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Photo-realistic Renderings for 
Machines

Light Transport

Scene radiances Model descriptions
(Light, Shape, Material, Camera)

Physically-based rendering
(Rendering equation with Monte Carlo Integration)

Pixel valuesxel v
Part 1. Analysis on stochastic sampling errors

Machine Learning
Artificial Intelligence
(Convolutional Neural Network)

Part 2. One application of this approach

+ Simulated annotation database.

Self-training?
AlphaGo vs AlphaGo
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Presentation Papers
Part 1. Analysis on stochastic sampling errors

Fourier Analysis of Stochastic Sampling Strategies for Assessing 
Bias and Variance in Integration (SIGGRAPH 2013)               
Kartic Subr, Jan Kautz

To study useful indicators for evaluating sampling patterns
To analyze Gaussian jittered sampling

Part 2. One application of this approach

Render for CNN: Viewpoint Estimation in Images Using CNNs 
Trained with Rendered 3D Model Views (ICCV 2015)                 
Hao Su*, Charles R. Qi*, Yangyan Li, Leonidas J. Guibas 

To find a good application of utilizing CG renderings
To use PBRT results for learning camera viewpoints
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Fourier Analysis of Stochastic Sampling Strategies 
for Assessing Bias and Variance in Integration

High variance High bias

Analysis is non-trivial!

Shiny ball in motion

…Pixel value =

multi-dim. integral → “sampled” integrand. But,

………………

Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 
Author’s Slides from http://home.eps.hw.ac.uk/~ks400/research.html 
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Overview of this Paper
● Stochastic sampling strategies involves random variables.

Accuracy and precision of my estimations?

● Spectral analysis reduces aliasing effects in estimators
Direct insight for predicting into the first and second order 
statistics of the integrators. (theoretical contribution)

● Let’s apply it to analyse simple variants of jittered sampling. 
Experimental results to show trade-off relationships between 
random and regular sampling patterns.
Quantitative, qualitative comparisons with other strategies (PBRT). 

FFourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 
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Monte Carlo Estimator

sampled integrand

Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 
Author’s Slides from hhttp://home.eps.hw.ac.uk/~ks400/research.html 
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Strategies to Improve Estimators
1. modify weights

eg. importance sampling

2. modify locations

eg. quadrature rules

Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 
Author’s Slides from hhttp://home.eps.hw.ac.uk/~ks400/research.html 

Frequency

Amplitude (sampling spectrum)

Phase  (sampling spectrum)

* Key idea

DC

PDF!!
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Assessing Estimators using 
Sampling Spectrum

FFourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 

High-level Messages from Fourier domain 
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Error definition:

Bias: 
(Expected error)

Variance:     

Bias and variance 
of secondary MC estimators

FFourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 
Author’s Slides from hhttp://home.eps.hw.ac.uk/~ks400/research.html 

Band-limited *Point: Ideal sampling spectrum has no energy in sampling 
spectrum at frequencies where integrand has high energy
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Bias and variance 
of secondary MC estimators
● Unbiased estimator: 

● General sampling function: 

● Expected Fourier spectrum

● Weighting scheme (unbiased): 

● Random sampling:   g(x) constant PDF

FFourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 

( PDF )

PDF
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Bias and variance 
of secondary MC estimators

Real

Complex plane

centroid

ImaginaryUnbiased sampling,

Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 
Author’s Slides from hhttp://home.eps.hw.ac.uk/~ks400/research.html 

Key idea:
Jitter in position 

manifests as 
phase jitter
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Case study:
Gaussian jittered sampling

FFourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 
Author’s Slides from hhttp://home.eps.hw.ac.uk/~ks400/research.html 

Overall, jitters affect 
expected centroid. 

