CS380: Computer Graphics
Screen Space & World Space

Sung-Eui Yoon
(242

Course URL:
http://sgvr.kaist.ac.kr/~sungeui/CG

KAIST

Class Objectives

e Understand different spaces and basic
OpenGL commands

e Understand a continuous world, Julia sets

e Review of prior class:

e Student activities (programming assignments,
paper/video summary submission every week,
paper presentation, etc.)

e Grading policy

KAIST

Your New World

e A 2D square ranging from (-1, -1) to (1, 1)

e You can draw in the box with just a few
lines of code

KAIST

Code Example (Immediate Mode)

I Simple OpenGL Examples E] Legacy openG L COde:

glColor3d (0.0, 0.8, 1.0);

glBegin (GL POLYGON) ;
glVertex2d(-0.5, -0.5);
glVertex2d(0.5, -0.5);
glVertex2d(0.5, 0.5);
glVertex2d(-0.5, 0.5);
glEnd() ;

KAIST

OpenGL Command Syntax

e giColor3d(0.0, 0.8, 1.0);

Data Type Corresponding OpenGL
C-Type Type

b
S
i
£
d
ub

us
ui

8-bit int.
16-bit int.
32-bit int.
32-bit float
64-bit double
8-bit unsinged int.

16-bit unsigned int.
32-bit unsigned int.

singed char
short
int
float
double
unsigned char
unsigned short
unsigned int

GLbyte
GLshort
GLint
GLfloat
GLdouble
GLubyte
GLushort
GLuint

KAIST

OpenGL Command Syntax

e You can use pointers or buffers
glColor3£(0.0, 0.8, 1.0);

GLfloat color array [] = {0.0, 0.8, 1.0};
glColor3fv (color array);

e Using buffers for drawing is much more
efficient
e Buffers can be cached in GPU

KAIST

Another Code Example

B Simple OpenGL Examples . openG L COde:

glColor3d (0.0, 0.8, 1.0);

glBegin (GL POLYGON) ;
glVertex2d(-0.5, -0.5);
glVertex2d(0.5, -0.5);
glVertex2d(0.5, 0.5);
glEnd ()

7 KAIST

Drawing Primitives in OpenGL

Vol VEI V4l

V1. VS. Vs’

e

i GLPOINTS

. GLLNES | | GLLNESTRIP | | _ GLLINELOOP

v Vo
3, Vs
VO VS V1 V5 7 ? V3

V1 V4 V3 V2

" GL POLYGON The red book KAIST

_ GL_QUAD STRIP

Figure 2-7 Geometric Primitive Types

Yet Another Code Example

- - OpenGL Code:
Simple OpenGL Exa_T_EI-E—S—————-._____________ glColo r3d (O .8 y 0.6 ’ 0. 8) ’

glBegin (GL LINE LOOP) ;

for (1 = 0; 1 < 360;1i =1 + 2)

X = cos(i*pi/180);
y = sin(i*pi/180) ;
glVertex2d(x, y);

}
glEnd() ;

You can ask chatgpt to make it a recent one KAIST

10

OpenGL as a State Machine

e OpenGL maintains various states until you
change them

// set the current color state
glColor3d(0.0, 0.8, 1.0);

glBegin (GL POLYGON) ;
glvVertex2d(-0.5, -0.5);
glVertex2d(0.5, -0.5);
glVertex2d(0.5, 0.5);
glEnd ()

KAIST

11

OpenGL as a State Machine

e OpenGL maintains various states until you
change them

e Many state variables refer to modes (e.g.,
lighting mode)
e You can enable, glEnable (), or disable,
giDisable ()

e You can query state variables
e glGetFloatv (), glIsEnabled (), etc.
e glGetError (): very useful for debugging

KAIST

12

Debugging Tip

#define CheckError(s) \
{ \
GLenum error = glGetError(); \
if (error) \
printf("%s in %s\n", gluErrorString(error),s); \

}

glTexCoordPointer (2, x, sizeof(y), (GLvoid *) TexDelta);
CheckError ("Tex Bind");

glDrawElements(GL_TRIANGLES, x, GL_UNSIGNED_SHORT, 0);
CheckError ("Tex Draw");

KAIST

OpenGL Ver. 4.3 (Using Retained
Mode)

#include <iostream> ShaderInfo shaders[] = {

using namespace std; { GL_VERTEX_SHADER, "triangles.vert" },
#include "vgl.h" { GL_FRAGMENT_SHADER, "triangles.frag" },
#include "LoadShaders.h" { GL_NONE, NULL } };

enum VAQO_IDs { Triangles, NumVAQOs }; GLuint program = LoadShaders(shaders);
enum Buffer_IDs { ArrayBuffer, NumBuffers }; glUseProgram(program);

enum Attrib_IDs { vPosition = 0 }; glVertexAttribPointer(vPosition, 2, GL_FLOAT,
GLuint VAOS[NumVAOs]; GL_FALSE, 0, BUFFER_OFFSET(0));

