CS380: Computer Graphics
Triangle Rasterization

Sunag-
(
\

Course URL.:
http://sglab.kaist.ac.kr/~sungeui/CG/

KAIST

f'\ \l

Clac : o
Cias bjectives

e Understand triangle rasterization using
edge-equations

e Understand mechanics for parameter
Interpolations

e Realize benefits of incremental algorithms

KAIST

S\

If'\l f\'F IF-I-AA
| 0aay

OPICS 10

e Quick review of coordinate systems

e Motivation
e \What iIs rasterization?
e Why triangles?
e Rasterization
e Scan-line
e Edge equations
e Interpolation
e Beyond triangles

KAIST

model

world

eye

o
=

NDC

window

Modelview matrix

Divide by w

Viewport transformation

KAIST

v\ \ W {

" 1t ~ DAac+A
1HI11LIVE N\Ado LT

I rization

D
I

e Rasterization converts vertex representation to
pixel representation

e Coverage determination
e Computes which pixels (samples) belong to a
primitive
e Parameter interpolation

e Computes parameters at covered pixels from
parameters associated with primitive verticggy st

' AW a Nf\

Ba +
coverage LE

iﬁmv'\ ["

' ~ti
iHiifiiativlili

e Coverage is a 2D sampling problem

e Possible coverage criteria:

e Distance of the primitive
to sample point
(often used with lines)

e Percent coverage of
a pixel (used to be popular)

e Sample is inside the primitive
(assuming it is closed)

KAIST

\Allhvs 'I' ~

Why Triangle

e Triangles are simple

e Simple representation for a surface element
(3 points or 3 edge equations)

e Triangles are linear (makes computations
easier)

T= (vo V1, V)
T=(%,8,8)

KAIST

\Allhvs 'I' ~ ")

Why Triangles?

e Triangles are convex

e \What does It mean to be a convex?
Co

\/ Non-convex

An object is convex if and only If any line segment
connecting two points on ts boundary is contained
entirely within the object or one of its boundaries

KAIST

\Allhvs 'I' ~ ")

Why Triangles?

e Triangles are convex

e \Why Is convexity important?

e Regardless of a triangle’s orientation on the
screen a given scan line will contain only a
single segment or span of that triangle

e Simplify rasterization processes

KAIST

\Allhvs 'I' ~ ")

vVvily 11 'U 4
e Arbitrary polygons can be decomposed into
triangles

Convex polygon 33 Non-conveax
e Decomposing a convex n-sided polygon IS trivial

PY Cirinnnen thoe nl\lm on hac Anrdarna
OUPPUDC [9] |C PU yUU 111 Ao Ul UTI T

e It can be decomposed into triangles {(v,.v,,V,),
{Vo:VoiVs), (Vo VisViseq)s oo (Vg V1 V) F

e Decomposing a non-convex polygon is non-trivial
e Sometimes have to introduce new vertices

10 KAIST

’3

|g /

\Allavs T
vvily 111

e Triangles can approximate any 2-dimensional
shape (or 3D surface)

e Polygons are a locally linear (planar) approximation

e Improve the quality of fit by increasing the
number edges or faces

11 KAIST

Scanline Triangle Rastel

|1 Z€

e
|

e Walk along edges and process one scanline
at a time; also called edge walk method

e Rasterize spans between edges

12 KAIST

13

Scanline Triangle Rastel

|1 Z€

e
|

e Walk along edges and process one scanline
at a time

e Rasterize spans between edges

KAIST

14

Scanline Triangle Rastel

|1 Z€

e
|

e Walk along edges and process one scanline
at a time

e Rasterize spans between edges

KAIST

15

Scanline Triangle Rastel

|1 Z€

e
|

e Walk along edges and process one scanline
at a time

e Rasterize spans between edges

KAIST

16

Scanline Triangle Rastel

|1 Z€

v
|

e Walk along edges and process one scanline
at a time

e Rasterize spans between edges

KAIST

e Walk along edges and process one scanline

at a time
e Rasterize spans between edges

KAIST

17

O
O

o O / O O O 0 O

O ©) O O O ©) O ©) O ©)

/1

—
offset from edge
to pixel center

e Straightforward to interpolate values (e.g. colors)
along the edges, but must be careful when
offsetting from the edge to the pixel’s center

18 KAIST

19

C‘I\f\ Il 7\ nf\f\
Sdualllilic madol

u
| e | " q

zZing S

enes

Sort all edges by start scanline into the Inactive Edge Table

(IET)

Move edges intersected by current scanline

from IET to Active Edge Table (AET)

