#### **CS580**:

# **Graduate-Level Computer Graphics**

Focus on rendering

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/GC



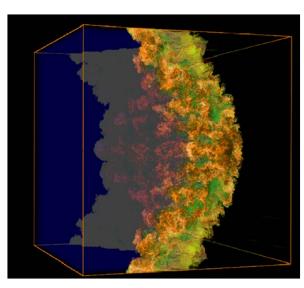
#### **About the Instructor**

- Main research focus
  - Rendering, robotics, and vision
- 2018/2012~: ACM/IEEE Senior member
- 2015: Gave a SIGGRAPH tutorial on imagespace denoising
- 2011~2012: conf. and program co-chairs of ACM symp. on Interactive 3D Graphics and Games (I3D)
- Joined KAIST at 2007



# Past: Rendering Massive Geometric Data




Boeing 777, 470 M tri.



Large-scale virtual world, 83 M tri.



Scanned model, 372 M tri. (10 GB)



Over 3 Terabytes of geometric data



# Present: Scalable Ray Tracing, Image Search, Motion Planning

 Designing scalable graphics and geometric algorithms to efficiently handle massive models on commodity hardware



Photo-realistic rendering



Image search



Motion planning



# Recognitions and Collaborations

- 2019: 차세대 과학자상 수상 (IT 부문)
- Test-of-Time Award 2006 at 2015, High
   Performance Graphics

 Produced a few professors at GIST (렌더링), KOREATECH (시뮬레이션, 충돌탐지), SKKU (이미지 검색)

 hèncom ▲MSUND (한 LG ▲MSUND)

 Worked on research collaborations with many domestic and international companies, and funding agencies























#### **About the Instructor**

- Contact info
  - Email: KLMS or sungeui@kaist.edu
  - Office: 3432 at CS building (E3-1)
  - Homepage: <a href="http://sgvr.kaist.ac.kr/~sungeui">http://sgvr.kaist.ac.kr/~sungeui</a>



#### **Class Information**

- Class time
  - 2:30pm ~ 3:45pm on MW
  - Hybrid: offline class in this semester
- Office hours
  - Right after class or KLMS board



#### **TA Information**

- Jaeyoon Kim (김재윤)
  - kimjy2630@gmail.com
  - Office: 3443 at CS building (E3-1)

 Share questions on KLMS first, before sending emails to TAs



#### **Overview**

 We will discuss various parts of computer graphics, especially on interactive rendering



Modelling

**Simulation & Rendering** 

**Image** 

Computer vision inverts the process
Image processing deals with images
Robotics/AR combine real and virtual worlds



# **Applications of Computer Graphics**

- Games
- Augmented or virtual reality (AR/VR)
- Movies and film special effects
- Product design and analysis
- Medical applications
- Scientific visualization



### Games





2D game

3D shooting game

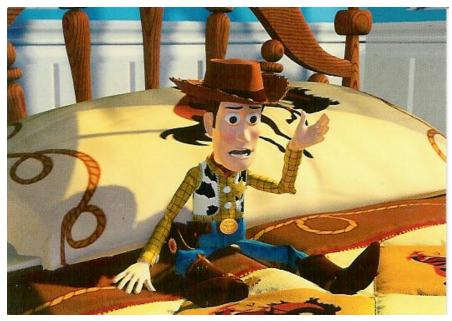


# Game Industry at Korea

One of biggest IT sectors in Korea

창원에 엔씨소프트 프로야구단 생긴다(종합)




새롭게 창단하는 구단은 모기업의 당기 순이 익이 1천억원 이상이거나, ...

