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<Recent Advances in Rendering>
Monte Carlo Noise Reduction



• Reviews on Monte Carlo(MC) ray tracing and MC noise

• Image-space MC noise reduction

• Learning-based MC noise reduction

Today’s Content
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Why Monte Carlo (Rendering) Noise Reduction?

7

3D asset

Vertex 
Program

Geometry 
Program

Geometry 
Post-process

Rasterize
Ray-tracing Shading

Graphics Pipeline

Noisy Image

2d
image post-
processing

Clean Image

- High complexity (2D v.s. 3D)
- Complex compatibility 
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Review - Rendering Equation

8

𝑳𝒊ሺ𝒙,𝝎𝒊ሻ
𝒙

𝑳𝒐 𝒙,𝝎𝒐 ൌ 𝑳𝒆 𝒙,𝝎𝒐 න𝒇𝒓 𝒙,𝝎𝒊,𝝎𝒐 𝑳𝒊 𝒙,𝝎𝒊 𝝎𝒊 ⋅ 𝒏 𝒅𝝎𝒊
𝛀

Outgoing 
Radiance

Material 
Property

(e.g., BRDF)

Incoming 
Radiance

Emitting 
Radiance



• For fast convergence, we need to…
• Shoot more samples (Large 𝑵)

• Find a good pdf 𝒑 𝒘𝒊
𝒌 ~𝒇𝒓 𝒙,𝒘𝒊
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Review – MC Ray Tracing
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Review – MC Ray Tracing and MC Noise
• Shooting few samples per pixel (spp) leads to noisy radiance estimation
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• Using advanced sampling technique (Metropolis-Hasting algorithm) to generate valid 
(important) samples.

• Beneficial for scenes with complex geometry and indirect lighting.
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Review - Metropolis Light Transport (MLT)

Physically based Computer Graphics for Realistic Image Formation to Simulate Optical Measurement Systems, Retzlaff et al., JSSS 2017
Ray Tracey's blog: Real-time Metropolis Light Transport on the GPU: it works!!!!



• Combining rays traced from the camera and light sources
• Beneficial for scenes with complex geometry and indirect lighting
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Review - Bidirectional Path Tracing (BDPT) 

Bidirectional Path Tracing, Michal Vlnas, Proceedings of CESCG 2018



• Caching irradiance (and its gradient) of the points visible from camera
• Intuition: Indirect lighting is mostly smooth → Sparse computation is enough
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Review - Irradiance Caching

Irradiance Caching and Derived Methods 3.1 Algorithm Overview

Direct Lighting Indirect Lighting Caching Points



• Caching irradiance (and its gradient) of the points visible from camera
• Intuition: Indirect lighting is mostly smooth → Sparse computation is enough
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Review - Irradiance Caching

Irradiance Caching and Derived Methods 3.1 Algorithm Overview

Direct Lighting Indirect Lighting Caching Points



• Shoot photons from the light source and save 
information (energy, position, direction, etc.) (a)

• Use K-nearest photons for estimating the radiance 
of the query point (b)
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Review - Photon Mapping

Physically based Computer Graphics for Realistic Image Formation to Simulate Optical Measurement Systems, Retzlaff et al., JSSS 2017
Global Illumination using Photon Maps, Jensen et al., EGWR 1996



• Shoot photons from the light source and save 
information (energy, position, direction, etc.) (a)

• Use K-nearest photons for estimating the radiance 
of the query point (b)
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Review - Photon Mapping

Physically based Computer Graphics for Realistic Image Formation to Simulate Optical Measurement Systems, Retzlaff et al., JSSS 2017
Global Illumination using Photon Maps, Jensen et al., EGWR 1996



• Reviews on Monte Carlo(MC) ray tracing and MC noise

• Image-space MC noise reduction

• Learning-based MC noise reduction

Content
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• Efficiently dealing noise on image-space, similar to general image denoising
• Reducing working space from N-dim path-space to 2-dim image space
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Image-space MC Noise Reduction

Nonlinearly Weighted First-order Regression for Denoising Monte Carlo Renderings, Bitterli et al., CGF 2016



• Efficiently dealing noise on image-space, similar to general image denoising
• Reducing working space from N-dim path-space to 2-dim image space
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General Image Denoising Algorithms for MC Rendering

Removing the Noise in Monte Carlo Rendering with General Image Denoising Algorithms, Kalantari et al., CGF 2013

Non-local Means Filter Bilateral Filter

Block-Matching 3D (BM3D)



• Efficiently dealing noise on image-space, similar to general image denoising
• Reducing working space from N-dim path-space to 2-dim image space
• Filter weights determined based on similarity in RGB, G-buffers
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General Image Denoising Algorithms for MC Rendering

On Filtering the Noise from the Random Parameters in Monte Carlo Rendering, Sen et al., ToG 2013
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• Reviews on Monte Carlo(MC) ray tracing and MC noise

