CS580: Radiometry and Rendering Equation

Sung-Eui Yoon (윤성의)

Course URL:

http://sgvr.kaist.ac.kr/~sungeui/GCG/

Class Objectives (Ch. 12 and 13)

• Know terms of:

- Hemispherical coordinates and integration
- Various radiometric quantities (e.g., radiance)
- Basic material function, BRDF
- Understand the rendering equation

Radiometric quantities

- Briefly touched here
- Refer to my book, if you want to know more

Motivation

Light and Material Interactions

Physics of light

Material properties

Rendering equation

Models of Light

- Quantum optics
 - Fundamental model of the light
 - Explain the dual wave-particle nature of light
- Wave model
 - Simplified quantum optics
 - Explains diffraction, interference, and polarization

- Geometric optics
 - Most commonly used model in CG
 - Size of objects >> wavelength of light
 - Light is emitted, reflected, and transmitted

Radiometry and Photometry

- Photometry
 - Quantify the perception of light energy
- Radiometry
 - Measurement of light energy: critical component for photo-realistic rendering
 - Light energy flows through space, and varies with time, position, and direction
 - Radiometric quantities: densities of energy at particular places in time, space, and direction
 - Briefly discussed here; refer to my book

Hemispheres

- Hemisphere
 - Two-dimensional surfaces
- Direction
 - Point on (unit) sphere

$$\theta \in [0, \frac{\pi}{2}]$$
$$\varphi \in [0, 2\pi]$$

From kavita's slides

Solid Angles

Full circle = 2pi radians

3D

Full sphere = 4pi steradians

Hemispherical Coordinates

- Direction, 🕞
 - Point on (unit) sphere

$$dA = (r\sin\theta d\varphi)(rd\theta)$$

From kavita's slides

Hemispherical Coordinates

- Direction, Θ
 - Point on (unit) sphere

$$sin \theta = \frac{x}{r}, \\
x = rsin \theta$$

$$dA = (r\sin\theta d\varphi)(rd\theta)$$

From kavita's slides

Hemispherical Coordinates

Differential solid angle

$$d\omega = \frac{dA}{r^2} = \sin\theta d\theta d\varphi$$

Hemispherical Integration

Area of hemispehre:

$$\int_{\Omega_x} d\omega = \int_0^{2\pi} d\varphi \int_0^{\pi/2} \sin\theta d\theta$$

$$= \int_0^{2\pi} d\varphi \left[-\cos\theta\right]_0^{\pi/2}$$

$$= \int_0^{2\pi} d\varphi$$

$$= 2\pi$$

Irradiance

- Incident radiant power per unit area (dP/dA)
 - Area density of power

- Area power density existing a surface is called radiance exitance (M) or radiosity (B)
- For example
 - A light source emitting 100 W of area 0.1 m²
 - Its radiant exitance is 1000 W/ m²

Radiance

- Radiant power at x in direction θ
 - $L(x \rightarrow \Theta)$: **5D** function
 - Per unit area
 - Per unit solid angle

Important quantity for rendering

Radiance

- Radiant power at x in direction θ
 - $L(x \rightarrow \Theta)$: 5D function
 - Per unit area
 - Per unit solid angle

$$L(x \to \Theta) = \frac{d^2 P}{dA^{\perp} d\omega_{\Theta}}$$

- Units: Watt / (m² sr)
- Irradiance per unit solid angle
- 2nd derivative of P
- Most commonly used term

Radiance: Projected Area

$$L(x \to \Theta) = \frac{d^2 P}{dA^{\perp} d\omega_{\Theta}}$$
$$= \frac{d^2 P}{d \omega_{\Theta} dA \cos \theta}$$

Why per unit projected surface area

Sensitivity to Radiance

Responses of sensors (camera, human eye) is proportional to radiance

From kavita's slides

 Pixel values in image proportional to radiance received from that direction

Properties of Radiance

Invariant along a straight line (in vacuum)

From kavita's slides

Invariance of Radiance

We can prove it based on the assumption the conservation of energy.

