
Team 1

20214609 Jaemin Cho

20223664 Dongyoung Choi

Norm-NeX

Original NeX

2

View-dependent MPI
+

Basis Network
𝐻𝐻1 𝑣𝑣 ,𝐻𝐻2 𝑣𝑣 , … ,𝐻𝐻𝑛𝑛(𝑣𝑣)

RGB𝛼𝛼 MPI Rendered image

𝛼𝛼, 𝑘𝑘0 𝑅𝑅𝑅𝑅𝑅𝑅 , 𝑘𝑘1(𝑅𝑅𝑅𝑅𝑅𝑅), 𝑘𝑘2(𝑅𝑅𝑅𝑅𝑅𝑅), … , 𝑘𝑘𝑁𝑁(𝑅𝑅𝑅𝑅𝑅𝑅) 𝛼𝛼,𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅

𝐶𝐶𝑃𝑃 = 𝑘𝑘0 + �
𝑛𝑛=1

𝑁𝑁
𝑘𝑘𝑛𝑛𝑃𝑃 × 𝐻𝐻𝑛𝑛(𝑣𝑣) 𝐶𝐶 = �

𝑑𝑑=1

𝐷𝐷
𝑤𝑤𝑑𝑑 × 𝐶𝐶𝑃𝑃 𝑐𝑐𝑐𝑐 𝑤𝑤𝑑𝑑 = 𝛼𝛼𝑑𝑑�

𝑖𝑖=1

𝑑𝑑−1
1 − 𝛼𝛼𝑖𝑖

Original NeX

3

𝑘𝑘1, 𝑘𝑘2, . . . , 𝑘𝑘𝑁𝑁 ∈ 𝑅𝑅3

𝐻𝐻1,𝐻𝐻2, . . . ,𝐻𝐻𝑁𝑁 ∈ 𝑅𝑅

Sampling
(x,y,z)

𝜶𝜶

𝑪𝑪independent
(View Independent RGB)

Viewing
direction
(𝒗𝒗𝒙𝒙,𝒗𝒗𝒚𝒚,𝒗𝒗𝒛𝒛)

Skip 𝒗𝒗𝒛𝒛
Camera

𝐻𝐻 =
𝐻𝐻1
𝐻𝐻2…
𝐻𝐻𝑁𝑁

RGB

MPI

𝐾𝐾 =
𝑘𝑘1
𝑘𝑘2…
𝑘𝑘𝑁𝑁

(Basis coefficients)

𝑪𝑪dependent
(View Dependent RGB)

+

(view-dependent basis)

𝑭𝑭𝜽𝜽

Main Network

𝑮𝑮𝝋𝝋

Basis Network

X

Original NeX

4

Final rendering

View independen t View dependen t

Alpha

 The rendering quality is moderately good, but not perfect and components have no meaning

Ground truth

Rendered image

Ideas to improve on weaknesses

5

 Reflection of viewing direction

 Reparameterization to the meaningful components(normal, diffuse, specular, etc)

 Compute normal vectors

 RGB ↔ YCbCr

Ref-NeRF: reflection of viewing direction

6

 BRDF : rotationally-symmetric about reflected view direction
 𝑓𝑓 �𝜔𝜔𝑖𝑖 , �𝜔𝜔𝑜𝑜 = 𝑝𝑝 �𝜔𝜔𝑟𝑟 � �𝜔𝜔𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝
 Neglecting interreflections and self-occlusions

�𝑛𝑛𝑓𝑓 �𝜔𝜔𝑖𝑖 , �𝜔𝜔𝑜𝑜 �𝜔𝜔𝑟𝑟
�𝜔𝜔𝑖𝑖

�𝜔𝜔𝑜𝑜 𝜃𝜃

�𝑛𝑛𝑓𝑓 �𝜔𝜔𝑖𝑖 , �𝜔𝜔𝑜𝑜 �𝜔𝜔𝑟𝑟
�𝜔𝜔𝑖𝑖�𝜔𝜔𝑜𝑜 𝜃𝜃

�𝜔𝜔𝑜𝑜 : viewing direction
�𝜔𝜔𝑟𝑟 : reflection of viewing direction
�𝜔𝜔𝑖𝑖 : input radiance

𝑓𝑓 �𝜔𝜔𝑖𝑖 , �𝜔𝜔𝑜𝑜 : output radiance to viewing direction

 We can calculate reflection of viewing direction through viewing direction and normal vector
 �𝜔𝜔𝑟𝑟 = 2 �𝜔𝜔0 � �𝑛𝑛 �𝑛𝑛 − �𝜔𝜔0

 We need accurate normal vector!

