KAIST

Norm-NeX

Team T
20214609 Jaemin Cho
20223664 Dongyoung Choi

Original NeX

+4
P

o, ko(RGB), k,{(RGB), k,(RGB), ..., ky(RGB)

View-dependent MPI
+

Basis Network
Hl (U), HZ (U), ey Hn(v)

N
CP = kg +z kP x H, ()
n=1

KAIST VISUAL COMPUTING | ab

a, RGB

RGBa MPI

C = zzzlwd x CP [(cf) Wy = ay 1_[

d-1
(1- ai)]
=1

RGB

Rendered image

Original NeX

Sampling R Cindependent —(4 RGB
(x,y,2) (View Independent RGB)
> X
N

/

MPI

o [BT
—— K =k
ko

Main Network

Viewing
‘ direction
(vx' Uy,)

Camera .
Skip v,

KAIST VISUAL COMPUTING | ab

»

G

¢

(Basis coefficients)

_ | H,

_ s H =

o X)) Cdependent
\ (View Dependent RGB)

(view-dep_enden-t basis)

Basis Network

ki,ko,...,ky €R3
Hy,Hy,...,Hy € R

Original NeX

= The rendering quality is moderately good, but not perfect and components have no meaning

KAIST VISUAL COMPUTING | ab

Ideas to improve on weaknesses

Reflection of viewing direction

Reparameterization to the meaningful components(normal, diffuse, specular, etc)

Compute normal vectors

RGB < YCbCr

KAIST VISUAL COMPUTING [&b

Ref-NeRF: reflection of viewing direction

= BRDF : rotationally-symmetric about reflected view direction
" f(®;,&,) = p(&, - &;) for some function p

= Neglecting interreflections and self-occlusions

P AN A- P P 0/3

f (&, @,) A i ~ f (&, @,) A D, AO
Wy Wy

&30 '\9 a0 \9 Wi (Bl'

: viewing direction
. reflection of viewing direction
. input radiance

f(w;, @,): output radiance to viewing direction

= We can calculate reflection of viewing direction through viewing direction and normal vector

u &)\r = 2(&)\0‘ﬁ)ﬁ_&)\0

= We need accurate normal vector!

KAIST VISUAL COMPUTING [&b

Ref-NeRF: reparameterization for meaningful components

= Unlike traditional NeRF, Ref-NeRF calculate final RGB color by using meaningful outputs
= (nomal vector, roughness, diffuse color, specular color, specular tint)

= When synthesizing novel view scene, these meaningful components enables more reasonable prediction

Original Method 7 : density (similar meaning to a)
(x,y,2) R . > T
Samples > X = Spatial >
MLP b >~ L
”| Directional -
(Vx, Vy, V2) - a »| MLP . > C
Viewing direction g ” Mip-NeRF
Ref-NeRF Method
> T
C Diffuse color = Tone _
’@4 map: Yy > C
(x, A z) > X 5| Spatial ®J
Samples g “1 MLP S | |
Roughness _ | Directional 5] Specuiar color
normal | IDE "I MLP
(00, v, 2,) Reflection |« r_|(Eq. 6)
NG AR > d > Eq.4 [
Viewing direction g =
g \I_’ Dot
»| product Ours

KAIST VISUAL COMPUTING [&b

3

Ref-NeRF: compute normal vectors

= Calculate normal vector by two methods
= Predicted by network (': predict normal vector)

= Gradient of density (7 : ground truth normal vector)

= Normal vector of the object seen on the camera should be facing the camera .

= Reduce reverse object

Normal vector
= Accurate normal vector & Accurate alpha < Accurate reflect direction
.) . A __ Vdensity(x)
Learning normal vector in Network G.T. normal: A(x) = oo o
_ update /'\' —
T = gradient | R, = S“ Wi ||ni M — |
(x,y,d) - redict normal vector
Samples — RGB '
Normal(#’) compare Tupdate RZ — 2 w,-max(O, ﬁ: d)Z

Ref-NeRF i

KAIST VISUAL COMPUTING | ab

YCbCr see

= |f we append meaningful components(normal vector, roughness, etc.) to output of our network,
its size is much larger than original NeX.

= Then, learning is slow and it is difficult to get high quality rendering result.

