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Background: Novel View Synthesis 

Images from multiple camera viewpoints

Images from Novel Viewpoints
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Source: https://theaisummer.com/nerf/

Input: images from various 
camera viewpoints

Output: images from novel 
camera viewpoints

Examples (synthesized from novel views)

?

https://www.matthewtancik.com/nerf

Videos: https://www.youtube.com/watch?v=JuH79E8rdKc&t=191s

Neural Radiance Fields ECCV 2020 Oral - Best Paper Honorable Mention
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𝑓 𝑥 = 𝑥! − 1

𝑓 ⋅ is a parameterized 2D/3D scalar field

𝑓 𝑥 =	?

𝑥

𝑥: coordinate

Implicit Representation
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Signed Distance Function (SDF) or Occupancy Fields

Represent 3D Scene as Continuous functions

Occupancy networks, Mescheder et al.
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NeRF 3D Representations

Neural Network as a continuous shape representaiton.

How do we learn 3D representations from 2D images?

https://www.matthewtancik.com/nerf
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Cast Rays  => Estimate 3D Representations => Volume Rendering => 2D Photometric Loss

Method Overview

https://www.matthewtancik.com/nerf
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
15



https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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https://sites.google.com/berkeley.edu/nerf-tutorial/home
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Detailed derivation

https://vimeo.com/766415501


https://sites.google.com/berkeley.edu/nerf-tutorial/home
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Video

Mildenhall et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020 24



Novel View Synthesis & View Dependency 

https://www.matthewtancik.com/nerf
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https://radiancefields.com/
https://sites.google.com/berkeley.edu/nerf-tutorial/home26

Resources



Resources 

https://docs.nerf.studio/
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3D Gaussian Splatting
SIGGRAPH 2023 best paper award
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Plenoxel [CVPR’22]: Fast Optimization / Rendering
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https://alexyu.net/plenoxels/

• Spherical Harmonics (SH) Coefficients
• Volume DensityWhat does it optimize?

=> No Neural Network



Spherical Harmonics (SH)

30

(θ : polar angle, φ : azimuthal angle)

If we solve Laplace equation in surface point,

𝑙 = 0

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑚 = 0

𝑚 = [−1	, 0, 1]

𝑚 = [−2,−1	, 0, 1, 2]



Fast Optimization / Rendering : Plenoxel [CVPR’22]
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https://alexyu.net/plenoxels/

Mip-NeRF360 vs Plenoxels

Train 1.6 days ~ 30 mins

FPS 0.06s 6.8s

Mem
ory

8.6MB 2.1GB
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Gaussian Splatting: Fast 3D Reconstruction and Rendering (3DGS)

- Gaussian Splatting is a fast training and real-time rendering framework.
- Takes ~1hour training and achieves >120 FPS.

32

MipNeRF360
Gaussian Splatting



01
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Gaussian Splatting: Fast 3D Reconstruction and Rendering

- Representation: 3D Gaussians
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1D Gaussians 2D Gaussians 3D Gaussians

Generalized multivariate gaussian distribution (without normalization)
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Gaussian Splatting: Fast 3D Reconstruction and Rendering

- Representation: 3D Gaussians
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Each 3D Gaussian is parametrized by:
•Mean 𝝁: 3D position (x, y, z)
•Covariance Σ = 𝑹𝑺𝑺𝑻𝑹𝑻; (Scale S, Rotation R)
•Opacity: σ(𝛼)
•Color parameters: spherical harmonics (SH) coefficients.

Novel Views3D Gaussian 
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3D Gaussian Splatting (3D-GS)
3D Gaussian Splatting for Real-Time Radiance Field Rendering [SIGGRAPH’23 Best Paper Award]

Step 1. Initialize points via Structure from Motion (SfM)
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3D Gaussian Splatting (3D-GS)

3D Gaussian Splatting for Real-Time Radiance Field Rendering [SIGGRAPH’23 Best Paper]

Step 2. Represent points with multivariate Gaussians and assign parameters

𝜇: Position
Σ: Covariance
𝑆: Color
𝛼: alpha



37

3D Gaussian Splatting (3D-GS)

3D Gaussian Splatting for Real-Time Radiance Field Rendering [SIGGRAPH’23 Best Paper]

Step 3. Convert Gaussian primitives into an Image (Rasterize)

Multivariate gaussians

{𝜇*, Σ*, 𝑆*, 𝛼*}

…

1. Project into 2d according to the camera
2. Sort by depths
3. Aggregate gaussians (alpha-blending)

Training

optimize

(No Neural Network)

Rasterization

𝐿

{𝜇+, Σ+, 𝑆+, 𝛼+}

{𝜇,, Σ-, 𝑆,, 𝛼,}

,
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Experimental Results

3DGS has shown high quality rendering with 130+ FPS (real-time).
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Implicit representation (Neural networks) Explicit representation (3D Gaussians)

MLP

(𝒄𝒐𝒍𝒐𝒓, 𝒅𝒆𝒏𝒔𝒊𝒕𝒚)

Volume Rendering Rasterization

Slow rendering, low memory Real-time rendering, higher memory

{𝜇!, Σ!, 𝑆!, 𝛼!}

…
{𝜇", Σ", 𝑆", 𝛼"}

{𝜇#, Σ$, 𝑆#, 𝛼#}



Applications
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2. Generative Models (Text-to-3D, Image-to-3D, etc.)

1. Assume static scene => Dynamic Scene

3. Relighting / Light Modeling

NeRF/3DGS Applications 

List goes on and on…!
NeRF has been cited 6800+

3DGS, 1400+ 41

4. Navigation / Autonomous Driving

Etc.



The world we capture is usually Dynamic / Deformable
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Dynamic NeRFs / 3DGS
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https://www.albertpumarola.com/research/D-NeRF

RoDynRF, Liu et al. CVPR’23 DynlBaR, Li et al. CVPR’23

Bae et al. ECCV’24

https://www.albertpumarola.com/research/D-NeRF


NeRF/3DGS requires Per-Scene Optimization
 

Generalizable Methods with Prior Knowledge
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2. Sparse input camera viewpionts

1. Scene-specific representation

MLP

Not Generalizable
Cannot share representations across 
scenes or views

e.g., N=3

NeRF/3DGS requires Per-Scene Optimization with Dense Views

NeRF
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PixelNeRF

Generalizable NeRF / 3DGS

NeRF

• One-Shot NeRF (pixelNeRF [Yu et al. CVPR’21])
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Novel Views

• One-Shot 3DGS (PixelSplat [Charatan et al. CVPR’24])

- Note 1. No Per Scene Optimization ❌, Generalizable ✅
- Note 2. No Dense Views ❌, Only 2-3 images ✅



Radiance Fields with Generative Models
Text-to-3D, Image-to-3D

47



LGM, ECCV’24
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DreamScenes, ECCV’24

DreamFusion [Poole et al. arXiv 2022]
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A DSLR photo of a living room DSLR photo of a cyberpunk style 
bedroom, cyberpunk style

A minecraft cubes world with lake and 
mountains in the far distance and grass 

cubes in the near distance



SLAM 
Localization and Mapping
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GaussNav, ECCV’24
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Other applications
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Explore other applications that 
might interest you

https://github.com/MrNeRF/awesome-3D-gaussian-splatting



Thank you
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yjna2907@kaist.ac.kr