#### KBO 이사회 개최

(서울=연합뉴스) 이상학 기자 =11일 오전 서울 강남구 도곡동 야구회관에서 열린 KBO 이사회에서 유영구 총재가 회의를 주재하고 있다. 8개 구단 사장단이 참석한 가운데 열린 이날 이사회에서는 9구단 중인 여부 등을 논의한다,2011,1,11 leesh@yna,co,kr



# **Movies and Film Special Effects**





**Toy story** 

**Matrix** 



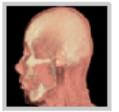
# **3D Movies**



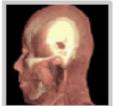
**Avatar** 



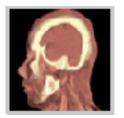
# **Product Design and Analysis**

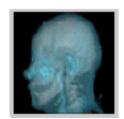

Computer-aided design (CAD)



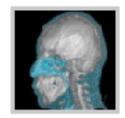

# **Medical Applications**

Visualizing data of CT, MRI, etc















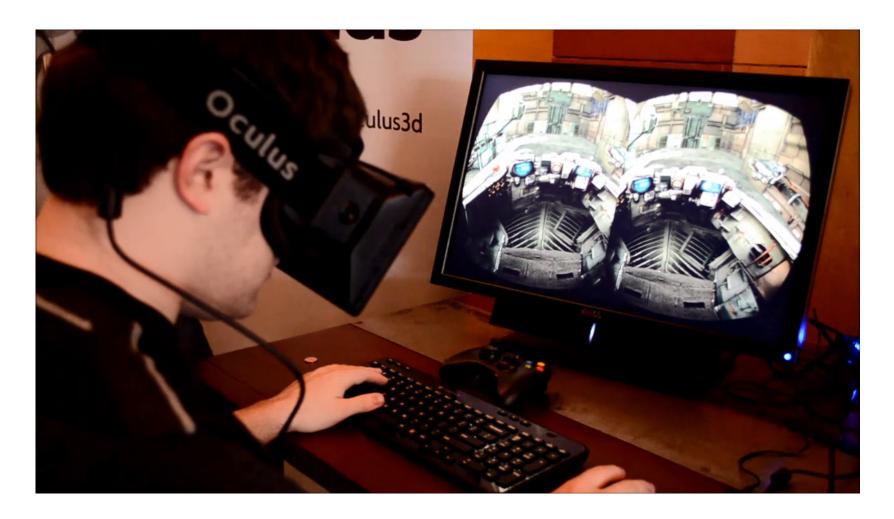


Rapidia homepage



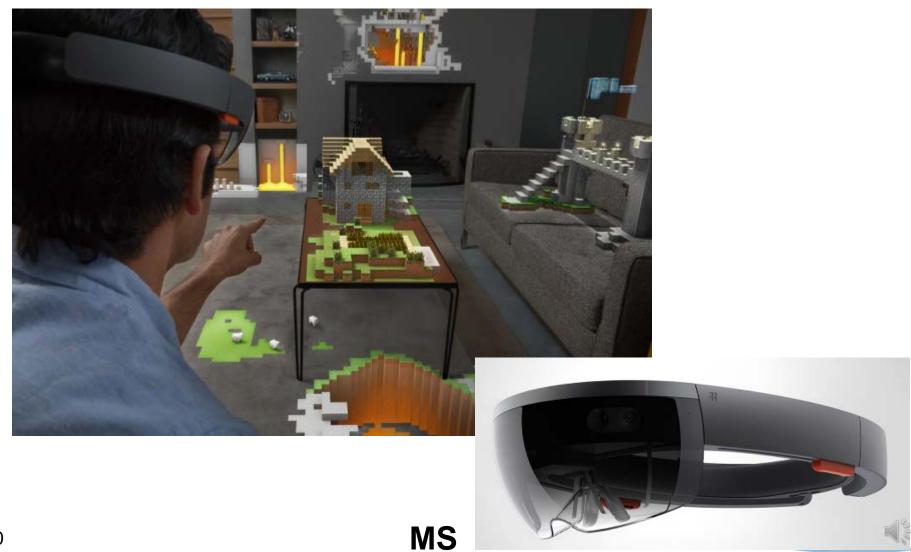
# **Medical Applications**

Visualizing data of CT, MRI, etc

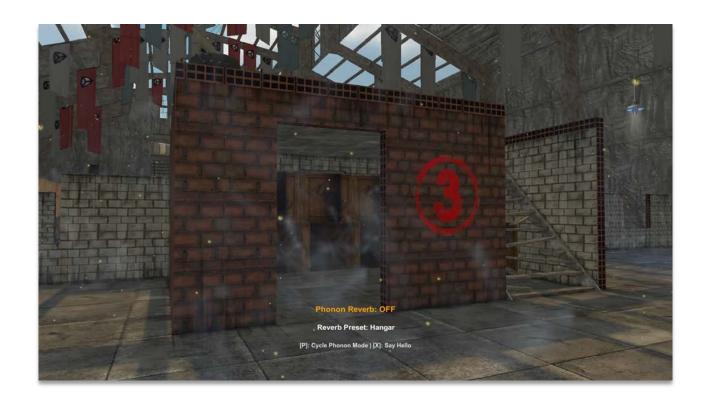



Wikipedia

Mouse skull (CT)



