Microfacet model and Microfacet-based BRDF

2019.05.16 20186413 Murat Gaspard

Physically based microfacet BRDFs

$$L_o = \int_{\Omega_+} L_i \cdot f_{r} \cdot \cos \theta_i \cdot d\omega_i$$

From Hakyeong Kim's talk:

Materials = microsurfaces

Microsurfaces properties can be manipulated

$$f_r = \frac{F \cdot D \cdot G}{4 \cdot \cos \theta_i \cdot \cos \theta_o}$$

Papers

 Extracting Microfacetbased BRDF Parameters from Arbitrary Materials with Power Iterations

Jonathan Dupuy Eric Heitz Pierre Poulin Victor Ostromoukhov Eurographics Symposium on Rendering 2015

• Fast Global Illumination with Discrete Stochastic Microfacets Using a Filterable Model

Beibei Wang Lu Wang Pierre Poulin Nicolas Holzschuch Pacific Graphics 2018

Extracting Microfacet-based BRDF Parameters from Arbitrary Materials with Power Iterations

Jonathan Dupuy Eric Heitz Pierre Poulin Victor Ostromoukhov

Eurographics Symposium on Rendering 2015

Context

Real (real materials)

Digital (microfacet BRDFs)

Context

Real (real materials)

Digital (microfacet BRDFs)

How to retrieve the microsurface from real material?

Microfacet BRDF Fitting

Approach:

- Fitted microsurface
- Minimize fitting metrics

Current limitations:

- Robustness / Speed
- Arbitrary metrics
- Reproducibility

Contribution

Idea:

- Find the NDF
- Approximize the Fresnel term

Properties:

- Robustness
- Simplicity
- Speed
- Reproducibility

Input

NDF

Fresnel

- Tabulated
- GGX
- Beckmann

Assumption:

Single-bounce mirror reflection dominates on the microsurface

$$f_r = \frac{F(\theta_d)D(\mathbf{h})G(\mathbf{i},\mathbf{o})}{4\cos\theta_i\cos\theta_0}$$

Assumption:

Single-bounce mirror reflection dominates on the microsurface

$$f_r = \frac{F(\theta_d)D(\mathbf{h})G(\mathbf{i},\mathbf{o})}{4\cos\theta_i\cos\theta_0}$$

Halfway vector, $h = \frac{i + o}{11i \cdot 11}$

Assumption:

Single-bounce mirror reflection dominates on the microsurface

$$f_r = \frac{F(\theta_d)D(h)G(i,o)}{4\cos\theta_i\cos\theta_0}$$

Incident radiance $\phi = 270^{\circ}$ Viewer $\phi = 180^{\circ}$ $\phi = 90^{\circ}$ Viewer $\phi = 90^{\circ}$

 θ_d = difference angle in the BRDF parameterization of Rusinkiewicz

$$\theta_d = \arccos(\mathbf{i} \cdot \mathbf{h}) \in [0, \pi/2]$$

Microfacet slopes

Goal:

Simplified the search of the NDF

Normalization constraint on the NDF:

$$\int_{\Omega_+} D(\boldsymbol{h}) \cos \theta_h d \omega_h$$

Microfacet slopes

Goal:

Simplified the search of the NDF

Idea:

Instead of searching in the horizontal space (Ω_+) , we search into the slopes space (\mathbb{R}^2) In the Ω + set, normals and slopes are linked through the bijection

$$\widetilde{\boldsymbol{h}} = \begin{bmatrix} - \tan \theta & \cos \phi & = \widetilde{\boldsymbol{x}}_k \\ - \tan \theta & \sin \phi & = \widetilde{\boldsymbol{y}}_k \end{bmatrix}, \qquad \widetilde{\boldsymbol{h}} \in \mathbb{R}^2$$

Microfacet slopes

Goal:

Simplified the search of the NDF

Idea:

Instead of searching in the horizontal space (Ω_+) , we search into the slopes space (\mathbb{R}^2) In the Ω + set, normals and slopes are linked through the bijection

$$\widetilde{\boldsymbol{h}} = \begin{bmatrix} -\tan\theta & \cos\phi & = \widetilde{\boldsymbol{x}}_k \\ -\tan\theta & \sin\phi & = \widetilde{\boldsymbol{y}}_k \end{bmatrix}, \qquad \widetilde{\boldsymbol{h}} \in \mathbb{R}^2$$

