CS380: Computer Graphics
lllumination and Shading
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e Know how to consider lights

during rendering models

e Light sources

e lllumination models

e Shading

e Local vs. global illumination
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og How Can We See

e Emission and reflection!
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e Emission and reflection!

White light S8

Reflect
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| Absorb lights other
than green light

ewton magazine
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electromagnetic waves)

Eye

e How about mirrors and white papers? kaist
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e Physically-based

e Models based on the actual physics of light's
Interactions with matter

e Empirical

e Simple formulations that approximate
observed phenomenon
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e Light sources:
e Emittance spectrum (color)
e Geometry (position and direction)

e Directional attenuation

e Surface properties:
e Reflectance spectrum (color)
e Geometry (position, orientation, and micro-
structure)
e Absorption
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Bi-Directional Reflectance
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e Describes the transport of irradiance to
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e Goniophotometer

e One 4D measurement at a time (slow)

Bt i
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One can make direct use of acquired BRDFs
in a renderer
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e Simplifications used by most computer
graphics systems:

e Compute only direct illumination from the
emitters to the reflectors of the scene

e Ignore the geometry of light emitters, and
consider only the geometry of reflectors

12 KAIST



13

T ve +||N + CA ||iﬁ

A If\ 7\ M\
AMpoient Lignt oource

e A simple hack for indirect illumination

¢ Incoming ambient illumination (I; ) Is constant
for all surfaces in the scene

e Reflected ambient illumination (I, ,) depends
only on the surface’s ambient reflection
coefficient (k,) and not its position or
orientation .=k,

e These quantities typically specified as (R, G, B)
triples
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e Point light sources emit rays from a single
point
e Simple approximation to a local light source such as a
light bulb 0
I
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e The direction to the light changes across
the surface
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e Light rays are parallel and have no origin
e Can be considered as a point light at infinity
e A good approximation for sunlight

y /

e The direction to the light source Is constant
over the surface

e How can we specify point and directional
lights?
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e Spotlights

e Point source whose
Intensity falls off away
from a given direction

e Area light sources

e Occupies a 2D area
(e.g. a polygon or a disk)

e (Generates soft shadows

e
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|deal Diffuse Reflection

e Ideal diffuse reflectors (e.g., chalk)
e Reflect uniformly over the hemisphere
e Reflection is view-independent
e Very rough at the microscopic level

e Follow Lambert’s cosine law

Ineonuing Light Rays Owtgeing Light Rays
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e The reflected energy from a small surface area
from illumination arriving from direction L is
proportional to the cosine of the angle between L
and the surface normal

N
| ~l.cos@ 0 L
~l(NeL)

Lambert's Cosine Law
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e Constant of proportionality depends on
surface propertles -

o = Koh(N L)

e The constant k, specifies how much of the
Incident light I, is diffusely reflected

Diffuse reflection for varying light directions

e When (N-L)<0 the incident light is blocked by
the surface itself and the diffuse reflection is O
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Specular Ref
e Specular reflectors have a bright, view
dependent highlight
e E.g., polished metal, glossy car finish, a mirror
e At the microscopic level a specular reflecting

surface is very smooth
e Specular reflection obeys Snell’s law

20 Image source: astochimp.com and wiki KAIST
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e The relationship between the angles of
the incoming and reflected rays with the

normal Is given by: N

L ot R
nsing =n,sing, 9'/ %
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mcomlng and outgoing ray, respectively

e Reflection is a special case where n, = n_ so 6,
= 6

e The incoming ray, the surface normal, and the
reflected ray all lie in a common plane

KAIST



lA~AtiAanrn \ /At
ICLLIVII VCULU

r\ mnll e | 'F w
Computing t | |

Re

e The vector R can be computed from the
iIncoming light direction and the surface
normal as shown below:

R =(2(N-L))N-L

e How?

