Denoising Techniques

Course URL: http://sglab.kaist.ac.kr/~sungeui

Adaptive Rendering based on Weighted Local Regression

Bochang Moon¹ Nathan Carr² Sung-Eui Yoon¹

KAIST¹ Adobe²

MC Ray Tracing

MC Ray Tracing

MC Ray Tracing

Slow Convergence

MC 4 spp (7 secs) MC 32 spp (56 secs) MC 64K spp (32 hours)

Our Goal

 Reduce the required number of samples by an adaptive sampling and reconstruction

Technical Contributions

- Propose a weighted local regression based adaptive rendering method
- Adaptive Reconstruction: Estimate optimal filtering
 bandwidths for an arbitrary set of features
- Adaptive Sampling: Adaptively allocate ray samples using estimated errors

- Well-established theory in the statistics literature [Ruppert and Wand 94, Cleveland and Loader 96]
- Locally approximate an unknown function with low order polynomials (e.g., linear)

• MC input

- Locally approximate an unknown image function with linear functions
- Simple and efficient compared to its alternatives such as logistic regression and higher order functions
- Q. Non-linear functions (edges)?

Locally Linear Regression

•
$$\left[\hat{\alpha}, \hat{\beta}\right] = \min_{\alpha, \beta} \sum_{i=1}^{n} \left(y^{i} - \alpha - \beta^{T} \left(x^{i} - x^{c} \right) \right)^{2} \prod_{j=1}^{k} K\left(\frac{x_{j}^{i} - x_{j}^{c}}{bandwidth_{j}} \right)^{2}$$

- Kernel function (e.g., Gaussian) to allocate higher weights to closer pixels
- Filtering bandwidths (parameters) for features to control smoothing locally

Technical Contributions

- Propose a weighted local regression based adaptive rendering method
- Adaptive Reconstruction: Estimate optimal filtering
 bandwidths for an arbitrary set of features
- Adaptive Sampling: Adaptively allocate ray samples using estimated errors

Locally Linear Regression

• $\left[\hat{\alpha}, \hat{\beta}\right] = \min_{\alpha, \beta} \sum_{i=1}^{n} \left(y^i - \alpha - \beta^T \left(x^i - x^c \right) \right)^2 \prod_{j=1}^{k} K\left(\frac{x_j^i - x_j^c}{bandwidth_j} \right)^2$

Bias-Variance Tradeoff

•
$$\prod_{j=1}^{k} K(\frac{x_j^i - x_j^c}{bandwidth_j}) = K\left(\frac{x_1^i - x_1^c}{bandwidth_1}\right) \times K\left(\frac{x_2^i - x_2^c}{bandwidth_2}\right)$$

MC input

Bias-Variance Tradeoff

•
$$\prod_{j=1}^{k} K(\frac{x_j^i - x_j^c}{bandwidth_j}) = K\left(\frac{x_1^i - x_1^c}{bandwidth_1}\right) \times K\left(\frac{x_2^i - x_2^c}{bandwidth_2}\right)$$

•
$$\prod_{j=1}^{k} K\left(\frac{x_{j}^{i} - x_{j}^{c}}{bandwidth_{j}}\right) = K\left(\frac{x_{1}^{i} - x_{1}^{c}}{bandwidth_{1}}\right) \times K\left(\frac{x_{2}^{i} - x_{2}^{c}}{bandwidth_{2}}\right)$$

• At each center pixel, our method uses different bandwidths for each feature in a data-driven way

•
$$\prod_{j=1}^{k} K\left(\frac{x_{j}^{i} - x_{j}^{c}}{bandwidth_{j}}\right) = K\left(\frac{x_{1}^{i} - x_{1}^{c}}{bandwidth_{1}}\right) \times K\left(\frac{x_{2}^{i} - x_{2}^{c}}{bandwidth_{2}}\right)$$

•
$$\prod_{j=1}^{k} K\left(\frac{x_j^i - x_j^c}{bandwidth_j}\right) = K\left(\frac{x_1^i - x_1^c}{bandwidth_1}\right) \times K\left(\frac{x_2^i - x_2^c}{bandwidth_2}\right)$$

•
$$\prod_{j=1}^{k} K\left(\frac{x_{j}^{i} - x_{j}^{c}}{bandwidth_{j}}\right) = K\left(\frac{x_{1}^{i} - x_{1}^{c}}{bandwidth_{1}}\right) \times K\left(\frac{x_{2}^{i} - x_{2}^{c}}{bandwidth_{2}}\right)$$

MC input

•
$$\prod_{j=1}^{k} K\left(\frac{x_j^i - x_j^c}{bandwidth_j}\right) = K\left(\frac{x_1^i - x_1^c}{bandwidth_1}\right) \times K\left(\frac{x_2^i - x_2^c}{bandwidth_2}\right)$$

Results with global bandwidths

Linear Approximation vs. Ours

MC input 32 spp

Linear approx. rMSE 0.50889 rN [Bauszat et al. 11]

Ours rMSE 0.00176

Reference 16K spp

Estimation for Reconstruction Error

Adaptive Sampling

Our map using our error (Correlation 0.78) Reference map using reference error

100

50

RESULTS (IMAGES)

Equal-Time Comparison

- San Miguel
 - Path traced
 - Complex geometries
 - Depth-of-field

Equal-Quality Comparison

- Pool
 - Path traced
 - Motion blur
 - Noisy textured floor

MSE Convergence

RESULTS (ANIMATIONS)

Adaptive Rendering with Linear Predictions

Bochang Moon¹ Jose A. Iglesias-Guitian¹ Sung-Eui Yoon² Kenny Mitchell¹

Disney Research Zürich (based on Edinburgh)¹ KAIST²

Main Idea

- Approximate images with a sparse number of linear models
 - Apply expensive reconstruction only at a sparse number of pixels
 - Predict most of pixels from linear models

[Moon et al. 14] vs. Ours

- The previous work performs reconstruction at each pixel
 i.e., Number of models = pixel count
- We conduct reconstruction at a sparse number of pixels
 Reduce its computational overhead (e.g., 28X)

Previous Methods

Our Method

Previous Methods

Our Method

Equal-Time Comparisons

62 spp (57.2 s) rMSE 0.0012

45 spp rMSE 0.0019

76 spp rMSE 0.0009 Sparsity (13.3%) 32K spp

Adaptive Polynomial Rendering [SIG 16]

 Find the optimal order of the polynomial functions

Denoising with Kernel Prediction and Asymmetric Loss Functions

Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin, Alex Harvill, David Adler, Mark Meyer, Jan Novák SIGGRAPH 2018

Disnep Research WALFDISNEY PIXA A R

Adopted from authors' slide

Kernel Prediction

Basic single-frame denoiser (Bako et al. 2017)

3.1

3.2

© Disney

Multi-renderer support

Baseline generalization ability

Renderer B Input

Trained on Renderer A data

Retrained on Renderer B data

Scene by nacimus (Blendswap)

Multi-renderer support

Source-aware encoders

F 0

Temporal denoising

Reusing a pre-trained single-frame denoiser

Video Comparisons: https://tvogels.nl/kpal/slides/#/5/5

Adaptive sampling

with an error predictor

Predicted sampling map

MULTI-RENDERER SUPPORT

source-aware encoders

TEMPORAL STABILITY

cross-frame denoising

DENOISING OF LOWFREQUENCIES

a multi-scale approach

ADAPTIVESAMPLING

the errorpredictor

USER CONTROL asymmetric loss functions

© Disney / Pixar

9.3

© Disney / Pixar

© Disney / Pixar

