glBegin(GL_POLYGON);
glVertex2d(-0.5, -0.5);
glVertex2d(0.5, -0.5);
glVertex2d(0.5, 0.5);

glEnd()

11

OpenGL as a State Machine
●OpenGL maintains various states until you

change them

●Many state variables refer to modes (e.g.,
lighting mode)
● You can enable, glEnable (), or disable,

glDisable ()

● You can query state variables
● glGetFloatv (), glIsEnabled (), etc.
● glGetError (): very useful for debugging

12

Debugging Tip
#define CheckError(s) \
{ \
GLenum error = glGetError(); \
if (error) \
printf("%s in %s\n", gluErrorString(error),s); \

}

glTexCoordPointer (2, x, sizeof(y), (GLvoid *) TexDelta);
CheckError ("Tex Bind");

glDrawElements(GL_TRIANGLES, x, GL_UNSIGNED_SHORT, 0);
CheckError ("Tex Draw");

13

OpenGL Ver. 4.3 (Using Retained
Mode)

#include <iostream>
using namespace std;
#include "vgl.h"
#include "LoadShaders.h"
enum VAO_IDs { Triangles, NumVAOs };
enum Buffer_IDs { ArrayBuffer, NumBuffers };
enum Attrib_IDs { vPosition = 0 };
GLuint VAOs[NumVAOs];
GLuint Buffers[NumBuffers];
const GLuint NumVertices = 6;

Void init(void) {
glGenVertexArrays(NumVAOs, VAOs);
glBindVertexArray(VAOs[Triangles]);
GLfloat vertices[NumVertices][2] = {
{ -0.90, -0.90 }, // Triangle 1
{ 0.85, -0.90 },
{ -0.90, 0.85 },
{ 0.90, -0.85 }, // Triangle 2
{ 0.90, 0.90 },
{ -0.85, 0.90 } };
glGenBuffers(NumBuffers, Buffers);

glBindBuffer(GL_ARRAY_BUFFER, Buffers[ArrayBuffer]);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices),
vertices, GL_STATIC_DRAW);

ShaderInfo shaders[] = {
{ GL_VERTEX_SHADER, "triangles.vert" },
{ GL_FRAGMENT_SHADER, "triangles.frag" },
{ GL_NONE, NULL } };
GLuint program = LoadShaders(shaders);
glUseProgram(program);
glVertexAttribPointer(vPosition, 2, GL_FLOAT,
GL_FALSE, 0, BUFFER_OFFSET(0));
glEnableVertexAttribArray(vPosition);
}

Void display(void) {
glClear(GL_COLOR_BUFFER_BIT);
glBindVertexArray(VAOs[Triangles]);
glDrawArrays(GL_TRIANGLES, 0, NumVertices);
glFlush();
}
Int main(int argc, char** argv) {
glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGBA);
glutInitWindowSize(512, 512);
glutInitContextVersion(4, 3);
glutInitContextProfile(GLUT_CORE_PROFILE);
glutCreateWindow(argv[0]);
if (glewInit()) {
exit(EXIT_FAILURE); }
init();glutDisplayFunc(display); glutMainLoop();
}

14

Vulkan: A Recent Change
(Explicit GPU controls)

15

Benefits of Vulkan

16

Educational Issue on CG SWs
● Recent real-time rendering add additional

complexity/details for higher performance
● Away from easy entrance to its field; i.e., not

good for educational purposes
● Physically-based rendering is getting

more widely used
● Understanding

principled concepts is
more important than
fast performance

●Many AI generation techniques
● Student’s motivation and participation is

important

Pixar, good dinosaur

17

My Approach
● Focus on fundamental concepts that will

last in many coming years
●Use the legacy OpenGL version as a basic

teaching tool, thanks to its simplicity

● Allow students to find their interest and see
recent research trends
● Ask a student lecture on a small topic of CG
● Give a paper presentation
● All the students attend those talks and

evaluate/share some feedback

18

Classic Rendering Pipeline

CPU

GPU

Transformation:
Vertex processing

Rasterization:
Pixel processing

● Implemented in various SWs and HWs

19

Prepare
vertex array

data

Vertex
processing

Program on
vertex:

Model, View,
Projection
transforms

Subdivide
(optional)

Catmull-Clark
subdivisionAck. OpenGL and wiki

20

Primitive
clipping,

perspective
divide,

viewport
transform

Ack. OpenGL and wiki

Face culling

Depth test

Prepare
vertex array

data

Vertex
processing

Subdivide
(optional)

Program on
vertex:

Model, View,
Projection
transforms

Fragment
processing

21

Relation to Other CG related
Tools/Languages

GPGPU (General-Purpose
computing on Graphics

Processing Units)

Shading languages (GLSL,
HLSL for DirectX)

Game/rendering engine &
modeling/animation tools

22

● Study a visualization of
a simple iterative
function defined over
the imaginary plane

● It has chaotic behavior
● Small changes have

dramatic effects

Julia Sets (Fractal)

Demo

23

Julia Set - Definition
● The Julia set Jc for a number c in the

complex plane P is given by:
Jc = { p | pP and pi+1 = p2

i + c
converges to a fixed limit }

Complex numbers: consists of 2 tuples (Real, Imaginary)
E.g., c = a + bi

Various operations
c1 + c2 = (a1 + a2) + (b1 + b2)i
c1  c2 = (a1a2 - b1b2) + (a1b2 + a2b1)i
(c1)2 = ((a1)2 – (b1)2) + (2 a1b1)i
|c| = sqrt(a2 + b2)

24

● Real numbers are a subset of complex
numbers:
● Consider c = [0, 0], and p = [x, 0]
● For what values of x under xi+1 = xi

2 is
convergent?