2(N-L))N

22 KAIST
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e Snell’s law applies only to /deal specular
reflectors

e Roughness of surfaces causes highlight to
“spread out”

e Empirical models try to simulate the
appearance of this effect, without trying to
capture the physics of it

N
L | R
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Phong lliumination

e One of the most commonly used _
IHlumination models In computer graphics

e Empirical model and does not have no physical
basis N U

| =k_l.(cos ¢)™ L s R
_KI(VeR)"™

0 (V) IS the direction to the viewer
e (VeR) is clamped to [0,1]

e The specular exponent n, controls how quickly
the highlight falls off

KAIST



e How the shape of the highlight changes

with varying n.
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varying light direction

*11 1

varying specular exponent
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e Jim Blinn introduced another approach for
computing Phong-like illumination based
on the work of Ken Torrance:
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e H is the half-way vector that bisects the
light and viewer directions
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Ambient Diffuse Specular = Phong Reflection

From Wikipedia
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numLights o _ ~ ~
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e Problems with empirical models:

e What are the coefficients for copper?

e What are k_, k,, and n_?
Are they measurable quantities?

e Is my picture accurate? Is energy conserved?
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e Light positions are specified Iin
homogeneous coordinates

e They are transformed by the current modelview
matrix

e Directional light sources have w=0

‘B YaY=la) 4
UpenouL
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# define a directional light

lightDirection = [1, 1, 1, O]

glLightfv(GL _LIGHTO, GL_POSITION, lightDirection)
glEnable(GL _LIGHTO)

# define a point light

lightPoint = [100, 100, 100, 1]}

glLightfv(GL LIGHT1, GL POSITION, lightPoint)
glEnable(GL _LIGHT1)

# set up light’s color

glLightfv(GL _LIGHTO, GL_AMBIENT, ambientintensity)
glLightfv(GL _LIGHTO, GL _DIFFUSE, diffuselntensity)
glLightfv(GL _LIGHTO, GL_SPECULAR, specularlintensity)

KAIST



tS

N1 CrivFarnAa Dr "
NoL SuiTace ri IJ

33

glMaterialtv(GL_FRONT, GL_AMBIENT, ambientColor)
glMaterialtv(GL_FRONT, GL _DIFFUSE, diffuseColor)
glMaterialtv(GL_FRONT, GL_SPECULAR, specularColor)
giMaterialtv(GL_FRONT, GL_SHININESS, nshininess)

< OpenGL lllumination M

KAIST
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e lllumination can be expensive

e Requires computation and normalizing of
vectors for multiple light sources

e Compute illumination for faces, vertices, or
pixels with increasing realism and
computing overhead

e Correspond to flat, Gouraud, and Phong
shading respectively
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Flat Shading

e The simplest shading method

e Applies only one illumination calculation
per face

e lllumination usually computed at
the centroid of the face:

centroid = F:]L dp

e Issues?

KAIST
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e Performs the illumination model on vertices
and interpolates the intensity of the
remaining points on the surface

Notice that facet artifacts are still visible
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If vertex normals are not provided
they can often be approximated by

averaging the normals of the facets
which share the vertex
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Phana Shadi
Snading
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e Surface normal is linearly interpolated
across polygonal facets, and the
IHlumination model is applied at every point

e Not to be confused with Phong’s illumination
model

e Phong shading will usually result in a very
smooth appearance

e However, evidence of the polygonal model can
usually be seen along silhouettes

KAIST
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e Local illumination models compute the colors of
points on surfaces by considering only local
properties:

e Position of the point
e Surface properties

e Properties of any light
affect it

e No other objects in the scene
are considered neither as light
blockers nor as reflectors

e Typical of immediate-mode
renders, such as OpenGL
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e In the real world, light takes indirect paths

e Light reflects off of other materials (possibly multiple
objects)

Light is blocked by other objects
Light can be scattered

Light can be focused

Light can bend

e Harder to model

e At each point we must
consider not only every light
source, but and other point
that might have reflected light
toward it
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From slides of Pat Hanrahan

e There are still many open problems to
accurately represent various natural
materials and efficiently render them
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e Know how to consider lights

during rendering models

e Light sources

e lllumination models

e Shading

e Local vs. global illumination
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e Texture mapping
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