(More derivations 
in Appendix.)
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Case study:
Gaussian jittered sampling

Real

Imaginary
Amplitude

Phase

Imaginary

Time Fourier

Frequency

Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 
Author’s Slides from hhttp://home.eps.hw.ac.uk/~ks400/research.html 

3

2

4

1

expected centroid

centroid variance

(relative phase is key!)
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Quantitative tests

FFourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 

● Three types of synthetic datasets 

1) Four random samples to form a white quad (binary planes)

2) Delaunay triangulation of random samples (mesh) with random weights

3) Similar to Case 2. with linearly interpolated weights

● Relative errors of mean, variance for methods in PBRT-v2 and 
other implem. (50 iterations of the secondary estimator with up 
to 1024 primary samples)
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Quantitative tests: Bias-variance 
trade-off using Gaussian jitter

FFourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 

Random

Gaussian-
jittered

Fast convergence

No jitter at all
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Qualitative tests
● Gaussian jitter allows trade-offs between ‘random’ and ‘grid.’

● -

FFourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 

High biasHigh variation Trade-offs
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Conclusion
● A study of the spectral characteristics of stochastic sampling 

patterns

● Two measures for the quality of sampling strategies in terms 
of their accuracy and precision in integration

The amplitude of the expected sampling spectrum
The variance of the sampling spectrum

● Applied these measures to assess Gaussian jittered sampling 
and compared it with the box-jittered case.

● Performed quantitative and qualitative evaluations of various 
sampling methods in this new framework.

FFourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 
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Appendix 1.
Additional derivations
● Gaussian jitter of stochastic samples: Expected spectrum

● Gaussian jitter of fixed-location samples: Variance of spectrum

● Spectrum for uniform jitter (1D):

FFourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 
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Bias and variance 
of secondary MC estimators

● Statistics of Fourier spectrum over several sampling functions

- 512x512 grid, 256 2D samples, 20 iterations

- 5 sampling strategies (Gaussian jittered sampling, Halton sequences, 
Poisson-disk sampling, Random sampling)

- Amplitude of expected sampling spectrum, variance of sampling spectrum 
are more informative indicators for predicting stochastic sampling errors.

FFourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 
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● Statistics of Fourier spectrum over several sampling functions

- Simple representations in each instance of the sampling patterns             
(more expressive & informative than the conventional Periodogram)

Bias and variance 
of secondary MC estimators

FFourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 

* Shifted Dirac deltas are expressed as Euler formulas.
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Case study:
Gaussian jittered sampling

Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration

●
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Case study:
Gaussian jittered sampling
● Expectation and variance of FT for Box-jittered samples 

● Comparison of box-jitter and Gaussian jitter

FFourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 

Simple alternative to Gaussian
Box jitter is more biased if the 
integrand contains energy at 
frequencies where the ratio is 
greater than 1.
Variance of box filter is lower.
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Quantitative tests: Gaussian 
jitter converges rapidly
● -

● -

FFourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 
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Qualitative tests: Blur, Soft 
shadow
● -

FFourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 
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Render for CNN: Viewpoint Estimation in Images 
Using CNNs Trained with Rendered 3D Model Views

FFourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration 
Author’s Slides from hhttp://home.eps.hw.ac.uk/~ks400/research.html 

Wants to know this viewpoint from a photo →
(One of classical CV problems)

● If 2D renders = 2D photos, our high-level descriptions naturally 
leads to high-level understandings for machines.

● For example, let’s take a look at estimating camera viewpoints.
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Convolutional Neural Network 
(CNN)
● ImageNet: Millions of images + Human annotations (2009)

● ILSVRC Image Classification Top-5 Error (%)

RRender for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
Author’s Slides from hhttp://ai.stanford.edu/~haosu/slides/iccv_renderforcnn_website.pdf (ICCV15 Oral)

Deep Learning!
CPU↑GPU↑↑
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Introduction
● Go beyond 2D image classification

RRender for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
Author’s Slides from hhttp://ai.stanford.edu/~haosu/slides/iccv_renderforcnn_website.pdf (ICCV15 Oral)

Cropped,
Background clutters Occlusion Natural illumination
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Introduction
● Our challenge here is that human annotation is expensive.

RRender for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
Author’s Slides from hhttp://ai.stanford.edu/~haosu/slides/iccv_renderforcnn_website.pdf (ICCV15 Oral)
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Introduction

RRender for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
Author’s Slides from hhttp://ai.stanford.edu/~haosu/slides/iccv_renderforcnn_website.pdf (ICCV15 Oral)
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Key idea: Render for CNN
● CG renderings are generated by known model descriptions 

*All data is already annotated when created.

