CS580: Radiometry and Rendering Equation Sung-Eui Yoon (윤성의) **Course URL:** http://sgvr.kaist.ac.kr/~sungeui/GCG/ ## Class Objectives (Ch. 12 and 13) #### • Know terms of: - Hemispherical coordinates and integration - Various radiometric quantities (e.g., radiance) - Basic material function, BRDF - Understand the rendering equation #### Radiometric quantities - Briefly touched here - Refer to my book, if you want to know more ## **Motivation** ## **Light and Material Interactions** Physics of light Material properties Rendering equation ## **Models of Light** - Quantum optics - Fundamental model of the light - Explain the dual wave-particle nature of light - Wave model - Simplified quantum optics - Explains diffraction, interference, and polarization - Geometric optics - Most commonly used model in CG - Size of objects >> wavelength of light - Light is emitted, reflected, and transmitted ## Radiometry and Photometry - Photometry - Quantify the perception of light energy - Radiometry - Measurement of light energy: critical component for photo-realistic rendering - Light energy flows through space, and varies with time, position, and direction - Radiometric quantities: densities of energy at particular places in time, space, and direction - Briefly discussed here; refer to my book ## Hemispheres - Hemisphere - Two-dimensional surfaces - Direction - Point on (unit) sphere $$\theta \in [0, \frac{\pi}{2}]$$ $$\varphi \in [0, 2\pi]$$ From kavita's slides ## Solid Angles Full circle = 2pi radians **3D** Full sphere = 4pi steradians ## **Hemispherical Coordinates** - Direction, 🕞 - Point on (unit) sphere $$dA = (r\sin\theta d\varphi)(rd\theta)$$ From kavita's slides ## **Hemispherical Coordinates** - Direction, Θ - Point on (unit) sphere $$sin \theta = \frac{x}{r}, \\ x = rsin \theta$$ $$dA = (r\sin\theta d\varphi)(rd\theta)$$ From kavita's slides ## **Hemispherical Coordinates** Differential solid angle $$d\omega = \frac{dA}{r^2} = \sin\theta d\theta d\varphi$$ ## **Hemispherical Integration** #### Area of hemispehre: $$\int_{\Omega_x} d\omega = \int_0^{2\pi} d\varphi \int_0^{\pi/2} \sin\theta d\theta$$ $$= \int_0^{2\pi} d\varphi \left[-\cos\theta\right]_0^{\pi/2}$$ $$= \int_0^{2\pi} d\varphi$$ $$= 2\pi$$ ### Irradiance - Incident radiant power per unit area (dP/dA) - Area density of power - Area power density existing a surface is called radiance exitance (M) or radiosity (B) - For example - A light source emitting 100 W of area 0.1 m² - Its radiant exitance is 1000 W/ m² #### Radiance - Radiant power at x in direction θ - $L(x \rightarrow \Theta)$: **5D** function - Per unit area - Per unit solid angle Important quantity for rendering ### Radiance - Radiant power at x in direction θ - $L(x \rightarrow \Theta)$: 5D function - Per unit area - Per unit solid angle $$L(x \to \Theta) = \frac{d^2 P}{dA^{\perp} d\omega_{\Theta}}$$ - Units: Watt / (m² sr) - Irradiance per unit solid angle - 2nd derivative of P - Most commonly used term ## Radiance: Projected Area $$L(x \to \Theta) = \frac{d^2 P}{dA^{\perp} d\omega_{\Theta}}$$ $$= \frac{d^2 P}{d \omega_{\Theta} dA \cos \theta}$$ Why per unit projected surface area ## Sensitivity to Radiance Responses of sensors (camera, human eye) is proportional to radiance From kavita's slides Pixel values in image proportional to radiance received from that direction ## **Properties of Radiance** Invariant along a straight line (in vacuum) From kavita's slides ### **Invariance of Radiance** We can prove it based on the assumption the conservation of energy. ## Relationships Radiance is the fundamental quantity $$L(x \to \Theta) = \frac{d^2P}{dA^{\perp}d\omega_{\Theta}}$$ • Power: $$P = \int_{Area\ Solid} \int_{Angle} L(x \to \Theta) \cdot \cos\theta \cdot d\omega_{\Theta} \cdot dA$$ • Radiosity: $$B = \int_{\substack{Solid\\Angle}} L(x \to \Theta) \cdot \cos \theta \cdot d\omega_{\Theta}$$ ## **Light and Material Interactions** Physics of light Material properties Rendering equation ### **Materials** # Bidirectional Reflectance Distribution Function (BRDF) $$f_r(x, \Psi \to \Theta) = \frac{dL(x \to \Theta)}{dE(x \leftarrow \Psi)} = \frac{dL(x \to \Theta)}{L(x \leftarrow \Psi)\cos\psi dw_{\Psi}}$$ ### BRDF special case: ideal diffuse #### Pure Lambertian $$f_r(x, \Psi \to \Theta) = \frac{\rho_d}{\pi}$$ $$\rho_{d} = \frac{Energy_{out}}{Energy_{in}} \qquad 0 \le \rho_{d} \le 1$$ # Other Distribution Functions: BxDF - BSDF (S: Scattering) - The general form combining BRDF + BTDF (T: Transmittance) - BSSRDF (SS: Surface Scattering) - Handle subsurface scattering ## **Light and Material Interactions** Physics of light - Radiometry - Material properties Rendering equation ## **Light Transport** - Goal - Describe steady-state radiance distribution in the scene - Assumptions - Geometric optics - Achieves steady state instantaneously - Describes energy transport in the scene - Input - Light sources - Surface geometry - Reflectance characteristics of surfaces - Output - Value of radiances at all surface points in all directions $$L(x \to \Theta) = L_e(x \to \Theta) + L_r(x \to \Theta)$$ $$L_r(x \to \Theta) = \int_{\Psi} L(x \leftarrow \Psi) f_r(x, \Psi \to \Theta) \cos \theta_x dw_{\Psi},$$ Applicable to all wave lengths # Rendering Equation: Area Formulation $$L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_x \cdot d\omega_{\Psi}$$ Ray-casting function: what is the nearest visible surface point seen from x in direction Ψ? $$y = vp(x, \Psi)$$ $$L(x \leftarrow \Psi) = L(vp(x, \Psi) \rightarrow -\Psi)$$ $$L(x \to \Theta) = L_{\varepsilon}(x \to \Theta) + \int\limits_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos\theta_x \cdot d\omega_\Psi$$ $$y = vp(x, \Psi)$$ $$L(x \leftarrow \Psi) = L(vp(x, \Psi) \rightarrow -\Psi)$$ $$d\omega_{\Psi} = \frac{dA_y \cos \theta_y}{r_{xy}^2}$$ ## Rendering Equation: Visible Surfaces Integration domain extended to ALL surface points by including visibility function ## Rendering Equation: All Surfaces # Two Forms of the Rendering Equation Hemisphere integration $$L_r(x \to \Theta) = \int_{\Psi} L(x \leftarrow \Psi) f_r(x, \Psi \to \Theta) \cos \theta_x dw_{\Psi}$$ Area integration (used as the form factor) $$L_r(x \to \Theta) = \int_A L(y \to -\Psi) f_r(x, \Psi \to \Theta) \frac{\cos \theta_x \cos \theta_y}{r_{xy}^2} V(x, y) dA,$$ ## Class Objectives (Ch. 12 & 13) were: - Know terms of: - Hemispherical coordinates and integration - Various radiometric quantities (e.g., radiance) - Basic material function, BRDF - Understand the rendering equation ### **Next Time** Monte Carlo rendering methods #### Homework - Go over the next lecture slides before the class - Watch two videos or go over papers, and submit your summaries every Tue. class - Just one paragraph for each summary #### **Example:** Title: XXX XXXX XXXX Abstract: this video is about accelerating the performance of ray tracing. To achieve its goal, they design a new technique for reordering rays, since by doing so, they can improve the ray coherence and thus improve the overall performance. ## **Any Questions?** - Submit three times before the mid-term exam - Come up with one question on what we have discussed in the class and submit at the end of the class - 1 for already answered questions - 2 for questions that have some thoughts or surprise me ## Fig: Invariance of Radiance