
CS380: Computer GraphicsCS380: Computer Graphics
2D Imaging and Transformation

Sung-Eui Yoon
(윤성의)(윤성의)

C URLCourse URL:
http://sglab.kaist.ac.kr/~sungeui/CG

Class ObjectivesClass Objectives
Write down simple 2D transformation●Write down simple 2D transformation
matrixes

●Understand the homogeneous coordinates●Understand the homogeneous coordinates
and its benefits

● Know OpenGL-transformation related API● Know OpenGL-transformation related API
● Implement idle-based animation method

2

2D Geometric Transforms2D Geometric Transforms
F ti t● Functions to map
points from one place
to another

● Geometric transforms
can be applied to
● Drawing primitives

(points, lines, conics,
triangles)
Pi l di t f● Pixel coordinates of an
image

Demo

3

Demo

TranslationTranslation
T l ti h th f ll i f● Translations have the following form:

x' = x + tx
y' = y + ty 





























 x
'

'

t
t

y
xx

y y y

● inverse function: undoes the translation:






 ytyy

x = x' - tx
y = y' - ty

● identity: leaves every point unchanged
x' = x + 0x = x + 0
y' = y + 0

4

2D Rotations2D Rotations
Another group rotation about the origin:● Another group - rotation about the origin:

5

Rotations in SeriesRotations in Series
We want to rotate the object 30 degree●We want to rotate the object 30 degree
and, then, 60 degree







































y
x

cos(30) sin(30)
sin(30)- cos(30)

cos(60) sin(60)
sin(60)- cos(60)

y
x

'

'


We can merge

multiple rotations into































y
x

cos(90)sin(90)
sin(90)- cos(90)

y
x

'

'
one rotation matrix

 ycos(90) sin(90)y

6

Euclidean Transforms

E lid G

Euclidean Transforms

● Euclidean Group
● Translations + rotations
● Rigid body transforms● Rigid body transforms

● Properties:
P di t● Preserve distances

● Preserve angles
● How do you represent these functions?● How do you represent these functions?

7

Problems with this FormProblems with this Form
Translation and rotation considered● Translation and rotation considered
separately
● Typically we perform a series of rotations and● Typically we perform a series of rotations and

translations to place objects in world space
● It’s inconvenient and inefficient in the

previous form
● Inverse transform involves multiple steps

●How can we address it?
● How can we represent the translation as a

matrix multiplication?

8

Homogeneous CoordinatesHomogeneous Coordinates
Consider our 2D plane as a subspace within● Consider our 2D plane as a subspace within
3D

(x y) ()(x, y) (x, y, z)

9

Matrix Multiplications and
Homogeneous CoordinatesHomogeneous Coordinates

C l b th t d t t i● Can use any planar subspace that does not contain
the origin
Assume our 2D space lies on the 3D plane z 1● Assume our 2D space lies on the 3D plane z = 1
● Now we can express all Euclidean transforms in matrix

form:form:

10

ScalingScaling

● S is a scaling factorg
















 xsx

'

' 00





























 1
ysy'

100
00

1

11



Example: World Space to NDCExample: World Space to NDC

1
tw lw r

(w.l)x
1)(1
1)(x wn 




-1

w.tw.lw.r1)(1 

12  (w.l)x w w.b

x ?

12 



w.lw.r

(w.l)xx w
n

-1
w.l

1
w.r

xn?
xwxn = Axw+ B

l
w.lw.rB

l
A 

 ,2

12

w.lw.rw.lw.r 

Example: World Space to NDCExample: World Space to NDC
Now it can be accomplished via a matrix●Now, it can be accomplished via a matrix
multiplication
● Also conceptually simple● Also, conceptually simple










 













y
x

0
0

y
x w

w bw t2
w.lw.r
w.lw.r

w.lw.r
2

n


































1
y

100
0

1
y ww.bw.t

w.bw.t
w.bw.t
2

n



13

Shearing
Push things

Shearing
● Push things

sideways
● Shear along x axis● Shear along x-axis

● Shear along y-axis

14

ReflectionReflection
Reflection about x axis●Reflection about x-axis

●Reflection about y-axis●Reflection about y axis

15

Composition of 2D
TransformationTransformation

Quite common to apply more than one●Quite common to apply more than one
transformations to an object
● E g v =Sv v =Rv where S and R are scaling● E.g., v2=Sv1, v3=Rv2, where S and R are scaling

and Rotation matrix
● Then, we can use the followingThen, we can use the following

representation:
● v3=R(Sv1) or
● v3=(RS)v1
● why?