Renderings 
from 3D models

RRender for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
Author’s Slides from hhttp://ai.stanford.edu/~haosu/slides/iccv_renderforcnn_website.pdf (ICCV15 Oral)
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Rendering pipeline
● Rendering pipeline for the training stage

RRender for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
Author’s Slides from hhttp://ai.stanford.edu/~haosu/slides/iccv_renderforcnn_website.pdf (ICCV15 Oral)
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Rendering pipeline
● Self-generated data collections for machine learning

RRender for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
Author’s Slides from hhttp://ai.stanford.edu/~haosu/slides/iccv_renderforcnn_website.pdf (ICCV15 Oral)
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Rendering pipeline
● Exp. 1. 80K rendered chair images with fixed lighting sources 

RRender for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
Author’s Slides from hhttp://ai.stanford.edu/~haosu/slides/iccv_renderforcnn_website.pdf (ICCV15 Oral)
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Rendering pipeline
● Exp. 2. Randomize lighting

RRender for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
Author’s Slides from hhttp://ai.stanford.edu/~haosu/slides/iccv_renderforcnn_website.pdf (ICCV15 Oral)



35

Rendering pipeline
● Exp. 3. Composite them with random backgrounds

RRender for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
Author’s Slides from hhttp://ai.stanford.edu/~haosu/slides/iccv_renderforcnn_website.pdf (ICCV15 Oral)
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Rendering pipeline
● Exp. 4. Apply bounding boxes with proper texture

RRender for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
Author’s Slides from hhttp://ai.stanford.edu/~haosu/slides/iccv_renderforcnn_website.pdf (ICCV15 Oral)
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Rendering pipeline
● 4M synthesized images for 12 categories

RRender for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
Author’s Slides from hhttp://ai.stanford.edu/~haosu/slides/iccv_renderforcnn_website.pdf (ICCV15 Oral)
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Experimental results
● Real test images from PASCAL3D+ dataset

● Metric: median angle error (lower the better)
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Experimental results
● Azimuth Viewpoint Estimation

RRender for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
Author’s Slides from hhttp://ai.stanford.edu/~haosu/slides/iccv_renderforcnn_website.pdf (ICCV15 Oral)
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Experimental results
● Failure cases

RRender for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
Author’s Slides from hhttp://ai.stanford.edu/~haosu/slides/iccv_renderforcnn_website.pdf (ICCV15 Oral)
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Conclusion
● Images rendered from 3D models can be effectively used to 

train CNNs, especially for 3D tasks. State-of-the-art results 
has been achieved.

● Key to success
Quantity: Large scale 3D model collection (ShapeNet) + Augmentation

Quality: Overfit-resistant, scalable image synthesis pipeline

RRender for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
Author’s Slides from hhttp://ai.stanford.edu/~haosu/slides/iccv_renderforcnn_website.pdf (ICCV15 Oral)

* Self-imaging 
from descriptions
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Appendix 2. Convolutional 
Neural Network (CNN)
● Multiple layers of small neuron collections

RRender for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views

Weighted inputs
(Parameters)

Limiter 
(non-linear 
step-function)

Output to
Other 
neurons

* Observations:
1. Activation energy with for a threshold barrier 
2. Sensitive certain electric stimulus
3. Activation pattern changes from repeated inputs

* Parametric model for simulating a neural network:

* Application: Image classification→ any semantic inferences   

True? False?
Require a huge number of 
labelled data for training!
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Network details
● Loss function:

● Network structure (Based on AlexNet):

RRender for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
Author’s Slides from hhttp://ai.stanford.edu/~haosu/slides/iccv_renderforcnn_website.pdf (ICCV15 Oral)
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More experimental results 
(Supp.)
● Azimuth Viewpoint Estimation

RRender for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
Author’s Slides from hhttp://ai.stanford.edu/~haosu/slides/iccv_renderforcnn_website.pdf (ICCV15 Oral)
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Quiz