= Human eyes are more sensitive to luminance than chromaticity 100
= As is often used for image compression, we used YCbCr instead of >
=

RGB for specular components. = 10
®
wn
7
©

E 1
o
@)

0.1

0.01 L |
0.1 1 10 100

Spatial frequency (cycles/degree)

KAIST VISUAL COMPUTING [&b 9

Our goals

Convert RGB to YCbCr

Decompose radiance to diffuse and specular components

Calculate accurate normal vector and alpha

Synthesize novel view with sharp highlights

KAIST VISUAL COMPUTING [&b

10

RGB - YCbCr

= Original NeX
= Qutput of main network : 1+3+3N (N=8) = 28
= Each pixel of view dependent MPI : a, ky(RGB), k{(RGB), k,(RGB), ..., ky (RGB)
= RGB color of each pixel : C? = ko + XN_, kP x H,(v)

= YCbCr
= Qutput of main network : 1+1+3+2+N (N=8) = 15

= Each pixel of view dependent MPI : a, s, ko (RGB), chroma(CbCr),k,(Y), ko (Y), ..., ky(Y)
= RGB color of each pixel : C? = ko + chroma x YN_, kF x H, (v)

Original NeX YCbCr
opacity(a) opacity(a).
base color(io) specular tint(s)
—u - __, - diffuse color (ko)
view dependent coefficients specular chroma (C.proma)
(k1 K, oo ko) Y coefficients (ky, k5, ..., ky)

Main Network Main Network

KAIST VISUAL COMPUTING | ab

11

RGB - YCbCr

+
Ol

= The rendering quality of MPI using YCbCr was similar to original NeX

Original Ne X (RGB) Ours (YCbCr)

NeX

Ours

PSNR T SSIM 1
30.7291 0.9855
28.7641 0.9845

LPIPS |
0.2059
0.2036

KAIST VISUAL COMPUTING | ab

12

Computing normal vectors in NeX

= Norm-NeX compute the ground truth normal first and encourage model to predict the g.t. normal

= We try 3 approaches to compute normal vectors which is regarded as g.t. normal in NeX

Approaches

1. Compute the density difference across the 3D space (Naive approach)

2. Compute the normal vectors using the loss gradient relation

3. Compute the normal vectors on the rendered 2D images

KAIST VISUAL COMPUTING [&b

/

MPI

Sampling
(xy.2) @

.ﬁ

3 approaches

Compute normal ground truth

normal

normal

< training

MSE(normalg ., normal,,cgict)

13

Normal - Density difference (Naive Approach)

= Compute the density using the alpha values which is the result outputs of the Norm-NeX

= Use the difference of density as a normal vectors

Sampling
(x,y,z)

._’

N -

MPI

‘ Viewing

Camera direction

> | (A

1—a=exp(—ad)

g =

=1 — exp(—ad)

density

1 — distance difference

B In(1—-a)

)

—

Refle

y
ction

v = (v, vy, v,)

KAIST VISUAL COMPUTING [&b

G

¢

Basis Network

normal = ——
Via||

3

14

Normal — Gradient relation from Loss

= Compute the normal vectors using the gradient relation w.r.t. the total loss
= Density gradient can be decomposed of the loss gradient components
= X,y,z gradient over density gradient w.r.t. the reconstruction loss would equal with the

density gradient w.r.t. x,y,z that means the normal vectors

o — do do do
7 \ax'dy’ dz

B daXdL daXdL daXdL
~\dL " dx’'dL” dy’dL” dz

) <—— Decompose w.r.t. loss

_do(dL dL dL
~dL\dx’dy’dz

_ 1 (x. grad e, 7. gl Can be calculated by
g.grad -grag,y.grag, 2.9 pytorch autograd method

KAIST VISUAL COMPUTING | ab

Computed normal by autograd

15

Normal — On the rendered 2D images 8¢

= Instead of calculating normal Loss(, #") in the 3D space(MPI), we made the normal vector from the 2D images and
calculated loss

. Alpha map — G.T. Imagedisparity - G-T-Imagenormal vec (Iﬁ)
= Consider the normal vector(n,, ny,n,) as RGB, then render image — Predicted Image,ormai vec (Inr)
" Loss = MSE of (I, 14,)

Alpha map made by original NeX for explanation

Calculate normal vector
Get disparity image from alpha from disparity image

Alpha Disparity '“-Nor'al vector

KAIST VISUAL COMPUTING | ab 16

Training Normal

= Using pytorch autograd method (2"9) requires model’s double evaluation
= Double the training time (NeX model already spends 10 hours for 1 scene training...)