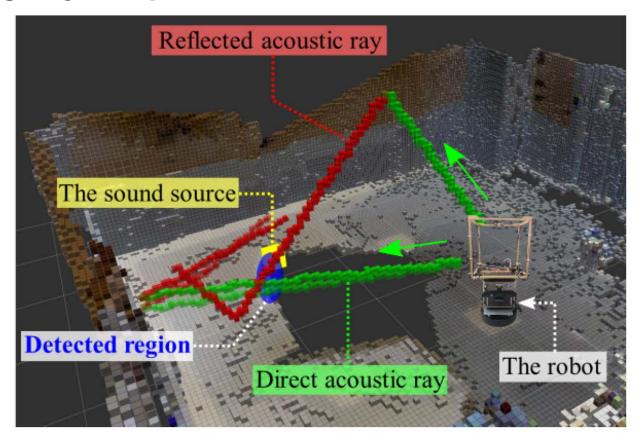

# **Head-Mounted Display (HMD) for VR**






# HoloLens for Augmented Reality (AR)




# Sound Rendering





#### **Sound Localization**

- React to sound in AR applications
  - Tightly couple real and simulated environments





#### **About the Course**

- We will focus on the following things:
  - Study basic concepts of physically-based rendering
  - Study recent techniques, and discuss their pros and cons

• Implement a recent technique, and discuss its

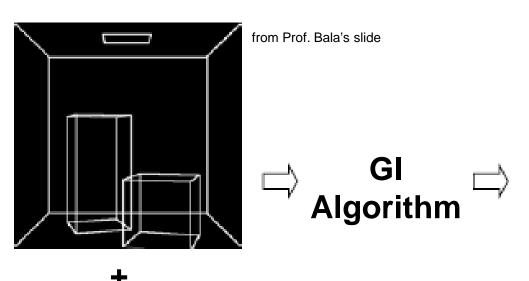
pros and cons





# Photo-Realistic Rendering

Achieved by simulating light and material interactions




- Rendering equation
  - Mathematical formulation of light and material interactions



# Global Illumination (GI)

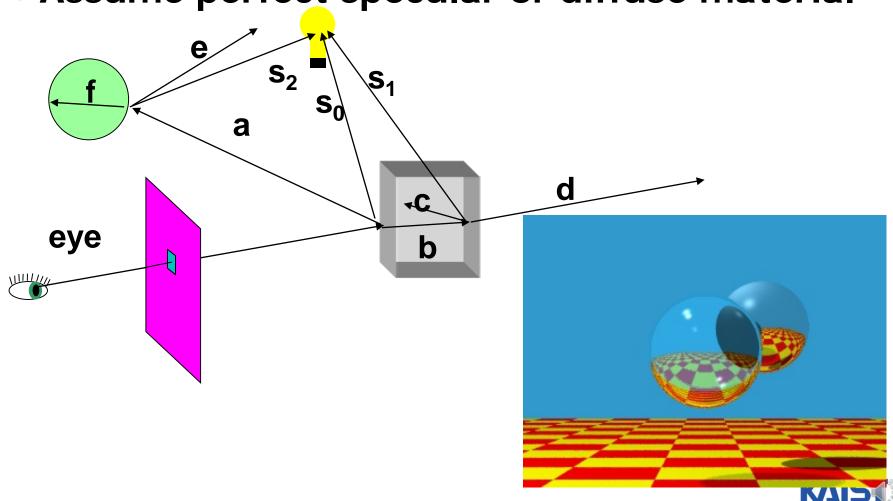
- GI algorithms solve the rendering equation
  - Generate 2D image from 3D scene