Normal Distribution fonction

$$f_r = \frac{F(\theta_d) D(h) G(i,o)}{4 \cos \theta_i \cos \theta_0}$$

$$D(\boldsymbol{h}) = P(\widetilde{\boldsymbol{h}})sec^4\theta_h$$

Probability distribution function P

Normalisatio constraint:

$$\int_{\mathbb{R}^2} P(\widetilde{\boldsymbol{h}}) d\widetilde{\boldsymbol{h}} = 1$$

Geometric attenuation factor

$$f_r = \frac{F(\theta_d)D(h)G(i,o)}{4\cos\theta_i\cos\theta_0}$$

$$G(i,o) = \frac{G_1(i)G_1(0)}{G_1(i)+G_1(0)-G_1(i)G_1(0)} G \in [0,1]$$

Smith monostatic shadowing function:

$$G_1(\mathbf{k}) = \frac{\cos\theta_k}{\int_{\Omega_+} \mathbf{k} h \, D(\mathbf{h}) \, d\omega_k} \qquad G_1 \in [0,1]$$

Backscattering Equation

Mathematical (previous work)

We focus on backscattering configuration which reduce the dimensionality of the BRDF

$$\mathbf{I} = \mathbf{o} = \mathbf{h} \qquad \qquad \theta_d = 0$$

$$f_{r} = \frac{F_{o}D(\boldsymbol{o})G(\boldsymbol{o},\boldsymbol{o})}{4\cos^{2}\theta_{0}}$$

$$f_r = \frac{F_o D(\boldsymbol{o}) G_1(\boldsymbol{o})}{4 \cos^2 \theta_0}$$

$$G(\boldsymbol{o}, \boldsymbol{o}) = G_1(\boldsymbol{o})$$

$$f_r = \frac{F_0 D(o) G_1(o)}{4 \cos^2 \theta_0}$$

Inverted equation

$$F_0 P(\tilde{o}) = \int_{\Omega^+} K(o,h) P(\tilde{h}) d\omega_h$$

(Fredholm equation of the second kind)

$$K(\mathbf{o}, \mathbf{h}) = 4f_r(\mathbf{o}, \mathbf{o}) \cos^5 \theta_o \, \mathbf{oh} \, \sec^4 \theta_h.$$

$$f_{r} = \frac{F_{o}D(o)G_{1}(o)}{4\cos^{2}\theta_{0}}$$

$$F_0 P(\tilde{o}) = \int_{O+} K(o,h) P(\tilde{h}) d\omega_h$$

Numerically sovled by discretizing the equation with a quadrature rule

$$F_0 P(\tilde{o}_i) = \sum_{i=1}^N w_j K(o_i, \mathbf{h}_j) P(\widetilde{\mathbf{h}}_j)$$

$$F_0 P(\tilde{o}_i) = \sum_{i=1}^N w_j K(o_i, \mathbf{h}_j) P(\tilde{\mathbf{h}}_j)$$

$$F_0 \mathbf{p} = \mathbf{K} \cdot \mathbf{p}$$

$$\mathbf{p} = (P(\tilde{\mathbf{o}}_1), \cdots, P(\tilde{\mathbf{o}}_N))^t$$

$$\mathbf{K} = \begin{bmatrix} w_1 K(\mathbf{o}_1, \mathbf{h}_1) & \cdots & w_N K(\mathbf{o}_1, \mathbf{h}_N) \\ \vdots & \ddots & \vdots \\ w_1 K(\mathbf{o}_N, \mathbf{h}_1) & \cdots & w_N K(\mathbf{o}_N, \mathbf{h}_N) \end{bmatrix}$$

$$f_{r} = \frac{F_{o}D(o)G_{1}(o)}{4\cos^{2}\theta_{0}}$$

$$F_{0}.p(\tilde{o}) = K.p$$
Discretize PDF vector nonnegative matrix

Perron-Frobenius theorem

the solution is always the eigenvector

with the largest magnitude

Backscattering Equation

$$F_0 P(\widetilde{\boldsymbol{o}}) = \int_{\Omega^+} K(\boldsymbol{o}, \boldsymbol{h}) P(\widetilde{\boldsymbol{h}}) d\omega_h$$

$$f_r = \frac{F_o D(\boldsymbol{o}) G(\boldsymbol{o}, \boldsymbol{o})}{4 \cos^2 \theta_0}$$