GLuint Buffers[NumBuffers]; glEnableVertexAttribArray(vPosition);

const GLuint NumVertices = 6; b

Void init(void) { Void display(void) {
glGenVertexArrays(NumVAOs, VAOs); glClear(GL_COLOR_BUFFER_BIT);
glBindVertexArray(VAQOs[Triangles]); glBindVertexArray(VAOs[Triangles]);

GLfloat vertices[NumVertices][2] = { glDrawArrays(GL_TRIANGLES, 0, NumVertices);
{-0.90, -0.90 }, // Triangle 1 glFlush();

{ 0.85, -0.90 }, b

{-0.90, 0.85 }, Int main(int argc, char** argv) {

{0.90, -0.85 }, // Triangle 2 glutInit(&argc, argv); glutlnitDisplayMode(GLUT_RGBA);
{ 0.90, 0.90 }, glutInitWindowSize(512, 512);

{-0.85,0.90 } }; glutInitContextVersion(4, 3);
glGenBuffers(NumBuffers, Buffers); glutInitContextProfile(GLUT_CORE_PROFILE);

glutCreateWindow(argv[0]);
glBindBuffer(GL_ARRAY_BUFFER, Buffers[ArrayBuffer]); if (glewlInit()) {
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), exit(EXIT_FAILURE); }
vertices, GL_STATIC_DRAW); i}nit();glutDispIayFunC(display); glutMainLoolré}sI ST

13

Vulkan: A Recent Change
(Explicit GPU controls)

The Need for a New Generation GPU API

» Explicit
- Open up the high-level driver abstraction to give direct, low-level GPU control

» Streamlined
- Faster performance, lower overhead, less latency

 Portable
- Cloud, desktop, console, mobile and embedded

» Extensible
- Platform for rapid innovation

o u

¢

KHRCONOS

OpenGL has evolved over 25 years and GPUs are increasingly programmable and GPUs will accelerate graphics, compute, vision
continues to meet industry needs - but there is compute capable + platforms are becoming and deep learning across diverse platforms:
a need for a complementary APl approach mobile, memory-unified and multi-core FLEXIBILITY and PORTABILITY are key

14 | WA B

-
O:
Z

Q

. KHRCS

penGL ES.

CoerGL.

Application

Single thread per context

v

High-level Driver

Abstraction
Context management
Memory allocation
Full GLSL compiler
Error detection
Layered GPU Control

GPU

Application
Memory allocation
Thread management
Multi-threaded generation
of command buffers
Multi-queue work
submission

Benefits of Vulkan

Vulkan Explicit GPU Control
TVuiican.

Language Front-end
Compilers
Initially GLSL

Y v v

Thin Driver
Explicit GPU Control

——

GPU

Loadable debug and
validation layers

Vulkan 1.0 provides access to

OpenGL ES 3.1/ OpenGL 4.X-class GPU functionality

but with increased performance and flexibility

Vulkan Benefits

Simpler drivers:
Improved efficiency/performance
Reduced CPU bottlenecks
Lower latency
Increased portability

Resource management in app code:
Less hitches and surprises

Command Buffers:
Command creation can be multi-threaded
Multiple CPU cores increase performance

Graphics, compute and DMA queues:
Work dispatch flexibility

SPIR-V Pre-compiled Shaders:
No front-end compiler in driver
Future shading language flexibility

Loadable Layers

No error handling overhead in
production code

Educational Issue on CG SWs

e Recent real-time rendering add additional
complexity/details for higher performance

o Away from easy entrance to its field; i.e., not ;|
good for educational purposes

o Physicaly-based rendering is getting
more widely used

e Understanding PR .
principled concepts is give.e T \

- TR Y R m e SNl T ' _ |

more important than 5 SaNEGEST NN a——
: l- = « T»_. -‘-‘;'l-,;:.,L.: M oA ,2‘-" X "

fast performance = '

e Many Al generation techniques Pixar, good dinosaur

e Student’s motivation and participation is KAIST

16 important

My Approach

e Focus on fundamental concepts that will
last in many coming years

e Use the legacy OpenGL version as a basic
teaching tool, thanks to its simplicity

e Allow students to find their interest and see
recent research trends

e Ask a student lecture on a small topic of CG
e Give a paper presentation

e All the students attend those talks and
evaluate/share some feedback

17 KAIST

Classic Rendering Pipeline

e Implemented in various SWs and HWs

cPu Hb Transformation: | | Rasterization:

