Photo-realistic Renderings for Machines

20105034 Seong-heum Kim

CS580 Student Presentations

2016.04.28

Photo-realistic Renderings for Machines

Part 2. One application of this approach

Self-training? AlphaGo vs AlphaGo

Presentation Papers

Part 1. Analysis on stochastic sampling errors

Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration (SIGGRAPH 2013) Kartic Subr, Jan Kautz

- To study useful indicators for evaluating sampling patterns
- To analyze Gaussian jittered sampling

Part 2. One application of this approach

Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views (ICCV 2015) Hao Su*, Charles R. Qi*, Yangyan Li, Leonidas J. Guibas

- To find a good application of utilizing CG renderings
- To use PBRT results for learning camera viewpoints

Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration

Shiny ball in motion

High variance

High bias

Analysis is non-trivial!

4 Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration Author's Slides from <u>http://home.eps.hw.ac.uk/~ks400/research.html</u>

Overview of this Paper

- Stochastic sampling strategies involves random variables.
 - > Accuracy and precision of my estimations?
- Spectral analysis reduces aliasing effects in estimators
 - Direct insight for predicting into the first and second order statistics of the integrators. (theoretical contribution)

• Let's apply it to analyse simple variants of jittered sampling.

- Experimental results to show trade-off relationships between random and regular sampling patterns.
- > Quantitative, qualitative comparisons with other strategies (PBRT).

Monte Carlo Estimator

6 Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration Author's Slides from <u>http://home.eps.hw.ac.uk/~ks400/research.html</u>

Strategies to Improve Estimators

7 Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration Author's Slides from <u>http://home.eps.hw.ac.uk/~ks400/research.html</u>

Phase

(sampling spectrum)

Frequency

Assessing Estimators using Sampling Spectrum

High-level Messages from Fourier domain

Example 1. Low frequency (gain) in sampling spectrum pollutes DC value $\hat{f}_s(0)$. Example 2. In high freq., aliased copies need to get more samples (Nyquist rate). Example 3. A shift (phase) in sampling pattern also changes the aliasing effects.

Error definition:
$$\Delta \equiv I - \int_{0}^{T} f(x) S(x) dx$$

Bias:
(Expected error)
$$E[\Delta] = \langle \Delta \rangle = \hat{f}(0) - \int \langle \overline{S(w)} \rangle [\underline{f(w)} \rangle^{2} dw$$

Variance:
$$V(\Delta) = \int V(\underline{S(w)}) (\underline{f(w)})^{2} dw$$

KAIS

9 Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration Author's Slides from <u>http://home.eps.hw.ac.uk/~ks400/research.html</u>

- Unbiased estimator: $\langle \hat{\mathbf{S}}(\omega) \rangle = \delta(\omega)$
- General sampling function: $\mathbf{S}(x) = \alpha(\mathbf{X}_i) \, \delta(x \mathbf{X}_i)$ with $\mathbf{X}_i \sim g(x)$, where $g(x) : [0, T] \mapsto \mathbb{R}^+$ (PDF)
- Expected Fourier spectrum

$$\hat{\mathbf{S}}(\omega) \rangle = \langle \alpha(\mathbf{X}_i) \left(\cos(2\pi\omega\mathbf{X}_i) + i\sin(2\pi\omega\mathbf{X}_i) \right) \rangle$$

$$= \int \mathbf{\hat{S}}(\cos(2\pi\omega x) + i\sin(2\pi\omega x)) \mathbf{\hat{S}}(x) \, \mathrm{d}x$$

- Weighting scheme (unbiased): $\alpha(x) = 1/g(x) \rightarrow PDF$
- **Random sampling:** $g(x) \rightarrow constant PDF$

11 Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration Author's Slides from <u>http://home.eps.hw.ac.uk/~ks400/research.html</u>

Case study: Gaussian jittered sampling

Case study: Gaussian jittered sampling

13 Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration Author's Slides from <u>http://home.eps.hw.ac.uk/~ks400/research.html</u>

Quantitative tests

• Three types of synthetic datasets

- 1) Four random samples to form a white quad (binary planes)
- 2) Delaunay triangulation of random samples (mesh) with random weights
- 3) Similar to Case 2. with linearly interpolated weights

Test case II (piece-wise constant)

Test case III (piece-wise linear)

- Relative errors of mean, variance for methods in PBRT-v2 and other implem. (50 iterations of the secondary estimator with up to 1024 primary samples)
- 14 Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration

Quantitative tests: Bias-variance trade-off using Gaussian jitter

15 Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration

Qualitative tests

• Gaussian jitter allows trade-offs between 'random' and 'grid.'

16 Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration

Conclusion

- A study of the spectral characteristics of stochastic sampling patterns
- Two measures for the quality of sampling strategies in terms of their accuracy and precision in integration
 - The amplitude of the expected sampling spectrum
 - > The variance of the sampling spectrum
- Applied these measures to assess Gaussian jittered sampling and compared it with the box-jittered case.
- Performed quantitative and qualitative evaluations of various sampling methods in this new framework.