Algorithm 1 Extract *P*

```
function EXTRACT_P(f_r, N)

for each i, j \in [1, N] do \triangleright Build kernel matrix K_{i,j} \leftarrow w_j \, 4f_r(\mathbf{o}_i, \mathbf{o}_i) \, \cos^5 \theta_{o_i} \, \mathbf{o}_i \mathbf{h}_j \, \sec^4 \theta_{h_j}

end for \mathbf{p} \leftarrow (1, \cdots, 1)^t

for 0 \le i < M do \triangleright Power iterations (we set M = 4) \mathbf{p} \leftarrow \mathbf{K} \cdot \mathbf{p}

end for P \leftarrow \text{normalize}(\mathbf{p})

end function
```

Ideal Mirrors

Special microfacet BRDF:

- Fresnel term is 1
- Independent of wavelength

$$f_{r,id} = \frac{D(o)G_1(o)}{4\cos\theta_0\cos\theta_i}$$

Fresnel Extraction

We compute an average response :

- Fully automatic
- Simple implementation
- Fast evaluation
- Works well in practice

$$F(\theta_d) = \mathbb{E}\left[\frac{f_r}{f_{r,id}}\middle| ih = cos\theta_0\right]$$

Fresnel Extraction

We compute an average response:

- Fully automatic
- Simple implementation
- Fast evaluation
- Works well in practice

$$F(\theta_d) = \mathbb{E}\left[\frac{f_r}{f_{r,id}}\middle| ih = cos\theta_0\right]$$

```
Algorithm 2 Extract F
    function EXTRACT_F(f_r, f_{r,id})
          for \theta_d \in [0, \pi/2] do
                F(\theta_d) \leftarrow 0
                N \leftarrow 0
                for \phi_d, \phi_h \in [0, 2\pi], \theta_h \in [0, \pi/2] do
                       i \leftarrow \text{from\_half\_diff}(h, d)
                       \mathbf{o} \leftarrow \text{reflect}(\mathbf{i}, \mathbf{h})
                       F(\theta_d) \leftarrow F(\theta_d) + f_r(\mathbf{i}, \mathbf{o}) / f_{r,id}(\mathbf{i}, \mathbf{o})
                       N \leftarrow N + 1
                 end for
                F(\theta_d) \leftarrow F(\theta_d)/N
          end for
```

end function

Validation

29 gold-metallic-paint

Renderings

Validation

29 gold-metallic-paint

Renderings

Accuracy

Mean delta-E difference image on the MERL database

Speed

(Intel i5-2500 @ 3.30 GHz)

Microfacet BRDFs

$$f_r = \frac{F \cdot D \cdot G}{4 \cdot \cos \theta_i \cdot \cos \theta_o}$$

Modular components

- Fresnel term F
- Distribution of normals D
- Roughness α
- Geometric factor G

Images from "Real-Time Rendering, 3rd Edition", A K Peters 2008

Artistic Control

$$D = P\left(\frac{\tilde{x}_h}{\alpha_x}, \frac{\tilde{y}_h}{\alpha_y}\right) \frac{\sec^4 \theta_h}{\alpha_x \alpha_y}$$

Tabulate the slope PDF

- Roughness \propto stretch⁻¹
- Efficient BRDF evaluation
- Efficient BRDF sampling

Fast Global Illumination with Discrete Stochastic Microfacets Using a Filterable Model

Beibei Wang Lu Wang Pierre Poulin Nicolas Holzschuch

Pacific Graphics 2018

Goal

Original Without Glints

Previous work

Jakob et al.

Discrete Stochastic Microfacet Models

Previous work

Jakob et al.