�𝑛𝑛
�𝜔𝜔0 �𝜔𝜔𝑟𝑟

Ref-NeRF: reparameterization for meaningful components

7

Original Method

𝑥𝑥,𝑦𝑦, 𝑧𝑧
Samples

(𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦, 𝑣𝑣𝑧𝑧)
Viewing direction

Specular color

𝑥𝑥,𝑦𝑦, 𝑧𝑧
Samples

(𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦, 𝑣𝑣𝑧𝑧)
Viewing direction

Diffuse color

Roughness
normal

Specular tint

Ref-NeRF Method

𝜏𝜏 : density (similar meaning to 𝛼𝛼)

 Unlike traditional NeRF, Ref-NeRF calculate final RGB color by using meaningful outputs
 (nomal vector, roughness, diffuse color, specular color, specular tint)

 When synthesizing novel view scene, these meaningful components enables more reasonable prediction

Ref-NeRF: compute normal vectors

8

𝑹𝑹𝟏𝟏 = �
𝒊𝒊

𝒘𝒘𝒊𝒊 �𝒏𝒏𝒊𝒊 − �𝒏𝒏𝒊𝒊′

𝑹𝑹𝟐𝟐 = �
𝒊𝒊

𝒘𝒘𝒊𝒊𝒎𝒎𝒎𝒎𝒎𝒎(𝟎𝟎, �𝒏𝒏𝒊𝒊′ � 𝒅𝒅)𝟐𝟐

G.T. normal: �𝑛𝑛 𝑥𝑥 = 𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻(𝑥𝑥)
𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻𝛻(𝑥𝑥)

Predict normal vector(𝒙𝒙,𝒚𝒚,𝒅𝒅)
Samples

𝝉𝝉

RGB

Normal(�𝑛𝑛′)

�𝑛𝑛 =
∆𝝉𝝉
∆𝝉𝝉

Learning normal vector in Network

update

update

 Calculate normal vector by two methods
 Predicted by network (�𝑛𝑛′: predict normal vector)

 Gradient of density (�𝑛𝑛 : ground truth normal vector)

 Normal vector of the object seen on the camera should be facing the camera
 Reduce reverse object

 Accurate normal vector ↔ Accurate alpha ↔ Accurate reflect direction

Acceptable
Normal vector

Unacceptable
Normal vector

gradient

compare

𝑭𝑭𝜽𝜽

Ref-NeRF

YCbCr

9

 If we append meaningful components(normal vector, roughness, etc.) to output of our network,

its size is much larger than original NeX.

 Then, learning is slow and it is difficult to get high quality rendering result.

 Human eyes are more sensitive to luminance than chromaticity

 As is often used for image compression, we used YCbCr instead of
RGB for specular components.

Our goals

10

 Convert RGB to YCbCr

 Decompose radiance to diffuse and specular components

 Calculate accurate normal vector and alpha

 Synthesize novel view with sharp highlights

RGB YCbCr

11

 Original NeX
 Output of main network : 1+3+3N (N=8) = 28
 Each pixel of view dependent MPI : 𝛼𝛼, 𝑘𝑘0 𝑅𝑅𝑅𝑅𝑅𝑅 ,𝑘𝑘1 𝑅𝑅𝑅𝑅𝑅𝑅 , 𝑘𝑘2 𝑅𝑅𝑅𝑅𝑅𝑅 , … ,𝑘𝑘𝑁𝑁 𝑅𝑅𝑅𝑅𝑅𝑅
 RGB color of each pixel : 𝐶𝐶𝑃𝑃 = 𝑘𝑘0 + ∑𝑛𝑛=1𝑁𝑁 𝑘𝑘𝑛𝑛𝑃𝑃 × 𝐻𝐻𝑛𝑛(𝑣𝑣)

 YCbCr
 Output of main network : 1+1+3+2+N (N=8) = 15
 Each pixel of view dependent MPI : 𝛼𝛼, 𝑠𝑠,𝑘𝑘0 𝑅𝑅𝑅𝑅𝑅𝑅 , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑘𝑘1 𝑌𝑌 ,𝑘𝑘2(𝑌𝑌), … ,𝑘𝑘𝑁𝑁 𝑌𝑌
 RGB color of each pixel : 𝐶𝐶𝑃𝑃 = 𝑘𝑘0 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × ∑𝑛𝑛=1𝑁𝑁 𝑘𝑘𝑛𝑛𝑃𝑃 × 𝐻𝐻𝑛𝑛(𝑣𝑣)

Original NeX

𝐹𝐹𝜃𝜃

Main Network

1
3

3N

opacity(𝛼𝛼)
base color(𝑘𝑘0)

view dependent coefficients
(𝑘𝑘1,𝑘𝑘2, … ,𝑘𝑘𝑁𝑁)