Vertex processing Pixel processing

18 KAIST

Prepare r"L Vertex Specification Program on
vertex array ‘L vertex:
data Vertex Shader 4] MOd?I’ V_'ewa
i Projection
Vertex | |————--¥ooe——
e S Tessellation transforms
processing | |'-———=== T
L |__Geometry Shader __ Subdivide
] (optional)
Vertex Post-Processing
Primitive Assembly .
Rasterization --

I Fragment Shader : O

Catmull-Clark
subdivision

Per-Sample Operations

Ack. OpenGL and wiki

Prepare

- Vertex Specification

vertex array I i
data Vertex Shader
Vertex Tesel
processing | |'-—-———=- I -------
|__Geometry Shader __
Primitive Vertex Post-Processing
clipping, v
perspective Primitive Assembly
divide, l
VieWport Rasterization
transform i
Depth test i-__Fr_a—g;\—ent—SF\;d_e_r__

Ack. OpenGL and wiki

Program on
vertex:
Model, View,
Projection
transforms

Subdivide
(optional)

0 C

¥ Per-Sample Operations

Fragment

I processing KAIST

21

Game/rendering engine &
modeling/animation tools

UNREAL

@ e)blender’

EEEEEE Quity O\

Relation to Other CG related
Tools/Languages

<A NVIDIA.
CUDA.

GPGPU (General-Purpose
computing on Graphics
Processing Units)

pe h
\
Vuikan.
Application
Single thread per context
¥ Application
Memory allocation
Tll'nread management.
High-level Driver mz-comndme:sm

Abstraction Pulti-queue work
Context management =
Memory allocation
Full GLSL compiler

Layered GPU Control

Thin Driver
Explicit GPU Control

GPU GPU

Shading languages (GLSL,
HLSL for DirectX)

KAIST

Julia Sets (Fractal)

e s ta o wnvas S =) © Study a visualization of
a simple iterative

function defined over

the imaginary plane

e It has chaotic behavior

e Small changes have
dramatic effects

22 KAIST

Julia Set - Definition

e The Julia set J. for a number c in the
complex plane P is given by:

J.={p | pePandp;,, =p%+cC
converges to a fixed limit ¥

Complex numbers: consists of 2 tuples (Real, Imaginary)
E.g,c =a+bi
Various operations
Ci+cy=(a; +ay) + (b + by
Ci-C; =(a;a; - byby) + (asb, + ab,)i
(c)? =((a))? = (by)?) + (2 a,b,)i
Ic| = sgrt(a? + b?)

23 KAIST

Convergence Example

e Real numbers are a subset of complex
numbers:

e Considerc =[0, 0], and p = [x, 0]
e For what values of x under x;,;, = x;2 is

convergent?
How about x, = 0.57

X,.4 = 0.5, 0.25, 0.0625, 0.0039

b—o—o—] >

24 KAIST

Convergence Example

e Real numbers are a subset of complex
numbers:

e consider c = [0, 0], and p =[x, 0]
o for what values of x is x;, ; = x;2 convergent?

How about x,=1.1?

Xo4 =1.1,1.21,1.4641, 2.14358

25 KAIST

26

Convergence Properties

e Suppose c = [0,0], for what complex
values of p does the series converge?

e For real numbers:
o If |X;| > 1, then the series diverges

e For complex numbers
o If |p;| > 2, then the series diverges
e Loose bound Imaginary part

Real part

The black points are |
the ones in Julia set KAIST

A Peek at the Fractal Code

class Complex {
float re, im; .‘

}

viod Julia (Complex p, Complex c, int & i, float & r)

{

int maxlterations = 256;
for (i = 0; i < maxlterations;i++)

{
p = p*p + C; i & r are used to assign a
rSqr = p.re*p.re + p.im*p.im; color
if(rSqr>4)
break;
}

r = sqrt(rSqr);
KAIST

27}

28

How can we see more?

e Our world view
allows us to see so
much

e What if we want to
zoom in?

e We need to define a
mapping from our
desired world view
to our screen

ER Julia Set {a.k.a. Whoville)

KAIST

Mapping from World to Screen

n Camera Window

World Monitor Screen

29 KAIST

Screen Space

e Graphical image is
presented by setting colors (0,0)

(width-1,0)

for a set of discrete samples

called "pixels”

e Pixels displayed on screen in

windows

e Pixels are addressed as 2D
arrays

e Indices are “screen-
space” coordinates

(0,height-1)

30

(width-1, height-1)

KAIST

Coordinate Conventions

(0,0) > (width-1,0)

(0, (width-1, (0,0)

height-1) height-1)
Windows Screen OpenGL Screen
Coordinates Coordinates

31 KAIST

Normalized Device Coordinates

e Intermediate “rendering-space”
e Compose world and screen space

o Sometimes called
canomcal screen space”

=

32 KAIST

Why Introduce NDC?

e Simplifies many rendering operations

e Clipping, computing coefficients for
interpolation

e Separates the bulk of geometric processing
from the specifics of rasterization (sampling)

e Will be discussed later

33 KAIST

34

Mapping from World to Screen

World .

