## Hamiltonian Light Transport

20193168 **Hyunsu Kim** 20193099 **Baekjun Kim** 

### Table of contents

- 1. Our target paper
- 2. Problems of target paper
- 3. What we've done
- 4. Difficulties
- 5. Future plan

## Anisotropic Gaussian Mutations for Metropolis Light Transport through Hessian-Hamiltonian Dynamics [T.-M. Li '15]



Anisotropic Gaussian Mutations for Metropolis Light Transport through Hessian-Hamiltonian Dynamics [T.-M. Li '15]



Hamiltonian Monte Carlo (HMC) sampling













2. **User-specified** hyperparameter  $\sigma^2$  adjusting the acceptance probability



 $\sigma^2$ 

### What we've done so far

- 1. Checked out the **source code** running correctly.
- 2. Found out a **clue** theoretically how can we explore globally.
- 3. Compared different choices of  $\sigma^2$

### Checked out the source code running correctly

#### The source codes



#### An image we created



- 1. Hamiltonian Monte Carlo preserves **energy** defined by <u>light transport function</u>.
- We found out a new mutation preserving the energy: ROTATION



- 1. Hamiltonian Monte Carlo preserves **energy** defined by <u>light transport function</u>.
- We found out a new mutation preserving the energy: ROTATION



$$E = E'$$

- 1. Hamiltonian Monte Carlo preserves **energy** defined by <u>light transport function</u>.
- 2. We found out a new mutation preserving the energy: ROTATION



- 1. Hamiltonian Monte Carlo preserves **energy** defined by <u>light transport function</u>.
- 2. We found out a new mutation preserving the energy: ROTATION



- 1. Hamiltonian Monte Carlo preserves **energy** defined by <u>light transport function</u>.
- 2. We found out a new mutation preserving the energy: ROTATION



## Compared different choices of $\sigma^2$

$$\sigma^2$$
 = 0.01



Elapsed time: 194.655secs
Large step acceptance rate: 0.085
Small step acceptance rate: 0.063
Lens step acceptance rate: 0.106
H2MC Small step acceptance rate: 0.385
H2MC Lens step acceptance rate: 0.733

$$\sigma^2$$
 = 0.05



Elapsed time: 206.41secs
Large step acceptance rate: 0.086
Small step acceptance rate: 0.176
Lens step acceptance rate: 0.226
H2MC Small step acceptance rate: 0.477
H2MC Lens step acceptance rate: 0.758

$$\sigma^2$$
 = 0.001



Elapsed time: 198.928secs
Large step acceptance rate: 0.087
Small step acceptance rate: 0.626
Lens step acceptance rate: 0.664
H2MC Small step acceptance rate: 0.715
H2MC Lens step acceptance rate: 0.802

### **Difficulties**

1. The source code includes **only one** rendering image.



2. In the paper, they modified the Hamiltonian Monte Carlo that does **not use** the energy quantity. → Can we still apply our mutation?



3.  $\sigma^2$  is **hard** to be optimized mathematically.

$$\Sigma^* = \left(\Sigma^{-1} + \frac{1}{\sigma^2}\right)^{-1}$$

### Future Plan

- 1. **Discuss** about how can we apply the theoretical mutation into the modified HMC algorithm.
- 2. **Discuss** about how can we optimize  $\sigma^2$  by referring adaptive MCMC [Andrieu and Thoms 2008, Hachisuka and Jensen 2011]
- 3. **Apply** the improved algorithm.
- 4. **Evaluate** our development by comparing with this paper and the reference.