𝐹𝐹𝜃𝜃

Main Network

1
3

2
N Y coefficients (𝑘𝑘1, 𝑘𝑘2, … ,𝑘𝑘𝑁𝑁)

diffuse color (𝑘𝑘0)
specular tint(s)

specular chroma (𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

YCbCr

1 opacity(𝛼𝛼)

RGB YCbCr

12

Ours (YCbCr)Orig ina l NeX (RGB)

PSNR ↑ SSIM ↑ LPIPS ↓

NeX 30.7291 0.9855 0.2059

Ours 28.7641 0.9845 0.2036

 The rendering quality of MPI using YCbCr was similar to original NeX

Computing normal vectors in NeX

13

 Norm-NeX compute the ground truth normal first and encourage model to predict the g.t. normal

 We try 3 approaches to compute normal vectors which is regarded as g.t. normal in NeX

Approaches
1. Compute the density difference across the 3D space (Naïve approach)

2. Compute the normal vectors using the loss gradient relation

3. Compute the normal vectors on the rendered 2D images

Sampling
(x,y,z)

MPI

𝜶𝜶

𝑭𝑭𝜽𝜽

Main Network

ground truth
normal

normal

Compute normal

training

𝑴𝑴𝑴𝑴𝑴𝑴(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙𝑔𝑔.𝑡𝑡.,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

3 approaches

Normal - Density difference (Naïve Approach)

14

 Compute the density using the alpha values which is the result outputs of the Norm-NeX

 Use the difference of density as a normal vectors

𝜶𝜶 = 𝟏𝟏 − 𝐞𝐞𝐞𝐞𝐞𝐞 −𝝈𝝈𝜹𝜹

𝟏𝟏 − 𝜶𝜶 = 𝒆𝒆𝒆𝒆𝒆𝒆 −𝝈𝝈𝜹𝜹

𝝈𝝈 =−
𝐥𝐥𝐥𝐥(𝟏𝟏 − 𝜶𝜶)

𝜹𝜹

density

distance differenceSampling
(x,y,z)

MPI 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 =
𝛁𝛁𝝈𝝈
𝛁𝛁 𝝈𝝈

𝑭𝑭𝜽𝜽

Main Network

𝑮𝑮𝝋𝝋

Basis Network

Viewing
direction

𝐯𝐯 = 𝒗𝒗𝒙𝒙,𝒗𝒗𝒚𝒚,𝒗𝒗𝒛𝒛
Camera

Reflection

Normal – Gradient relation from Loss

15

 Compute the normal vectors using the gradient relation w.r.t. the total loss

 Density gradient can be decomposed of the loss gradient components

 x,y,z gradient over density gradient w.r.t. the reconstruction loss would equal with the

density gradient w.r.t. x,y,z that means the normal vectors

𝛻𝛻𝛻𝛻 =
𝑑𝑑𝜎𝜎
𝑑𝑑𝑑𝑑 ,

𝑑𝑑𝜎𝜎
𝑑𝑑𝑑𝑑 ,

𝑑𝑑𝜎𝜎
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝜎𝜎
𝒅𝒅𝒅𝒅 ×

𝒅𝒅𝒅𝒅
𝑑𝑑𝑑𝑑 ,

𝑑𝑑𝜎𝜎
𝒅𝒅𝒅𝒅 ×

𝒅𝒅𝒅𝒅
𝑑𝑑𝑦𝑦 ,

𝑑𝑑𝜎𝜎
𝒅𝒅𝒅𝒅 ×

𝒅𝒅𝒅𝒅
𝑑𝑑𝑧𝑧

=
𝑑𝑑𝜎𝜎
𝒅𝒅𝒅𝒅

𝒅𝒅𝒅𝒅
𝑑𝑑𝑑𝑑 ,

𝒅𝒅𝒅𝒅
𝑑𝑑𝑦𝑦 ,

𝒅𝒅𝒅𝒅
𝑑𝑑𝑧𝑧

=
1

𝜎𝜎.𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑥𝑥.𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑦𝑦.𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑧𝑧.𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Decompose w.r.t. loss

Can be calculated by
pytorch autograd method

Computed normal by autograd

Normal – On the rendered 2D images

16

Get disparity image from alpha
Calculate normal vector

from disparity image

Alpha Disparity Normal vector

Alpha map made by original NeX for explanation

 Instead of calculating normal L𝑜𝑜𝑜𝑜𝑜𝑜 �𝑛𝑛, �𝑛𝑛′ in the 3D space(MPI), we made the normal vector from the 2D images and
calculated loss
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚 → 𝐺𝐺.𝑇𝑇. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 → 𝐺𝐺.𝑇𝑇. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣 (𝐼𝐼�𝑛𝑛)

 Consider the normal vector(𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑧𝑧) as RGB, then render image → 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣(𝐼𝐼�𝑛𝑛′)
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 (𝐼𝐼�𝑛𝑛 , 𝐼𝐼�𝑛𝑛′)