Appendix 1. Additional derivations

Gaussian jitter of stochastic samples: Expected spectrum

$$\langle \hat{\mathbf{S}}'(\omega) \rangle \approx_2 \frac{1 - 2(\pi \omega \sigma)^2}{N} \langle \hat{\mathbf{S}}(\omega) \rangle$$

Gaussian jitter of fixed-location samples: Variance of spectrum

$$V(\mathbf{b}_{i}) \approx_{2} (2\pi\omega\sigma)^{2} \left(\cos^{2}(2\pi\omega\mathbf{X}_{i}) + \frac{(2\pi\omega\sigma)^{2}\sin^{2}(2\pi\omega\mathbf{X}_{i})}{2}\right)$$

similarly, the variance of the real part of $\langle \hat{\mathbf{S}}'(\omega) \rangle$

$$V(\mathbf{a}_{i}) \approx_{2} (2\pi\omega\sigma)^{2} \left(\sin^{2}(2\pi\omega\mathbf{X}_{i}) + \frac{(2\pi\omega\sigma)^{2}\cos^{2}(2\pi\omega\mathbf{X}_{i})}{2} \right)$$

• Spectrum for uniform jitter (1D): $\langle \lim_{\omega \to k/T} \hat{\mathbf{S}}(\omega) \rangle = \langle e^{-i2\pi kc} \rangle \lim_{\omega \to k/T} \delta(\omega - k/T)$ = $\begin{cases} \delta(\omega) & \text{if } k = 0 \\ 0 & otherwise \end{cases}$

Statistics of Fourier spectrum over several sampling functions

- 512x512 grid, 256 2D samples, 20 iterations
- 5 sampling strategies (Gaussian jittered sampling, Halton sequences, Poisson-disk sampling, Random sampling)
- Amplitude of expected sampling spectrum, variance of sampling spectrum are more informative indicators for predicting stochastic sampling errors.
- 19 Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration

Statistics of Fourier spectrum over several sampling functions

 Simple representations in each instance of the sampling patterns (more expressive & informative than the conventional Periodogram)
 * Shifted Dirac deltas are expressed as Euler formulas.

Case study: Gaussian jittered sampling

Expectation and variance of FT for Gaussian jittered samples

$$\langle \hat{\mathbf{S}}'(\omega) \rangle \approx_2 \left(1 - \frac{(2\pi\omega\sigma)^2}{2} \right) \frac{\bot \hat{\amalg}_N(\omega)}{N}$$
$$N\left(\hat{\mathbf{S}}'(\omega) \right) \approx_2 \frac{(2\pi\omega\sigma)^2}{N} (1 + 2(\pi\omega\sigma)^2)$$

• Effect of the jitter parameter σ in terms of the frequency

- > No bias for pure DC signals.
- Jitter increases bias beyond yellow regions. (high freq.)
- > σ should be small enough to fall in the blue regions.

Case study: Gaussian jittered sampling

• Expectation and variance of FT for Box-jittered samples

$$\begin{array}{ll} \langle \hat{\mathbf{S}}'(\omega) \rangle &\approx_2 & \left(1 - \frac{(2\pi\omega\sigma)^2}{6}\right) \frac{\pm \hat{\mathbf{I}} \pm_N(\omega)}{N} \\ \mathrm{V}\left(\hat{\mathbf{S}}'(\omega)\right) &\approx_2 & \frac{(2\pi\omega\sigma)^2}{N} \left(\frac{1}{3} + \frac{4}{45}(\pi\omega\sigma)^2\right) \end{array}$$

• Comparison of box-jitter and Gaussian jitter

- Simple alternative to Gaussian
- Box jitter is more biased if the integrand contains energy at frequencies where the ratio is greater than 1.
- Variance of box filter is lower.

Quantitative tests: Gaussian jitter converges rapidly

	I: binary	II: p/w const	III: p/w linear
Random	$O(N^{-1.0020})$	$O(N^{-0.9745})$	$O(N^{-1.0098})$
Poisson disk	$O(N^{-1.0605})$	$O(N^{-1.1902})$	$O(N^{-1.3629})$
Jittered	$O(N^{-1.4171})$	$O(N^{-1.1877})$	$O(N^{-1.5003})$
Sobol	$O(N^{-1.0200})$	$O(N^{-1.0374})$	$O(N^{-1.0879})$
Halton	$O(N^{-1.4233})$	$O(N^{-1.2927})$	$O(N^{-1.5890})$
LHCube	$O(N^{-1.0112})$	$O(N^{-1.1255})$	$O(N^{-1.0903})$
Hammersley	$O(N^{-1.3813})$	$O(N^{-1.2324})$	$O(N^{-1.7772})$
BJittered:0.1	$O(N^{-1.8969})$	$O(N^{-1.6161})$	$O(N^{-1.7370})$
GJittered:0.1	$O(N^{-2.2478})$	$O(N^{-2.1373})$	$O(N^{-2.6781})$
GJittered:0.25	$O(N^{-2.1368})$	$O(N^{-1.9015})$	$O(N^{-2.5759})$
GJittered:0.5	$O(N^{-1,9464})$	$O(N^{-1.7070})$	$O(N^{-2.3969})$
GJittered: 1	$O(N^{-1.7542})$	$O(N^{-1.5311})$	$O(N^{-2.0955})$

23 Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration

Qualitative tests: Blur, Soft shadow

Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views

Wants to know this viewpoint from a photo $\rightarrow 3DV$ iewpoint Estimation

- If 2D renders = 2D photos, our high-level descriptions naturally leads to high-level understandings for machines.
- For example, let's take a look at estimating camera viewpoints.