16

Transformation OrderTransformation Order
Order of transforms is very important●Order of transforms is very important
● Why?

17

Affine TransformationsAffine Transformations
Transformed points (x’ y’) have the● Transformed points (x’, y’) have the
following form:

 '

























y
x

aaa
aaa

y
x

232221

131211
'



















 1
3

1001

● Combinations of translations, rotations,
scaling, reflection, shears

i● Properties
● Parallel lines are preserved

Fi it i t t fi it i t

18

● Finite points map to finite points

Rigid-Body Transforms in
OpenGLOpenGL

glTranslate (tx, ty, tz);
glRotate (angleInDegrees, axisX, axisY, axisZ);
glScale(sx, sy, sz);

OpenGL uses matrix format internally.p y

19

OpenGL Example – Rectangle
Animation (double c)Animation (double.c)

Demo

20

Main Display FunctionMain Display Function

void display(void)
{

lCl (GL COLOR BUFFER BIT)glClear(GL_COLOR_BUFFER_BIT);

glPushMatrix();glPushMatrix();
glRotatef(spin, 0.0, 0.0, 1.0);
glColor3f(1.0, 1.0, 1.0);g (, ,);
glRectf(-25.0, -25.0, 25.0, 25.0);
glPopMatrix();

glutSwapBuffers();
}

21

}

Frame BufferFrame Buffer
Contains an image for the final● Contains an image for the final
visualization

● Color buffer depth buffer etc● Color buffer, depth buffer, etc.

B ff i iti li ti● Buffer initialization
● glClear(GL_COLOR_BUFFER_BIT);

glClearColor ();● glClearColor (..);
● Buffer creation

l tI itDi l M d (GLUT DOUBLE |● glutInitDisplayMode (GLUT_DOUBLE |
GLUT_RGB);

● Buffer swap

22

● Buffer swap
● glutSwapBuffers();

Matrix StacksMatrix Stacks
OpenGL maintains matrix stacks●OpenGL maintains matrix stacks
● Provides pop and push operations
● Convenient for transformation operations● Convenient for transformation operations

● glMatrixMode() sets the current stack● glMatrixMode() sets the current stack
● GL_MODELVIEW, GL_PROJECTION, or

GL TEXTUREGL_TEXTURE
● glPushMatrix() and glPopMatrix() are used to

manipulate the stacksp

23

OpenGL Matrix OperationsOpenGL Matrix Operations
lT l t (t t t)glTranslate(tx, ty, tz)

glRotate(angleInDegrees, axisX, axisY, axisZ)
Concatenate

with the
t t iglMultMatrix(*arrayOf16InColumnMajorOrder) current matrix

glLoadMatrix (*arrayOf16InColumnMajorOrder)

glLoadIdentity()

Overwrite the
current matrix

g y()

24

Matrix Specification in OpenGLMatrix Specification in OpenGL
Column major ordering● Column-major ordering





 13951 mmmm












151173

141062

mmmm
mmmm

M

● Reverse to the typical C-convention (e.g., m





 161284 mmmm

[i][j] : row i & column j)
● Better to declare m [16]

● Also, glLoadTransportMatrix*() &
glMultTransposeMatrix*() are available

25

glMultTransposeMatrix*() are available

AnimationAnimation
It consists of “redraw” and “swap”● It consists of “redraw” and “swap”

● It’s desirable to provide more than 30
f d (f) f i t tiframes per second (fps) for interactive
applications

ill l k i i l●We will look at an animation example
based on idle-callback function

26

Idle based AnimationIdle-based Animation
id (i t b tt i t t t i t i t)void mouse(int button, int state, int x, int y)

{
switch (button) {

case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN)

glutIdleFunc (spinDisplay);g (p p y);
break;

case GLUT_RIGHT_BUTTON:
if (state == GLUT DOWN)if (state GLUT_DOWN)

glutIdleFunc (NULL);
break;

}

void spinDisplay(void)
{

spin = spin + 2 0;}
}

spin = spin + 2.0;
if (spin > 360.0)

spin = spin - 360.0;
l tP tR di l ()

27

glutPostRedisplay();
}

Class Objectives were:Class Objectives were:
Write down simple 2D transformation●Write down simple 2D transformation
matrixes

●Understand the homogeneous coordinates●Understand the homogeneous coordinates
and its benefits

● Know OpenGL-transformation related API● Know OpenGL-transformation related API
● Implement idle-based animation method

28

Next TimeNext Time
3D transformations● 3D transformations

29