Training Normal

17

 Using pytorch autograd method (2nd) requires model’s double evaluation
 Double the training time (NeX model already spends 10 hours for 1 scene training…)

 Image based method (3rd) would not work well our model
 Debugging is in progress for better result

 We simply choose the first approach to compute normal (density gradients)
 We still test other approaches to get the better result

Normal Regularizer (Similar with refNeRF)
 Encourage model to reduce the back-facing normal vectors
 Make appearance more vivid

Ground truth Without regularizer With regularizer

Dividing specular and diffuse color

18

 If model trains the specular and diffuse color at the same time, model confuses with them

 Therefore, we set the threshold epoch (50 epochs, 2.5% of the entire epoch) and during that epochs we encourage

model to render the images only with diffuse color

Training diffuse, specular
at the same time

Training diffuse first
during the 50 epochs (2.5%)

Rendered Diffuse Specular

Norm-NeX pipeline

19

Sampling
(x,y,z)

𝜶𝜶

𝑪𝑪𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫
(diffuse RGB)

Viewing
direction

𝐯𝐯 = 𝒗𝒗𝒙𝒙,𝒗𝒗𝒚𝒚,𝒗𝒗𝒛𝒛
Camera

𝑯𝑯 =
𝐻𝐻1
𝐻𝐻2…
𝐻𝐻𝑁𝑁

𝒀𝒀 = 𝑲𝑲⊙𝑯𝑯
(specular Intensity, Y)

RGB

MPI

𝑲𝑲 = 𝑘𝑘1, 𝑘𝑘2, … , 𝑘𝑘𝑁𝑁 𝑇𝑇

(specular Y coefficients)

𝑪𝑪𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺
(specular RGB)

+

(Y basis)

𝑭𝑭𝜽𝜽

Main Network

𝑮𝑮𝝋𝝋

Basis Network

𝑪𝑪𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄
(specular chroma)

�𝒏𝒏
(normal vector)

�𝝎𝝎𝒓𝒓
(reflection of

viewing direction)

�𝒏𝒏 � 𝐯𝐯
(dot product)

𝒔𝒔 (specular tint) XNew!

+

Training Results

20

Final rendering Diffuse

Specu la r Alpha

Fina l rende ring Diffuse

Specu la r Alpha

PSNR ↑ SSIM ↑ LPIPS ↓

NeX 30.7291 0.9855 0.2059

Ours 28.76 0.9845 0.2036

PSNR ↑ SSIM ↑ LPIPS ↓

NeX 30.92 0.9741 0.1523

Ours 33.64 0.9859 0.3202

Ablation studies over mipNeRF360 Regularizer

21

 In order to get more accurate normal vectors, we apply mipNeRF360 regularizer which concentrates the

weight on the important location

 Although it helps to concentrate the components to the important place, since it occurs floating artifacts

we remove that regularizer from our model

Final rendering Diffuse com ponent Specu la r com ponent

With mipNeRF360 regularizer

Concentrate the colormipNeRF360 regularizer

Last two diffuse color layers

Conclusion

22

 We switched the color space from RGB to YCbCr

 Maintain rendering quality while significantly reducing the size of the network output

 Required memory also be reduced to store MPI

 It’s not perfect, but we got diffuse and specular components separately

 Future plan

 Need to calculate much more accurate normal vector and alpha

 Synthesize novel view with sharp highlights

Roles

23

 Jaemin Cho

 Design Norm-NeX pipeline

 Convert RGB to YCbCr

 Make functions to visualize components

 Make presentation

 Dongyoung Choi

 Design Norm-NeX pipeline

 Develop model with normal vector

 Decompose diffuse and specular components

 Make presentation

Reference

24

 Suttisak Wizadwongsa et al., NeX: Real-time View Synthesis with Neural Basis Expansion, CVPR, 2021
 Dor Verbin et al., Ref-NeRF: Structured View-Dependent Appearance for Neural Radiance Fields, CVPR, 2022
 Jonathan T. Barron et al., Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields, CVPR, 2022

	Norm-NeX
	Original NeX
	Original NeX
	Original NeX
	Ideas to improve on weaknesses
	Ref-NeRF: reflection of viewing direction
	Ref-NeRF: reparameterization for meaningful components
	Ref-NeRF: compute normal vectors
	YCbCr
	Our goals
	RGB  YCbCr
	RGB  YCbCr
	Computing normal vectors in NeX
	Normal - Density difference (Naïve Approach)
	Normal – Gradient relation from Loss
	Normal – On the rendered 2D images
	Training Normal
	Dividing specular and diffuse color
	Norm-NeX pipeline
	Training Results
	Ablation studies over mipNeRF360 Regularizer
	Conclusion
	Roles
	Reference