Relationships

Radiance is the fundamental quantity

$$L(x \to \Theta) = \frac{d^2P}{dA^{\perp}d\omega_{\Theta}}$$

• Power:

$$P = \int_{Area\ Solid} \int_{Angle} L(x \to \Theta) \cdot \cos\theta \cdot d\omega_{\Theta} \cdot dA$$

• Radiosity:

$$B = \int_{\substack{Solid\\Angle}} L(x \to \Theta) \cdot \cos \theta \cdot d\omega_{\Theta}$$

Light and Material Interactions

Physics of light

Material properties

Rendering equation

Materials

Bidirectional Reflectance Distribution Function (BRDF)

$$f_r(x, \Psi \to \Theta) = \frac{dL(x \to \Theta)}{dE(x \leftarrow \Psi)} = \frac{dL(x \to \Theta)}{L(x \leftarrow \Psi)\cos\psi dw_{\Psi}}$$

BRDF special case: ideal diffuse

Pure Lambertian

$$f_r(x, \Psi \to \Theta) = \frac{\rho_d}{\pi}$$

$$\rho_{d} = \frac{Energy_{out}}{Energy_{in}} \qquad 0 \le \rho_{d} \le 1$$

Other Distribution Functions: BxDF

- BSDF (S: Scattering)
 - The general form combining BRDF + BTDF (T: Transmittance)
- BSSRDF (SS: Surface Scattering)
 - Handle subsurface scattering

Light and Material Interactions

Physics of light

- Radiometry
- Material properties

Rendering equation

Light Transport

- Goal
 - Describe steady-state radiance distribution in the scene
- Assumptions
 - Geometric optics
 - Achieves steady state instantaneously

- Describes energy transport in the scene
- Input
 - Light sources
 - Surface geometry
 - Reflectance characteristics of surfaces
- Output
 - Value of radiances at all surface points in all directions

$$L(x \to \Theta) = L_e(x \to \Theta) + L_r(x \to \Theta)$$

$$L_r(x \to \Theta) = \int_{\Psi} L(x \leftarrow \Psi) f_r(x, \Psi \to \Theta) \cos \theta_x dw_{\Psi},$$

Applicable to all wave lengths

Rendering Equation: Area Formulation

$$L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_x \cdot d\omega_{\Psi}$$

Ray-casting function: what is the nearest visible surface point seen from x in direction Ψ?

$$y = vp(x, \Psi)$$

$$L(x \leftarrow \Psi) = L(vp(x, \Psi) \rightarrow -\Psi)$$

$$L(x \to \Theta) = L_{\varepsilon}(x \to \Theta) + \int\limits_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos\theta_x \cdot d\omega_\Psi$$

$$y = vp(x, \Psi)$$

$$L(x \leftarrow \Psi) = L(vp(x, \Psi) \rightarrow -\Psi)$$

$$d\omega_{\Psi} = \frac{dA_y \cos \theta_y}{r_{xy}^2}$$

Rendering Equation: Visible Surfaces

Integration domain extended to ALL surface points by including visibility function

Rendering Equation: All Surfaces

Two Forms of the Rendering Equation

Hemisphere integration

$$L_r(x \to \Theta) = \int_{\Psi} L(x \leftarrow \Psi) f_r(x, \Psi \to \Theta) \cos \theta_x dw_{\Psi}$$

Area integration (used as the form factor)

$$L_r(x \to \Theta) = \int_A L(y \to -\Psi) f_r(x, \Psi \to \Theta) \frac{\cos \theta_x \cos \theta_y}{r_{xy}^2} V(x, y) dA,$$

Class Objectives (Ch. 12 & 13) were:

- Know terms of:
 - Hemispherical coordinates and integration
 - Various radiometric quantities (e.g., radiance)
 - Basic material function, BRDF
 - Understand the rendering equation

Next Time

Monte Carlo rendering methods

Homework

- Go over the next lecture slides before the class
- Watch two videos or go over papers, and submit your summaries every Tue. class
 - Just one paragraph for each summary

Example:

Title: XXX XXXX XXXX

Abstract: this video is about accelerating the performance of ray tracing. To achieve its goal, they design a new technique for reordering rays, since by doing so, they can improve the ray coherence and thus improve the overall performance.

Any Questions?

- Submit three times before the mid-term exam
- Come up with one question on what we have discussed in the class and submit at the end of the class
 - 1 for already answered questions
 - 2 for questions that have some thoughts or surprise me

Fig: Invariance of Radiance

