CS380: Computer Graphics
Clipping and Culling

Sunag-
(
\

Course URL.:
http://sglab.kaist.ac.kr/~sungeui/CG/

KAIST

f'\ \l

Clac : o
Cias bjectives

e Understand clipping and culling

e Understand view-frustum, back-face
culling, and hierarchical culling methods

e Know various possibilities to perform
culling and clipping in the rendering
pipeline

KAIST

Cul |g and Cli pp' Ng

e Culling

e Throws away entire objects and primitives that
cannot possibly be visible

e An important rendering optimization (esp. for
large models)

e Clipping
e “Clips off” the visible portion of a primitive
e Simplifies rasterization

e Also, used to create “cut-away” views of a
model

KAIST

Power plant model
(12 million triangles) KAIST

Full model View frustum culling Occulsion culling
12 Mtris 10 Mtris 1 Mtris

5 KAIST

[" | e | "

LIITICO AllU FiIAalltCo

e Implicit equation for line (plane):

nx+ny-d=0

X

[nn n, —djy|=0 = I-p=0
1

((5:0)

e IT N is normalized then d gives the distance of the
line (plane) from the origin along n

KAIST

[" | e | "

LIITICO AllU FiIAalltCo

e Lines (planes) partition 2D (3D)
space:
e Positive and negative half-spaces

e The intersection of negative half-
spaces defines a convex region

T
\
1

KAIST

KAIST

Straddling Inside

Outside

Outside Indeterminate Inside
T-c>r —r<l-c<r l-c<-r

e Use cheap, conservative bounds for trivial cases

e Can use more accurate, more expensive tests for
ambiguous cases if needed

KAIST

10

~hinal O
vitival ‘o

11 r\ <N

Ing

e Bounding volume hierarchies accelerate culling by
rejecting/accepting entire sub-trees at a time

EaY s
1 Al

LliAnrAa |
11ici A !

e Bounding volume hierarchies (BVHS)
e ODbject partitioning hierarchies
e Uses axis-aligned bounding boxes

W i
A BVH
KAIST

1'1ICTI1 Al

llin

cnical Lulling

e Simple algorithm:

while(node Is indeterminate) recurse on

children

Indeterminate

Inside

11

Indeterminate

/

Indeterminate

B not visited
visited

12

|]
1 1 Vv III 1 ¥

\ / ~*t @ | ~
stum Culling

Pa —
VICVV I

il
I

e Test objects against planes defining view
frustum

e How do you com uls\e them?

T=[1 0 -1

e Other planes can be computed similarly
KAIST

| il

baCK-rrace Culling

e Special case of occlusion - convex self-
occlusion

e For closed objects (has well-defined inside and
outside) some parts of the surface must be
blocked by other parts of the surface

e Specifically, the backside of the object is
not visible

13 KAIST

FCam~rAa DIlarnAa TA~t
rautt ridlic | col

e Compute the plane for the face: V:

Vo

14 KAIST

I_ﬂf\f\r\ l o~ :If'\ If'\ f\
-Face Culling in OpenGL

1,

Df'\f\
pDau

e Can cull front faces or back faces
e Back-face culling can sometimes double

performance
it (cull):
glFrontFace(GL_CCW) # define winding order
glEnable(GL_CULL_FACE) # enable Culling
glCullFace(GL_BACK) # which faces to cull
else:

glDisable(GL _CULL FACE)

B

rackba emo

You can also do front-face culling!

15

B KaST

e First check endpoints against the plane

e If they are on the same side, no clipping is
needed

e Interpolate to get new point
p’:po +t(p1_po) T’p’:O
T'(po +t(p1_po)):O

P

t = _(T'po)
T-(o,-py) P I
e Vertex attributes interpolated the same

way
16 KAIST

17

llf'\f\

Cllpplng a Polygon against a
C

e Traverse edges

e Keep edges that are
entirely inside

e Create new point when
we exit

e Throw away edges
entirely outside

e Create new point and
new edge when we
enter

KAIST

18

e Sutherland-Hodgman

e Just clip against one edge at
a time

19

N1t~ AA~
UULLOUUCOS

e The Cohen-Sutherland

clipping algorithm uses e

outcodes to quickly
determine the visibility of a oo .
primitive

0000

.. 1000

e An outcode iIs created for 0011

each vertex

e Itis a bit vector with a bit
set for each plane the vertex
IS outside of

e Works for any convex
region

1001

KAIST

i1t~ AdAAfFAryrl]l inA~
UULLOUC UL LITICOS
(outcodel OR outcode?) == oo 0100 ¢$;Q9
line segment is inside t
(outcodel AND outcode?2) =0 ﬁ3$ff

_ _ _ 0010 .
line segment is totally outside

(outcodel AND outcode?) ==

line segment potentially crosses clip region

0011 v 1001

at planes indicated by set bits in

(outcodel XOR outcode?)

e False positive

e Some line segments that are classified as potentially
crossing the clip region actually don’t

20 KAIST

21

C\11+t~AnAdAA~ -Fniﬁ Tr

LUtCodes 10 |g

Combine outcodes from vertices

(outcodel OR outcode2 OR outcode3d) ==

triangle is inside
(outcodel AND outcode2 AND outcodel)
triangle is outside

(outcodel AND outcode2 AND outcode3) ==

triangle potentially crosses clip region

KAIST

. multiply vertex . homogeneous| . -
triangle —-| positions by ~ |— triangle — divide — triangle —>»- | rasterize
(xy.z1) transform matrix| (xy.z.w) (X, yiw.ziw,1)

(. .r% (E‘a 4 ‘.;“\
L/ Nl 2/
Clip space

22 KAIST

\ /i —
VICVV I

1 1 Vv r\ N

stum Clippin

il
I

e Points in projective space need to be clipped
before projection

e Primitives that straddle the z=0 plane “flip”
around infinity when projected

project then
draw gives you

this \

view frustum

we don’t want
to see this part

KAIST

23

24

llf\lf'\l

mn ~
CHpPpINg |

I Iﬁ
11

Iﬂ f\ | " If\ﬂf\f\
the Clip Space

e NDC simplify view frustum clipping

e Clip after applying projection matrix, but before
the divide by w

e clip coordinates

—WI X< W

W= —x\

W

-1

e Easy in/out test and interpolation

W= X L. =[1 -1 0]
WP B A T

I e

v, Wy —X%5) — (W, — X))

:1 -

KAIST

25

Cullin

MmN ~~
~en

I Trival
. Rejection

L

ng and Cllpplng In the

 Esa H Eewm N H Eswm N

UEIIIIQ I"I[JBIIIIE

View frustum culling

View frustum clipping and
back-face culling can be done here

Back-face culling done in setup phase
of rasterization

KAIST

r\lﬂ f'\ l 'Y e 'Y 2 o Y
wiliad J V Co VVWCIC.

e Understand clipping and culling

e Understand view-frustum, back-face
culling, and hierarchical culling methods

e Know various possibilities to perform
culling and clipping in the rendering
pipeline

26 KAIST

e Read the chapter “Raster Algorithms”

KAIST

27

28

Next Time

e Triangulating a polygon

e Rasterizing triangles

e Interpolating parameters

KAIST