NDC

[|

Screen

Window

KAIST

35

World Space to NDC

Xp — (—=1) _ Xw T (w.1)

— 1
1-(-1) w.r—w.l it
X, — (W] -1
X, = 2 — ()—1 w.b

w.r — w.l

X, = Ax,+ B
2 w.r + w.l

A = , = —

w.r —w.l w.r —w.l

KAIST

NDC to Screen Space

e Same approach Xs

Xs —origin.x xp —(—1)

width 1-(-1)
origin.y
e Solve for x_ 1
height
+

Xs = Width2”) '+ originx

XS — AXn + B width

A= %dth; B= W'gth +originx a .

KAIST

37

Homework: Programming
Assignment 1

e Download the code, compile the code, and
play it

KAIST

Homework

e Make it work if using the following code
(Just mapping the screen ratio to the worlid

one):
void reshape(int w, int h)
{ void reshape(int w, int h)
width = w; height = h; {
glViewport(0, 0, w, h); width = w;
height = h;
float cx = 0.5*(world.r + world.l); glViewport(0, 0, w, h);
float dy = world.t - world.b;;)

world.l = cx - 0.5*dy * w/h;
world.r = cx + 0.5*dy * w/h;
} CETTTTEE B BEE

We got this
issue. Fix it!

38

Details on PA1 Codes

e Discussed more in 2020 youtube lecture of
Basic OpenGL Structure

e Some info. is based on VS 2015
e TA will talk about recent VS, say VS 2022

e Try to cut down low-level details related to
OpenGL

e Focus more on recent topics such as Al
techniques and Monte Carlo ray tracing

e 2020 CG lectures have more details

o https://www.youtube.com/watch?v=qTmS3jn
a0iQ&list=PLIyyVHO VBOWI-

oZuKKAlIe5pVvudozWX&ab channel=sqgla]

39 st BYy = %T

40

Class Objectives were:

e Understand different spaces and basic
OpenGL commands

e Understand a continuous world, Julia sets

KAIST

Any Questions?

e Come up with one question on what we
have discussed in the class and submit at
the end of the class

e 1 for already answered questions

e 2 for questions with thoughts or that surprised
me

e Submit two times during the whole
semester

e Multiple questions in one time are counted as
once

41 KAIST

42

Homework

e Go over the next lecture slides before the
class

e Watch 2 SIGGRAPH videos and submit your
summaries before every Mon. class

e Submit online through our course homepage
e Just one paragraph for each summary

Example: (English or Korean is possible)
Title: XXX XXXX XXXX
Abstract: this video is about accelerating the
performance of ray tracing. To achieve its goal, they
design a new technique for reordering rays, since by

doing so, they can improve the ray coherence and thus
improve the overall performance.

KAIST

43

Homework for Next Class

e Read:

https://sgvr.kaist.ac.kr/~sungeui/render/

e Chapter 1, Introduction

e Chapter 2, Classic Rendering pipeline

|
|
|
l
|
r

() Sungeui Yoon (42,8 x A

! tracing, and various physically-based rendering
| techniques. It will also cover many advanced

! techniques such as interactive, yet high-quality 17 edition (Expected 1o be completed at 2017)
! rendering methods.

Why am I writing this book?

X
| C 1 | ® sglab.kaistackr/~sungeui/render/ Q¥ B
iRendermg

Rendering

| 1st edition (expected to be completed at 2017)
| Sung-eui Yoon, Copyright 2016
| This is an on-going book that I'm writing. This covers S ehiFoon
| basic rendering concepts such as rasterization, ray o

Copyright 2016 ~ 2017

* Rendering is one of fundamental tools for understanding various things in
many applications. Even though it has been heavily studied, real-time photo-realistic
rendering has not been achieved yet. As a result, this topic needs to be studied and
developed further.

s Rendering has been developed in a long time. It is very hard to catch up all the
major concepts. Also, new concepts and techniques have been constantly proposed.
To develop new ideas, it is very important to understand them in an effective and
efficient manner.

s There are a few books that well cover the fundamental topics of rendering.
Unfortunately, those books are rather expensive and did not cover recent topics. I'll

KAIST

Next Time

e Basic OpenGL program structure and how
OpenGL supports different spaces

e Covered in a 2020 lecture, and left as an
optional lecture

e CS380: 3, Basic OpenGL Structure:

https://youtu.be/2I1ACC87Soe8?si=Va5U77e7r
X1IaCsK

e 2D imaging and transformation

44 KAIST