Compute spans between active edges

aments l
U l

Remove edges from AET when they no
longer intersect the current scanline

Sort spans by starting x

Rasterize visible span se

Sh
o A

iy

~=Z>

active
inactive

current
scanline

KAIST

11

~ r ~ DA+
ovalllliiic©c mmdolcc

"

Pt Pt
1£AllVUl |

v
|

n

e Advantages:
e Can be made quite fast
e Low memory usage for small scenes
e Do not need full 2D z-buffer (can use 1D z-
buffer on the scanline)
e Disadvantages:
e Does not scale well to large scenes
e Have to worry about fractional offsets
e Lots of special cases

20 KAIST

\nl If'\ Nf\

izing with Edge Equ

e Compute edge equations from vertices

c_n

e Compute interpolation equations from vertex parameters
e Traverse pixels evaluating the edge equations

e Draw pixels for which all edge equations are positive

e Interpolate parameters at pixels

21 KAIST

[I | 1 A

~+ B W a
ualivll LuUC

["

ffi A1 + e~
1HIVICTIHILS

C AN E
=age =0

e The cross product between 2 homogeneous
points generates the line between them

€=V, XV,
v =% Yo]]tx[xl Y1].]t
w ° =[(Vo—YD) (=%) (%6Y1—Xyo)]
A B C

E(X,y)=Ax+By+C

e A pixel at (X,y) Is “Iinside” an edge If
E(X,y)=0

22 KAIST

IIIM

Nume

I ecision

If\f\l n
ivcal r

v
l

e Subtraction of two nearly equal floating point
numbers results in catastophic cancellation which
leaves only a few significant bits

1234 x10° -1233x10° =1000x 10°

e When Xy, = X;Y, computing C = Xyy; — XY, Can
result in loss of precision

23 KAIST

24

Charad ~

olfared g

e Suppose two triangles share an edge. [iqc 1
Which covers the pixel when the edge
passes through the sample (E(x,y)=0)?

* Both triangle 2

e Pixel color becomes dependent on order of /
triangle rendering

e Creates problems when rendering transparent objects -
“double hitting”

e Neither
e Missing pixels create holes in otherwise solid surface

e \We need a consistent tie-breaker!

KAIST

25

ClhhAavr~A ~
Shared Edge
ool A>0 IfA=0
~ |B>0 otherwise
triangle2\A

/

e Coverage determination becomes
If(E(X,y) =0]| (E(X,y)==0 && 1))
pixel is covered

KAIST

ClaAavradA \/IAvéi~AaAn~
DiIIAlCU VCILILCO
e Use “inclusion direction” as a
~ tie breaker

e Any direction can be used

e Snap vertices to subpixel grid
= and displace so that no vertex
can be at the pixel center

26 KAIST

27

Other benefits of snapping to

|]
[I W A

P I ~ - Al
subpixel gria

e Simplicity
e can use fixed-point arithmetic can be used
(integer operations)
e Robustness

e With sufficient bits, edge equations and areas
can be computed exactly

e Quality
e Smoother animation than if we snapped to the
pixel grid

KAIST

28

lvvtAarmAalatrimna DAavrarnmraAatAar
111LCI PUIQLIIIU raladllicLcli

S

e Specify a parameter, say redness (r) at
each vertex of the triangle

e Linear interpolation creates a planar function

r(x,y)=Ax+By +C
KAIST

for Linear Interpolation
ns

e Given the redness of the three vertices, we can set up the

following linear system:

[, . r,]=[A, B, C]

with the solution:

[Ar Br Cr] = [rO r1 rz]

Xy X X |
Yo Y1 Y

(Yo — YD)

1 1 1

_(yl_yZ) (Xz _X1) (lez _Xzyl)—
(yo _yz) (Xz_xo) (Xoyz_xzyo)
(Xl_xo) (Xoyl_xj)/o)_

29

det|y, Y,
1 1

Y>
1

X X X |

KAIST

X X X

Area=zdet|y, VY, Y,

101 1

(XY, =%Y) = (%Yo =X Yo)+ (%Y1= XY,))
(C, +C,+C,)

e Area = 0O means that the t

visible

e Area < 0 means the triangle is back facing:
e Reject triangle if performing back-face culling
e Otherwise, flip edge equations by multiplying

by -1
KAIST

1
2
1
2

-
V IA lﬂl

oY%
UL

If\l Nll

=gu

Tl Y 'l-
erpoiatio

e The parameter plane equation is just a
linear combination of the edge equations

