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Class ObjectivesClass Objectives
Write down simple 2D transformation●Write down simple 2D transformation 
matrixes

●Understand the homogeneous coordinates●Understand the homogeneous coordinates 
and its benefits

● Know OpenGL-transformation related API● Know OpenGL-transformation related API
● Implement idle-based animation method
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2D Geometric Transforms2D Geometric Transforms
F ti t● Functions to map 
points from one place 
to another

● Geometric transforms 
can be applied to
● Drawing primitives

(points, lines, conics, 
triangles)
Pi l di t f● Pixel coordinates of an 
image

Demo
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TranslationTranslation
T l ti h th f ll i f● Translations have the following form: 

x' = x + tx
y' = y + ty 
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● inverse function: undoes the translation:
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x = x' - tx
y = y' - ty

● identity: leaves every point unchanged
x' = x + 0x  = x + 0
y' = y + 0 
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2D Rotations2D Rotations
Another group rotation about the origin:● Another group - rotation about the origin:
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Rotations in SeriesRotations in Series
We want to rotate the object 30 degree●We want to rotate the object 30 degree 
and, then, 60 degree
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Euclidean Transforms

E lid G

Euclidean Transforms

● Euclidean Group
● Translations + rotations
● Rigid body transforms● Rigid body transforms

● Properties: 
P di t● Preserve distances 

● Preserve angles 
● How do you represent these functions?● How do you represent these functions?
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Problems with this FormProblems with this Form
Translation and rotation considered● Translation and rotation considered 
separately
● Typically we perform a series of rotations and● Typically we perform a series of rotations and 

translations to place objects in world space
● It’s inconvenient and inefficient in the 

previous form
● Inverse transform involves multiple steps 

●How can we address it?
● How can we represent the translation as a 

matrix multiplication?
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Homogeneous CoordinatesHomogeneous Coordinates
Consider our 2D plane as a subspace within● Consider our 2D plane as a subspace within 
3D

(x y) ( )(x, y) (x, y, z)
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Matrix Multiplications and 
Homogeneous CoordinatesHomogeneous Coordinates

C l b th t d t t i● Can use any planar subspace that does not contain 
the origin
Assume our 2D space lies on the 3D plane z 1● Assume our 2D space lies on the 3D plane z = 1
● Now we can express all Euclidean transforms in matrix 

form:form:
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ScalingScaling

● S is a scaling factorg
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Example: World Space to NDCExample: World Space to NDC
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Example: World Space to NDCExample: World Space to NDC
Now it can be accomplished via a matrix●Now, it can be accomplished via a matrix 
multiplication
● Also conceptually simple● Also, conceptually simple
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Shearing
Push things

Shearing
● Push things 

sideways
● Shear along x axis● Shear along x-axis

● Shear along y-axis
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ReflectionReflection
Reflection about x axis●Reflection about x-axis

●Reflection about y-axis●Reflection about y axis
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Composition of 2D 
TransformationTransformation

Quite common to apply more than one●Quite common to apply more than one 
transformations to an object
● E g v =Sv v =Rv where S and R are scaling● E.g., v2=Sv1, v3=Rv2, where S and R are scaling 

and Rotation matrix
● Then, we can use the followingThen, we can use the following 

representation:
● v3=R(Sv1)   or
● v3=(RS)v1
● why?
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Transformation OrderTransformation Order
Order of transforms is very important●Order of transforms is very important
● Why?
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Affine TransformationsAffine Transformations
Transformed points (x’ y’) have the● Transformed points (x’, y’) have the 
following form:
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● Combinations of translations, rotations, 
scaling, reflection, shears

i● Properties
● Parallel lines are preserved

Fi it i t t fi it i t
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● Finite points map to finite points



Rigid-Body Transforms in 
OpenGLOpenGL

glTranslate (tx, ty, tz);
glRotate (angleInDegrees, axisX, axisY, axisZ);
glScale(sx, sy, sz);

OpenGL uses matrix format internally.p y
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OpenGL Example – Rectangle 
Animation (double c)Animation (double.c)

Demo
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Main Display FunctionMain Display Function

void display(void)
{

lCl (GL COLOR BUFFER BIT)glClear(GL_COLOR_BUFFER_BIT);

glPushMatrix();glPushMatrix();
glRotatef(spin, 0.0, 0.0, 1.0);
glColor3f(1.0, 1.0, 1.0);g ( , , );
glRectf(-25.0, -25.0, 25.0, 25.0);
glPopMatrix();

glutSwapBuffers();
}
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Frame BufferFrame Buffer
Contains an image for the final● Contains an image for the final 
visualization

● Color buffer depth buffer etc● Color buffer, depth buffer, etc.

B ff i iti li ti● Buffer initialization
● glClear(GL_COLOR_BUFFER_BIT);

glClearColor ( );● glClearColor (..);
● Buffer creation

l tI itDi l M d (GLUT DOUBLE |● glutInitDisplayMode (GLUT_DOUBLE | 
GLUT_RGB);

● Buffer swap
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● Buffer swap
● glutSwapBuffers();



Matrix StacksMatrix Stacks
OpenGL maintains matrix stacks●OpenGL maintains matrix stacks
● Provides pop and push operations
● Convenient for transformation operations● Convenient for transformation operations

● glMatrixMode() sets the current stack● glMatrixMode() sets the current stack
● GL_MODELVIEW, GL_PROJECTION, or 

GL TEXTUREGL_TEXTURE
● glPushMatrix() and glPopMatrix() are used to 

manipulate the stacksp
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OpenGL Matrix OperationsOpenGL Matrix Operations
lT l t (t t t )glTranslate(tx, ty, tz)

glRotate(angleInDegrees, axisX, axisY, axisZ)
Concatenate 

with the 
t t iglMultMatrix(*arrayOf16InColumnMajorOrder) current matrix

glLoadMatrix (*arrayOf16InColumnMajorOrder)

glLoadIdentity()

Overwrite the 
current matrix

g y()
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Matrix Specification in OpenGLMatrix Specification in OpenGL
Column major ordering● Column-major ordering
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● Reverse to the typical C-convention (e.g., m 
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[i][j] : row i & column j)
● Better to declare m [16]

● Also, glLoadTransportMatrix*() & 
glMultTransposeMatrix*() are available
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glMultTransposeMatrix*() are available



AnimationAnimation
It consists of “redraw” and “swap”● It consists of “redraw” and “swap”

● It’s desirable to provide more than 30 
f d (f ) f i t tiframes per second (fps) for interactive 
applications

ill l k i i l●We will look at an animation example 
based on idle-callback function
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Idle based AnimationIdle-based Animation
id (i t b tt i t t t i t i t )void mouse(int button, int state, int x, int y) 

{
switch (button) {

case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN)

glutIdleFunc (spinDisplay);g ( p p y);
break;

case GLUT_RIGHT_BUTTON:
if (state == GLUT DOWN)if (state  GLUT_DOWN)

glutIdleFunc (NULL);
break;

}

void spinDisplay(void)
{

spin = spin + 2 0;}
}

spin = spin + 2.0;
if (spin > 360.0)

spin = spin - 360.0;
l tP tR di l ()
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glutPostRedisplay();
}



Class Objectives were:Class Objectives were:
Write down simple 2D transformation●Write down simple 2D transformation 
matrixes

●Understand the homogeneous coordinates●Understand the homogeneous coordinates 
and its benefits

● Know OpenGL-transformation related API● Know OpenGL-transformation related API
● Implement idle-based animation method
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Next TimeNext Time
3D transformations● 3D transformations
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