= |mage based method (3"9) would not work well our model
= Debugging is in progress for better result

= We simply choose the first approach to compute normal (density gradients)
= We still test other approaches to get the better result

Normal Regularizer (Similar with refNeRF)

= Encourage model to reduce the back-facing normal vectors
= Make appearance more vivid

Ground truth Without regularizer

KAIST VISUAL COMPUTING | ab

With regularizer

17

Dividing specular and diffuse color

= |f model trains the specular and diffuse color at the same time, model confuses with them
= Therefore, we set the threshold epoch (50 epochs, 2.5% of the entire epoch) and during that epochs we encourage

model to render the images only with diffuse color

Training diffuse, specular
at the same time

Training diffuse first
during the 50 epochs (2.5%)

Rendered Diffuse Specular

KAIST VISUAL COMPUTING | ab

18

Norm-NeX pipeline

> CDiffuse) >RGB
Sampling (diffuse RGB) 3/ 6
(x,y,2) T
4
" New!
L, >S (specular tint) :CX
\\\ Main Network _+ Cchroma f\ — CSpecular
MPI (specular chroma) \-%-I (specular RGB)
—>K=[k1,k2,...,kN]T :Y:KQH
(specular Y coefficients) (specular I‘rgten3|ty, Y)
., n

(normal vector)

w, Hl

(reflec(’;ion of) H

viewing direction — 2

Viewing v ' G(p ~H

direction . n-v HN
v = (v,,vy,v,) "~ (dot product) LY

vryTa (Y basis)
Camera Basis Network

KAIST VISUAL COMPUTING | ab

Training Resullts

Final rendefing Diffuse

Specular

PSNRt SSIM 1T LPIPS |
NeX 30.7291 0.9855 0.2059
Ours 28.76 0.9845 0.2036

KAIST VISUAL COMPUTING [&b

Finalrendering Diffuse

s

I 4!. \

-

Specular

PSNRT SSIM 1t LPIPS |
NeX 30.92 0.9741 0.1523
Ours 33.64 0.9859 0.3202

20

Ablation studies over mipNeRF360 Regularizer

= |n order to get more accurate normal vectors, we apply mipNeRF360 regularizer which concentrates the

weight on the important location

= Although it helps to concentrate the components to the important place, since it occurs floating artifacts

we remove that regularizer from our model

pOL
os

With mipNeRF360 regularizer

Last two diffuse color layers

KAIST VISUAL COMPUTING | ab

21

Conclusion

= We switched the color space from RGB to YCbCr
= Maintain rendering quality while significantly reducing the size of the network output
= Required memory also be reduced to store MPI

= |t's not perfect, but we got diffuse and specular components separately

= Future plan
= Need to calculate much more accurate normal vector and alpha

= Synthesize novel view with sharp highlights

KAIST VISUAL COMPUTING [&b

22

Roles

= Jaemin Cho
= Design Norm-NeX pipeline
= Convert RGB to YCbCr
= Make functions to visualize components

= Make presentation

= Dongyoung Choi
= Design Norm-NeX pipeline
= Develop model with normal vector
= Decompose diffuse and specular components

= Make presentation

KAIST VISUAL COMPUTING [&b

23

Reference

= Suttisak Wizadwongsa et al., NeX: Real-time View Synthesis with Neural Basis Expansion, CVPR, 2021
= Dor Verbin et al., Ref-NeRF: Structured View-Dependent Appearance for Neural Radiance Fields, CVPR, 2022
= Jonathan T. Barron et al., Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields, CVPR, 2022

KAIST VISUAL COMPUTING [&b

24

	Norm-NeX
	Original NeX
	Original NeX
	Original NeX
	Ideas to improve on weaknesses
	Ref-NeRF: reflection of viewing direction
	Ref-NeRF: reparameterization for meaningful components
	Ref-NeRF: compute normal vectors
	YCbCr
	Our goals
	RGB  YCbCr
	RGB  YCbCr
	Computing normal vectors in NeX
	Normal - Density difference (Naïve Approach)
	Normal – Gradient relation from Loss
	Normal – On the rendered 2D images
	Training Normal
	Dividing specular and diffuse color
	Norm-NeX pipeline
	Training Results
	Ablation studies over mipNeRF360 Regularizer
	Conclusion
	Roles
	Reference