Discrete Stochastic Microfacet Models

These specular patches are organized in a hierarchy

Discrete Stochastic Microfacet Model

Extend the microsurface BRDF model to take into account a finite extend in space and angle

$$\hat{f}_r(A, \omega_i, \Omega_0) = \frac{1}{a(A)\sigma(\Omega_0)} \int_A \int_{\Omega_0} f_r(x, \omega_i, \omega_o) d\omega_o dx$$

A = finite area around x Ω_0 = finite solid angle around outgoing dirrection ω_o

$$f_r(x, \omega_i, \omega_o) = \frac{F(\omega_i, \omega_o)D(x, \omega_h)G(\omega_i, \omega_o, \omega_h)}{4\cos\theta_i \cos\theta_0}$$

Discrete Stochastic Microfacet Model

We now assume the surface is made of discrete small mirror particles instead of a continuous microfacets

$$\hat{f}_r(A,\omega_i,\Omega_0) = \frac{1}{a(A)\sigma(\Omega_0)} \int_A \int_{\Omega_0} f_r(x,\omega_i,\omega_o) d\omega_o dx \qquad \Longrightarrow \qquad \hat{f}_r(A,\omega_i,\Omega_0) = \frac{(\omega_i \cdot \omega_h) F(\omega_i,\omega_o) \widehat{D}(x,\omega_h) G(\omega_i,\omega_o,\omega_h)}{a(A)\sigma(\Omega_0) 4(\omega_i \cdot n)(\omega_i \cdot n)}$$

$$\widehat{D}(x,\Omega_h) = \frac{1}{N} \sum_{i=1}^{N} 1_{\Omega_h}(\omega_h^k) 1_A(x^k)$$

Sum of a finite set of particles

A = pixel footprint

Discrete Stochastic Microfacet Model

$$\widehat{D}(x,\Omega_h) = \frac{1}{N} \sum_{i}^{N} 1_{\Omega_h}(\omega_h^k) 1_A(x^k)$$

Sum of a finite set of particles

A = pixel footprint

4 dimensional normal distribution Count the number of particles in the 4 dimensional domain $A \times \Omega_h$

Replace the particle count with a particle probability function Introduce a Directional Probability Function (DPF)

 $P(\omega_i, \omega_o, \gamma)$ = probability a particle exist that reflect lights incoming from direction ω_i into a coecentered around direction ω_o with half angle γ

x and $(\omega i, \omega o)$ are independent variables

Replace the particle count with a particle probability function Introduce a Directional Probability Function (DPF)

$$P(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o, \boldsymbol{\gamma}) \approx \frac{1}{N} \sum_{k=1}^{N} \mathbf{1}_{\Omega_h}(\boldsymbol{\omega}_h^k)$$

$$\hat{D}(A, \boldsymbol{\omega}_i, \boldsymbol{\omega}_o) = (\frac{1}{N} \sum_{k=1}^{N} \mathbf{1}_A(\boldsymbol{x}^k)) P(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o, \boldsymbol{\gamma})$$

x and $(\omega i, \omega o)$ are independent variables

$$\hat{D}(A, \boldsymbol{\omega}_i, \boldsymbol{\omega}_o) = \frac{1}{N} \sum_{k=1}^{N} \mathbf{1}_A(\boldsymbol{x}^k) H(\lambda(\boldsymbol{x}) - P(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o, \gamma))$$

$$H(u) = \begin{cases} 1, & \text{if } u > 0, \\ 0, & \text{otherwise.} \end{cases}$$

$$\hat{D}(A, \boldsymbol{\omega}_i, \boldsymbol{\omega}_o) = \frac{1}{N} \sum_{k=1}^{N} \mathbf{1}_A(\boldsymbol{x}^k) H(\lambda(\boldsymbol{x}) - P(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o, \gamma))$$

$$H(u) = \begin{cases} 1, & \text{if } u > 0, \\ 0, & \text{otherwise.} \end{cases}$$

 $\lambda(x)$ = uniformly Distributed random value from Tiny Encription Algorithm

 $\lambda(x)$ is used to assign a random value between 0 and 1 to each positio x

Peprocess

compute and store P for $\gamma = 1^{\circ}$, by sampling regularly in each dimension, computing and storing the value for P.