• Path-space MC noise reduction

• Image-space MC noise reduction

• Learning-based MC noise reduction
• Image-space
• Sample-space
• Path Guiding
• Post-post processing

Content
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• Various neural networks (MLP, ConvNets, Transformers, etc.) and training strategies 
(supervised, self-supervised, unsupervised, etc.) are introduced during the last 
decade

• Reduce design biases of traditional denoising filters

Deep-learning Era for Image-space Denoising
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Burst Denoising with Kernel Prediction Networks, Mildenhall et al., CVPR 2018



• Training a neural network to predict the clean image based on the input noisy image 
and auxiliary features (e.g., G-buffers)

Conventional Configuration for Learning-based Methods
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Weakly-supervised Contrastive Learning in Path Manifold for Monte Carlo Image Reconstruction, Cho et al., ToG 2021
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Slide credit to Inyoung Cho



• Estimating parameters from cross-bilateral filters using MLP and a large dataset
• Input : G-buffers, world position, visibility, mean/standard/mean deviation, gradients, spp

Deep-learning for Image-space MC Noise Reduction
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A Machine Learning Approach for Filtering Monte Carlo Noise, Kalantari et al., ToG 2015



• Robust training by training the network to predict the denoising kernels (KPCN) 
instead of denoised pixel value (DPCN)

• Reduces the search space (pixel radiance : 0 ~ unlimited, kernel weights: 0~1)

Predicting Kernel Weights using CNN
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Kernel-predicting Convolutional Networks for Denoising Monte Carlo Renderings, Bako et al., ToG 2017



• Train each denoising CNNs to deal with separate lighting effects
• Diffuse: Geometry dependent, Smooth & low range
• Specular: View dependent, High range

Decompose to Diffuse and Specular
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Kernel-predicting Convolutional Networks for Denoising Monte Carlo Renderings, Bako et al., ToG 2017



Kernel-predicting Convolutional Network (KPCN)
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Kernel-predicting Convolutional Networks for Denoising Monte Carlo Renderings, Bako et al., ToG 2017



• Jointly train the denoising networks and critic networks
• The critic networks are trained to guess whether the input image is clean or noisy (denoised)
• Denoising networks are trained to fool the critic network

Adversarial Training for Direct Pixel Denoising (AdvMCD)
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Adversarial Monte Carlo Denoising with Conditioned Auxiliary Feature Modulation, Xu et al., ToG 2019



• Stack multiple transformer blocks that creates self-attention map from input image and 
auxiliary features

Feature-guided Self-attention (AFGSA)
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Adversarial Monte Carlo Denoising with Conditioned Auxiliary Feature Modulation, Yu et al., ToG 2021



• Ray tracing allows to naturally generate blurring effects
• How to reduce the noise while preserving these effects?

Jumping from Image-space to Sample-space
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Sample-based Monte Carlo Denoising using a Kernel-splatting Network, Gharbi et al., ToG 2019

Depth-of-field Motion Blur



• Conventional kernels: Gathers nearby pixels (samples) with assigned weights
• Denoised Pixel : Is the i_th sample of my j_th neighbor an outlier?

• Splatting Kernels: Pixels (samples) contributes to nearby pixels with assigned weights
• Noisy Pixel (sample) : Am I an outlier to my j_th neighbor?

• Intuitive & permutation invariant

Splatting Kernel for Samples
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Sample-based Monte Carlo Denoising using a Kernel-splatting Network, Gharbi et al., ToG 2019



Sample-based Monte Carlo Denoising (SBMC)
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Sample-based Monte Carlo Denoising using a Kernel-splatting Network, Gharbi et al., ToG 2019



• Multi-bounce features are useful for reconstructing complex lighting details
• High-dimensionality harms the training of neural network

Path-space Features for Denoising
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• [Gharbi 2019; Lin 2021]
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Weakly-supervised Contrastive Learning in Path Manifold for Monte Carlo Image Reconstruction, Cho et al., ToG 2021

Slide credit to Inyoung Cho



• Embed path features to low-dimensional space

Manifold Learning for Path-space Features
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Weakly-supervised Contrastive Learning in Path Manifold for Monte Carlo Image Reconstruction, Cho et al., ToG 2021
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Slide credit to Inyoung Cho



• Use pixel colors as pseudo-labels
• Embed path features based on pixel-color similarity using contrastive learning

Manifold Learning for Path-space Features
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Weakly-supervised Contrastive Learning in Path Manifold for Monte Carlo Image Reconstruction, Cho et al., ToG 2021
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Manifold Learning for Path-space Features
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Weakly-supervised Contrastive Learning in Path Manifold for Monte Carlo Image Reconstruction, Cho et al., ToG 2021



• Solving rendering equation via Radiance-predicting Neural Network 𝑳𝜽

Neural Radiance Caching

37
Real-time Neural Radiance Caching for Path Tracing, Muller et al., ToG 2021
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Train the neural network → Cache, Estimate the radiance →  Interpolate