Convergence Example

x0-4 = 0.5, 0.25, 0.0625, 0.0039

How about x0 = 0.5?

25

● Real numbers are a subset of complex
numbers:
● consider c = [0, 0], and p = [x, 0]
● for what values of x is xi+1 = xi

2 convergent?

Convergence Example

x0-4 = 1.1, 1.21, 1.4641, 2.14358

0 1

How about x0 = 1.1?

26

Convergence Properties
● Suppose c = [0,0], for what complex

values of p does the series converge?
● For real numbers:

● If |xi| > 1, then the series diverges
● For complex numbers

● If |pi| > 2, then the series diverges
● Loose bound

The black points are
the ones in Julia set

Real part

Imaginary part

27

class Complex {
float re, im;

};

viod Julia (Complex p, Complex c, int & i, float & r)
{

int maxIterations = 256;
for (i = 0; i < maxIterations;i++)
{

p = p*p + c;
rSqr = p.re*p.re + p.im*p.im;

if(rSqr > 4)
break;

}
r = sqrt(rSqr);

}

A Peek at the Fractal Code

i & r are used to assign a
color

28

How can we see more?

●Our world view
allows us to see so
much
● What if we want to

zoom in?
●We need to define a

mapping from our
desired world view
to our screen

29

Mapping from World to Screen

World Monitor Screen

WindowCamera

30

Screen Space

● Graphical image is
presented by setting colors
for a set of discrete samples
called “pixels”
● Pixels displayed on screen in

windows

● Pixels are addressed as 2D
arrays
● Indices are “screen-

space” coordinates

(0,0) (width-1,0)

(width-1, height-1)(0,height-1)

31

Coordinate Conventions
(0,0) (width-1,0)

(width-1,
height-1)

(0,
height-1)

Windows Screen
Coordinates

(0,0)

OpenGL Screen
Coordinates

32

Normalized Device Coordinates
● Intermediate “rendering-space”

● Compose world and screen space
● Sometimes called

“canonical screen space”

-1

-1

1

1

33

Why Introduce NDC?
● Simplifies many rendering operations

● Clipping, computing coefficients for
interpolation

● Separates the bulk of geometric processing
from the specifics of rasterization (sampling)

● Will be discussed later

34

Mapping from World to Screen

World

NDC

Screen

Window

xw xn xs

35

World Space to NDC

-1
w.l

1
w.r

-1
w.b

1
w.t

xn?
xwxn = Axw+ B

A
2

w. r w. l , B
w. r w. l
w. r w. l

36

● Same approach

● Solve for xs

NDC to Screen Space

origin.x
‐1 1

‐1

origin.y
1

width

height

xs = widthxn+ 1
2

+ origin.x

xs = Axn+ B

A= width
2

; B= width
2

+ origin.x

xs
xnx origin. x

width
x 1
1 1

37

Homework: Programming
Assignment 1
●Download the code, compile the code, and

play it

38

Homework
●Make it work if using the following code

(just mapping the screen ratio to the world
one):

void reshape(int w, int h)
{
width = w;
height = h;
glViewport(0, 0, w, h);

}

void reshape(int w, int h)
{
width = w; height = h;
glViewport(0, 0, w, h);

float cx = 0.5*(world.r + world.l);
float dy = world.t - world.b;;
world.l = cx - 0.5*dy * w/h;
world.r = cx + 0.5*dy * w/h;
}

We got this
issue. Fix it!

39

Details on PA1 Codes
●Discussed more in 2020 youtube lecture of

Basic OpenGL Structure
● Some info. is based on VS 2015
● TA will talk about recent VS, say VS 2022

● Try to cut down low-level details related to
OpenGL
● Focus more on recent topics such as AI

techniques and Monte Carlo ray tracing
● 2020 CG lectures have more details
● https://www.youtube.com/watch?v=qTmS3jn

a0iQ&list=PLIyyVH0_VBOWI-
_oZuKKAIe5pVyudozWX&ab_channel=sglabkai
st

40

Class Objectives were:
●Understand different spaces and basic

OpenGL commands
●Understand a continuous world, Julia sets

41

Any Questions?
● Come up with one question on what we

have discussed in the class and submit at
the end of the class
● 1 for already answered questions
● 2 for questions with thoughts or that surprised

me

● Submit two times during the whole
semester
● Multiple questions in one time are counted as

once

42

Homework
●Go over the next lecture slides before the

class
●Watch 2 SIGGRAPH videos and submit your

summaries before every Mon. class
● Submit online through our course homepage
● Just one paragraph for each summary

Example: (English or Korean is possible)
Title: XXX XXXX XXXX
Abstract: this video is about accelerating the
performance of ray tracing. To achieve its goal, they
design a new technique for reordering rays, since by
doing so, they can improve the ray coherence and thus
improve the overall performance.

43

Homework for Next Class
● Read:

● Chapter 1, Introduction
● Chapter 2, Classic Rendering pipeline

https://sgvr.kaist.ac.kr/~sungeui/render/

44

Next Time
● Basic OpenGL program structure and how

OpenGL supports different spaces
● Covered in a 2020 lecture, and left as an

optional lecture
● CS380: 3, Basic OpenGL Structure:

https://youtu.be/2iACC87Soe8?si=Va5U77e7r
X1IaCsK

● 2D imaging and transformation