Peprocess

- Build a hierarchical representation of the Directional Probability Function, using Gaussian blur
- Each level is generated by blurring the finest level
- 9 hierarchical levels, for 1°, 2°, 5°, 10°, 20°, 30°, 45°, 60° and 90°

2 steps hierachical traversal

- Angle

- Space

Look up in the precomputed table; Select the approriate hierachical level; Extract the prcomputed value for P

```
Algorithm 1 Spatial Traversal
   function \hat{D}_s(A, \omega_i, \omega_o)
        query \leftarrow A
        queue \leftarrow node(N_{\text{start}})
        count \leftarrow 0
        p \leftarrow P(\omega_i, \omega_o)
         while queue \neq \emptyset do
             node \leftarrow queue.pop()
              if node \cap query == \emptyset or |\text{node}| = 0 then pass
              else if node \subseteq query then n_k \leftarrow |\text{node}|
                  for i < n_k do \psi \leftarrow \lambda(k)
                        if \psi > p then count \leftarrow count + 1
                        end if
                   end for
              else if error criterion satisfied then
                   overlap \leftarrow (node \cap query).vol()/node.vol()
                  n_k \leftarrow |\text{node}|
                  for i < n_k \operatorname{do} \psi \leftarrow \lambda(k)
                        if \psi > p then count \leftarrow count + overlap
                        end if
                   end for
              else
                   for c in node.split() do queue.push(c)
                  end for
             end if
         end while
         return count
   end function
```


Algorithm 1 Spatial Traversal 2 steps hierachical traversal function $\hat{D}_s(A, \omega_i, \omega_o)$ Angle query $\leftarrow A$ queue $\leftarrow node(N_{\text{start}})$ Space $count \leftarrow 0$ $p \leftarrow P(\omega_i, \omega_o)$ while queue $\neq \emptyset$ do $node \leftarrow queue.pop()$ if node \cap query == \emptyset or |node| = 0 then pass **else if** node \subseteq query **then** $n_k \leftarrow |\text{node}|$ **for** $i < n_k$ **do** $\psi \leftarrow \lambda(k)$ if $\psi > p$ then count \leftarrow count + 1 end if end for Traversal in texture space; else if error criterion satisfied then $overlap \leftarrow (node \cap query).vol()/node.vol()$ Assume flakes are uniformly distributed in space; $n_k \leftarrow |\text{node}|$ **for** $i < n_k \operatorname{do} \psi \leftarrow \lambda(k)$ Texture Space if $\psi > p$ then count \leftarrow count + overlap end if end for else **for** c in node.split() **do** queue.push(c) Footprint end for end if end while return count end function

Filterable Glint Computation

- For each path, compute the path footprint at each light bounce
- Compute the average glint contribution at this footprint

$$\hat{D}(A, \omega_i, \omega_o) = a(A) \times P(\omega_i, \omega_o, \gamma),$$

- If the glint count is larger than a given threshold, use the average contribution.
- Otherwise, use the separable model described

Discrete Stochastic Microfacets Using a Filterable Model

Idea:

If a footprint cover a large surface,

- individual glint are not noticeable;
- average contribution

In practice:

Filterable model preafer for

- material far from camera;
- Several bounce in global illumination

Validation

Speed

(Intel i7 (40 cores) with 32 GB of main memory @ a 2.20GHz)

Speed

(Intel i7 (40 cores) with 32 GB of main memory @ a 2.20GHz)

Speed

(Intel i7 (40 cores) with 32 GB of main memory @ a 2.20GHz)

Quiz

In 'Extracting Microfacet-based BRDF Parameters from Arbitrary Materials with Power Iterations', a bijection is used to link () space and the slopes space ().

a.
$$\Omega_d$$
 and \mathbb{R}^4

a.
$$\Omega_d$$
 and \mathbb{R}^4 c. \mathbb{R}^2 and Ω_+

b.
$$\Omega_+$$
 and \mathbb{R}^2

d.
$$\mathbb{R}^2$$
 and Ω_d

■ In 'Fast Global Illumination with Discrete Stochastic Microfacets Using a Filterable Model', which variables do we consider for indépendance?

a. x and
$$(\omega_i, \omega_o)$$
 c. γ and (ω_i, ω_o)

c.
$$\gamma$$
 and (ω_i, ω_o)

b. x and
$$\gamma$$

d.
$$\omega_h$$
 and γ