Neural Radiance Caching

38
Real-time Neural Radiance Caching for Path Tracing, Muller et al., ToG 2021
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• Minimize the loss between the calculated radiances and the estimated radiances of 
the preceding vertices

• 𝐿𝑜𝑠𝑠 ൌ 𝑟𝑒𝑙𝐿2 𝑳𝟏,𝑳𝜽 𝒚𝟏,𝝎𝟏  𝑟𝑒𝑙𝐿2 𝑳𝟐,𝑳𝜽 𝒚𝟐,𝝎𝟐  𝑟𝑒𝑙𝐿2 𝑳𝟑,𝑳𝜽 𝒚𝟑,𝝎𝟑

• Trace a short rendering path (𝑥𝑥ଵ𝑥ଶ) where we used the cached(estimated) radiance 
in vertex 𝑥ଶ for rendering

Self-training for Neural Radiance Cache

39
Real-time Neural Radiance Caching for Path Tracing, Muller et al., ToG 2021

𝑳𝜽ሺ𝒚𝟒,𝝎𝟒ሻ
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Post-processing the Denoiser (Post-post Processing)

40
Neural James-Stein Combiner for Unbiased and Biased Renderings, Gu et al., ToG 22

• Denoising models trained on certain noise level is biased to the noise level & dataset
• Cannot show consistent performance throughout noise levels



Combining Biased and Unbiased Estimates

41
Neural James-Stein Combiner for Unbiased and Biased Renderings, Gu et al., ToG 22

• Path Traced Result 𝑋 : Noisy but Unbiased (Bias ↓, Variance ↑)
• Denoised Result 𝑌: Smooth but Biased (Bias ↑, Variance ↓)

• James-Stein Estimator shrinks 𝑋 towards 𝑌 as 𝛿 𝑋,𝑌 ൌ 𝑌  1 െ ିଶ ఙమ

ି మ ሺ𝑋 െ 𝑌ሻ
• 𝑝 : Dimension of estimation (3 = RGB channel), 𝜎: variance of radiance

• Performs better than sample mean (in our case, 𝑋) if 𝑝  3

𝑀𝑆𝐸 ൌ 𝐵𝐼𝐴𝑆 ଶ  𝑉𝐴𝑅𝐼𝐴𝑁𝐶𝐸

Leaving some space on BIAS, James-Stein Estimator reduces the VARIANCE
by shrinking the points to be dense



Combining Biased and Unbiased Estimates
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Neural James-Stein Combiner for Unbiased and Biased Renderings, Gu et al., ToG 22

• Path Traced Result 𝑋 : Noisy but Unbiased (Bias ↓, Variance ↑)
• Denoised Result 𝑌: Smooth but Biased (Bias ↑, Variance ↓)

• James-Stein Estimator shrinks 𝑋 towards 𝑌 as 𝛿 𝑋,𝑌 ൌ 𝑌  1 െ ିଶ ఙమ

ି మ ሺ𝑋 െ 𝑌ሻ
• 𝑝 : Dimension of estimation (3 = RGB channel), 𝜎: variance of radiance

• Performs better than sample mean (in our case, 𝑋) if 𝑝  3

James-Stein Estimator shows less MSE error
Grey – Sampled points on radius sphere with center (1, 1, 1)

Red – James-Stein estimator applied on sampled points



Combining Biased and Unbiased Estimates
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Neural James-Stein Combiner for Unbiased and Biased Renderings, Gu et al., ToG 22

• Path Traced Result 𝑋 : Noisy but Unbiased (Bias ↓, Variance ↑)
• Denoised Result 𝑌: Smooth but Biased (Bias ↑, Variance ↓)

• James-Stein Estimator shrinks 𝑋 towards 𝑌 as 𝛿 𝑋,𝑌 ൌ 𝑌  1 െ ିଶ ఙమ

ି మ ሺ𝑋 െ 𝑌ሻ
• 𝑝 : Dimension of estimation (3 = RGB channel), 𝜎: variance of radiance

• Performs better than sample mean (in our case, 𝑋) if 𝑝  3

<Intuition>
Balancing the bias and variance of between 

path traced result and denoised result



Neural James-Stein Combiner
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Neural James-Stein Combiner for Unbiased and Biased Renderings, Gu et al., ToG 22

• Small U-Net to estimate weights for James-Stein Combiner

𝛿 𝑋,𝑌 ൌ 𝑌  1 െ
𝑝 െ 2 𝜎ଶ

𝑋 െ 𝑌 ଶ ሺ𝑋 െ 𝑌ሻ



Neural James-Stein Combiner
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Neural James-Stein Combiner for Unbiased and Biased Renderings, Gu et al., ToG 22



Neural James-Stein Combiner
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Neural James-Stein Combiner for Unbiased and Biased Renderings, Gu et al., ToG 22



• Image-space MC noise reduction

• Learning-based MC noise reduction
• Image-space methods
• Sample- & Path-space methods
• Post-post processing

What We Covered
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