²⁵ Fourier Analysis of Stochastic Sampling Strategies for Assessing Bias and Variance in Integration Author's Slides from <u>http://home.eps.hw.ac.uk/~ks400/research.html</u>

Convolutional Neural Network (CNN)

- ImageNet: Millions of images + Human annotations (2009)
- ILSVRC Image Classification Top-5 Error (%)

KAIST

Introduction

Go beyond 2D image classification

What's the camera viewpoint angles to the SUV in the image?

Introduction

• Our challenge here is that human annotation is expensive.

PASCAL3D+ dataset [Xiang et al.]

Introduction

How to get MORE images with ACCURATE viewpoint labels?

Key idea: Render for CNN

CG renderings are generated by known model descriptions
 *All data is already annotated when created.

• Rendering pipeline for the training stage

Self-generated data collections for machine learning

• Exp. 1. 80K rendered chair images with fixed lighting sources

95% on synthetic val set

47% on real test set ⊗

Exp. 2. Randomize lighting

ConvNet: hmm.. viewpoint is not the brightness pattern. Maybe it's the contour?

• Exp. 3. Composite them with random backgrounds

ConvNet: It becomes really hard! Let me look more into the picture.

• Exp. 4. Apply bounding boxes with proper texture

Key Lesson: Don't give CNN a chance to "cheat" - it's very good at it. When there is no way to cheat, true learning starts.

• 4M synthesized images for 12 categories

Experimental results

• Real test images from PASCAL3D+ dataset

• Metric: median angle error (lower the better)

	aero	bike	boat	bottle	bus	car	chair	table	mbike	sofa	train	tv	mean
$Acc_{\frac{\pi}{6}}$ (Tulsiani, Malik)	0.78	0.74	0.49	0.93	0.94	0.90	0.65	0.67	0.83	0.67	0.79	0.76	0.76
$Acc_{\frac{\pi}{6}}$ (Ours-Render)	0.74	0.83	0.52	0.91	0.91	0.88	0.86	0.73	0.78	0.90	0.86	0.92	0.82
MedErr (Tulsiani, Malik)	14.7	18.6	31.2	13.5	6.3	8.8	17.7	17.4	17.6	15.1	8.9	17.8	15.6
MedErr (Ours-Render)	15.4	14.8	25.6	9.3	3.6	6.0	9.7	10.8	16.7	9.5	6.1	12.6	11.7

Our model **trained on rendered images** outperforms state-of-the-art model **trained on real images** in PASCAL₃D+.

Experimental results

• Azimuth Viewpoint Estimation

Experimental results

• Failure cases

sofa occluded by people

car occluded by motorbike

ambiguous car viewpoint

ambiguous chair viewpoint

multiple cars

multiple chairs

Conclusion

• Images rendered from 3D models can be effectively used to train CNNs, especially for 3D tasks. State-of-the-art results

has been achieved.

from descriptions

- Key to success
 - Quantity: Large scale 3D model collection (ShapeNet) + Augmentation
 - Quality: Overfit-resistant, scalable image synthesis pipeline

Appendix 2. Convolutional Neural Network (CNN)

Multiple layers of small neuron collections

* Parametric model for simulating a neural network:

* Application: Image classification \rightarrow any semantic inferences

1. Activation energy with for a threshold barrier

3. Activation pattern changes from repeated inputs

2. Sensitive certain electric stimulus

* Observations:

Feature1 Feature2 Feature3 Inpu Output Smiling human with glasses True? False? Backpropagation Require a huge number of labelled data for training! KAIST

Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views 42

Network details

- Loss function: $L_{vp}(\{s\}) = -\sum_{\{s\}} \sum_{v \in \mathcal{V}} e^{-d(v,v_s)/\sigma} \log P_v(s;c_s)$
- Network structure (Based on AlexNet):

More experimental results (Supp.)

Azimuth Viewpoint Estimation

Quiz

- Which sampling method will have the lowest variance of the Monte Carlo integration?
 - **1. Random Sampling**
 - **2.** Gaussian-jittered Sampling $\sigma = 1.0$
- 3. Gaussian-jittered Sampling $\sigma = 0.1$
- 4. Halton sequence
- Which representation can have the largest number of free parameters to learn from data?
- 1. Gaussian Mixture Model (GMM)
- 2. Support Vector Machine (SVM)
- 3. Convolutional Neural Network (CNN)
- 4. Adaptive Boosting (AdaBoost)