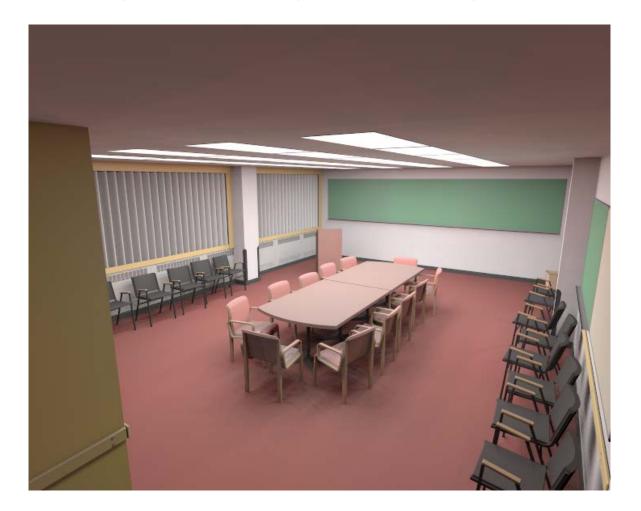
Emission (light sources)
Geometry (objects)
BRDF (materials)




#### Classic Methods of Gl

- Ray tracing
  - Introdued by Whitted in 1980
- Radiosity
  - Introduced in 1984
- Monte Carlo rendering




# **Classic Ray Tracing**

Assume perfect specular or diffuse material



# **Classic Radiosity**

Assume diffuse inter-reflections





#### **Advanced Global Illumination**

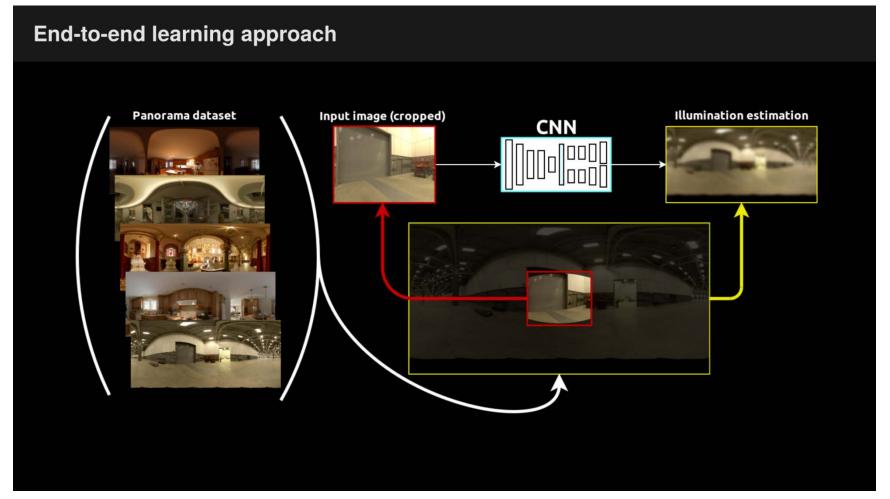
- Extend to handle more realistic materials than just perfect specular/diffuse
  - Classic ray tracing and classic radiosity are basic building blocks





from Pixar movie




from photon map paper

# Sound and AR/VR Applications

- How can we interactively generate sounds?
- How can we effectively locate sound sources?
- How can we integrate them with AR/VR applications?



# **Indoor Light Estimation**



Gardner et al.