1
2-area

[Ar Br Cr]: [ro I’-1 rz] e1

31 KAIST

e When rendering multiple triangles we
need to determine which triangles are
visible

e Use z-buffer to resolve visibility
e Stores the depth at each pixel

e Initialize z-buffer to 1
e Post-perspective z values lie between O and 1

~ Asimple three dimensional scene

e Linearly interpolate depth (z;) across
triangles

o If z,.(X,y) < zBuffer[x][y]
write to pixel at (X,y)

zBuffer[x][y] = z4i(X.y)
. KAIST

image from wikipedia.com

Z-buffer representation

TIF N\ 1 M\ l o~ \ ‘@)
11Avye IU b
e Free to traverse pixels ‘7&
e Edge and interpolation equations can be ba ~
computed at any point /&-/\I

e Try to minimize work
e Restrict traversal to primitive bounding box

e Hierarchical traversal

eKnock out tiles of pixels (say 4x4) at a time

b=t
bt

eTest corners of tiles against equations

eTest individual pixels of tiles not entirely
Inside or outside

33 KAIST

7\ 7\ I e | oS
UIIIUI II'\U IIIIID

["

Fa¥a
1o

v
|

e Some computation can be saved by
updating the edge and interpolation
equations incrementally:

E(X,y)=Ax+By+C
E(x+A,y)=A(X+A)+By+C
=E(X,Y)+A-A
E(x,y+A)=Ax+B(y+A)+C
=E(X,y)+B-A

e Equations can be updated with a single
addition!

34 KAIST

35

T e | l ["

[riangle Setup

")

e Compute edge equations
e 3 cross products

e Compute triangle area
e A few additions

e Cull zero area and back-facing triangles
and/or flip edge equations

e Compute interpolation equations
e Matrix/vector product per parameter

KAIST

N

NnCCIV/ N
vViao o

vVC IVIUUCIO

100,000,000 primitives
1,000,000 pixels
100 visible primitives/pixel

e Cost to render a single triangle
e Specify 3 vertices
e Compute 3 edge equations
e Evaluate equations one

St. Mathew models consisting of
about 400M triangles
(Michelangelo Project)

36 KAIST

evels-of-
es

e Basic idea

e Render with fewer triangles when model is
farther from viewer

Viewer -~

e Methods
e Polygonal simplification

KAIST

n \lﬂ Iomn 7N\ M
Polygonal Simpli tion

e Method for reducing the polygon count of
me<h

Edge Collapse
—

—
Vertex Split

38 KAIST

Static LODs

e Pre-compute discrete simplified meshes
e Switch between them at runtime
e Has very low LOD selection overhead

2,000 faces 10,000 faces 50,000 faces

pPop pPop KAIST

Excerpted from Hoppe’s slides

Dynamic Simplification

e Provides smooth and varying LODs over
the mesh [Hoppe 97]

18t person’s view 3 person’s view

Play video
KAIST

View-Dependent Rendering
[Yoon et al., SIG 05]

30 Pixels of
error

Pentium 4

GeForce Go
6800 U

Double Eagle Tanker
82 Million triangles

KAIST

If

§
Q

t iIf there are so many
")

O
O
D
O
" —
U)

From “cars”, a Pixar movie

KAIST

=
Q

@

@)

h-

t

D
)

" —
U)

If

there are so many
")

From a Pixar movie

Stochastic Simplification of

Anmrnnafc Naoa fall
HH H I_/bL

Cook et al., ACM SIGGRAPH 2007 |

Figure 2: Distant views of the plant from Figure 1 with close-ups
below: (a) unsimplified, (b) with 90% of 1ts leaves excluded. (c)
with area correction, (d) with area and contrast correction.

KAIST

Occlusion Culling with Occlusion
Queries

e Render objects visible In previous frame

e Known as occlusion representation or occlusion
map

-

4

45 KAIST

Occlusion Culling with Occlusion
Queries

e Turn off color and depth writes

e Render object bounding boxes with occlusion
queries
e An occlusion query returns
the number of visible pixels

ewly visible

46 KAIST

47

Occlusion Culling with Occlusion
Queries

e Re-enable color writes
e Render newly visible objects

-

W

4

KAIST

r\lﬂ f'\ l 'Y e 'Y 2 o Y
wiliad J V Co VVWCIC.

e Understand triangle rasterization using
edge-equations

e Understand mechanics for parameter
Interpolations

e Realize benefits of incremental algorithms

48 KAIST

b

ed
N\
/

[
Z

e Texture mapping

KAIST

49