## **Some of Topic Lists**

- Ray tracing
- Path tracing
- BRDF
- Rendering equations
- Monte Carlo method
- Textures
- Lighting and shading
- Radiosity
- Instant radiosity

- GPU acceleration
- Sampling and reconstruction
- Sound rendering and localization
- Rendering for AR/VR
- Deep learning for light/material estimation



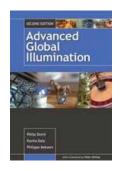
## **Prerequisites**

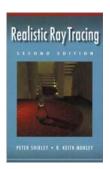
- Basic programming skill
- Understanding on data structures (e.g., stack) and linear algebra (e.g., matrix multiplication)
- Basic deep learning (DL) knowledge & programming
  - We cannot teach basic DL concepts here
- If you are not sure, please consult the instructor at the end of the course discuss it at KLMS w/ TAs



#### Resource

- Rendering
  - 1st edition, July 2018, 148 pages
  - Sung-eui Yoon, Copyright 2018
  - https://sgvr.kaist.ac.kr/~sungeui/rende


SUNG-EUI YOON, KAIST


RENDERING

FREELY AVAILABLE ON THE INTERNET

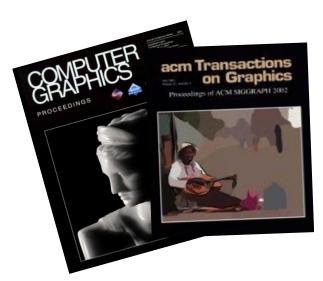
#### Reference

- Physically based rendering, Matt Pharr et al.
- Advanced Global Illumination, Philip Dutre et al. 2<sup>nd</sup> edition
- Realistic Ray Tracing, 2<sup>nd</sup> edition, Peter Shirley et al.












#### Other Reference

- Technical papers
  - Graphics-related conference (SIGGRAPH, etc)
  - http://kesen.huang.googlepages.com/
- SIGGRAPH (Asia), ISMAR, CVPR/ICCV, ICRA/IROS papers and tutorials
- Course homepages
- Google or Google scholar







#### **Course Overview**

- 1/2 of lectures and 1/2 of student presentations
  - Mid-term & final-term exams with a few quiz
  - A few programming assignments
  - A few paper presentations
  - Team project (Major activity)



# Important: What you will do

- Paper presentation and final team project
  - Make a team of two or three members
  - Choose a topic for the team, and each team member presents a paper related to it
  - All the team members implement techniques of a paper and improve them
    - Role of each team member should be clear
  - Present what the team did for the team project



#### **Course Awards**

- Best speaker and best project
  - Lunch or dinner for awardees with me and TAs
- A high grade will be given to members of the best project



# **Grading**

- Quiz, assignments, and exams: 30%
- Class presentations: 30%
- Final project: 40%
- Late policy
  - No score for late submissions
  - Submit your work before the deadline!
- Instructor/TA and students will evaluate presentations and projects
  - Instructor/TA: 50% weights
  - Students: 50% weights



#### Class Attendance Rule

- Late two times → count as one absence
- Every two absences → lower your grade (e.g., A- → B+)
- To check attendance, I'll call your names or take pictures
- If you are in situations where you should be late, notify earlier



# Official Language in Class

- English
  - I'll give lectures in English
  - I may explain again in Korean if materials are unclear to you
  - You are also recommended to use English, but not required



#### Schedule

- Please refer the course homepage:
  - http://sgvr.kaist.ac.kr/~sungeui/GCG/



#### Homework

- Watch 2 SIGGRAPH or CVPR Videos
  - EGSR, HPG and I3D are also possible
  - ISMAR, ICRA, ECCV/ICCV are also possible
  - Write their summary and submit it online before Mon. class
- Example of summary
  - Just one paragraph for each summary

Title: XXX XXXX XXXX, Year: 2022
Abstract: this video is about accelerating the performance of ray tracing. To achieve its goal, they design a new technique for reordering rays, since by doing so, they can improve the ray coherence and thus improve the overall performance.



### **Next Time**

Ray tracing and radiosity

