Radiance Fields: NeRF to 3D Gaussian Splatting

Youngju Na M.S. Student @ SGVR Lab

yjna2907@kaist.ac.kr

Background: Novel View Synthesis

Images from multiple camera viewpoints

Neural Radiance Fields ECCV 2020 Oral - Best Paper Honorable Mention

Input: images from various camera viewpoints

Examples (synthesized from novel views)

KAIST

Videos: https://www.youtube.com/watch?v=JuH79E8rdKc&t=191s

Implicit Representation

 $f(\cdot)$ is a parameterized 2D/3D scalar field

x: coordinate

Neural Network

Represent 3D Scene as Continuous functions

Signed Distance Function (SDF) or Occupancy Fields

NeRF 3D Representations

Neural Network as a continuous shape representaiton.

How do we learn 3D representations from 2D images?

https://www.matthewtancik.com/nerf

Method Overview

Cast Rays => Estimate 3D Representations => Volume Rendering => 2D Photometric Loss

Neural Volumetric Rendering

o https://sites.google.com/berkeley.edu/nerf-tutorial/home

Neural Volumetric Rendering

computing color along rays through 3D space

What color is this pixel?

https://sites.google.com/berkeley.edu/nerf-tutorial/home

Cameras and rays

- We need the mathematical mapping from (camera, pixel) → ray
- Then can abstract underlying problem as learning the function ray → color (the "plenoptic function")

Calculating points along a ray

Neural Volumetric Rendering

continuous, differentiable rendering model without concrete ray/surface intersections

Surface vs. volume rendering

Surface rendering — loop over geometry, check for ray hits

Surface vs. volume rendering

Volume rendering — loop over ray points, query geometry

Volumetric formulation for NeRF

What does it mean for a ray to "hit" the volume?

a particle in a small interval around t is $\sigma(t) dt$. σ is called the "volume density"

https://sites.google.com/berkeley.edu/nerf-tutorial/home

Probabilistic interpretation

To determine if t is the first hit along the ray, need to know T(t): the probability that the ray makes it through the volume up to t. T(t) is called "transmittance"

PDF for ray termination

Finally, we can write the probability that a ray terminates at t as a function of only sigma

 $P[\text{first hit at } t] = P[\text{no hit before } t] \times P[\text{hit at } t]$

$$= T(t)\sigma(t)dt$$
$$= \exp\left(-\int_{t_0}^t \sigma(s) \, ds\right)\sigma(t) \, dt$$

Expected value of color along ray

This means the expected color returned by the ray will be

$$\int_{t_0}^{t_1} T(t)\sigma(t) \mathbf{c}(t) dt$$

Note the nested integral!

Approximating the nested integral

We use quadrature to approximate the nested integral, splitting the ray up into *n* segments with endpoints $\{t_1, t_2, ..., t_{n+1}\}$ with lengths $\delta_i = t_{i+1} - t_i$

Approximating the nested integral

We assume volume density and color are roughly constant within each interval

Summary: volume rendering integral estimate

Rendering model for ray $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$:

How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

How much light is contributed by ray segment *i*:

$$\alpha_i = 1 - \exp(-\sigma_i \delta_i)$$

Detailed derivation

Volume rendering is trivially differentiable

$$\alpha_i = 1 - \exp(-\sigma_i \delta_i)$$

Video

Mildenhall et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020

Novel View Synthesis & View Dependency

Resources

ECCV'22 Tutorial: Neural **Volumetric Rendering for Computer Vision**

Neural Radiance Fields (NeRFs), presented in ECCV 2020 just two years ago demonstrated exciting potential for photo-realistic and immersive 3D scene reconstruction from a set of calibrated images. It was followed by a surge of works that explore the

potential of using Neural Volumetric Rendering as a technique for enabling many exciting problems in Computer Vision, Graphics, Robotics and more. In this tutorial, we will pres Volumetric Rendering from the first principles, including its relation to the history of ima core components and their derivations, common practices, future challenges, and hand half-day tutorial is not to present a series of talks on recent papers in this area, but to p novice and intermediate researchers to deeply understand the material by abstracting a Neural Volumetric Rendering.

Radiance Fields

6 Subscribe

About Partnerships Affiliates Contribute Contact VRAM Calculator Platforms

Organizers

Matt Tancik

Google

Ben Mildenhall

Google

Jon Barron

Google

lichael Rubloff Apr 23, 2024

irrealix Gaussian Splatting

Adobe After Effects has welcomed a new addition to its suite

Radiance Fields, via the newly introduced irrealix plugin.

Plugin for After Effects

Angjoo Kanazawa

UC Berkelev

PLATFORMS

RESEARCH

SuperSplat adds new Features

PlayCanvas's Super Splat, the online editor and viewer for Gaussian.. Michael Rubloff Apr 22, 2024

RefFusion: Inpainting with 3DGS NVIDIA's recently announced RefFusion, however, takes a.,

Michael Rubloff Apr 19, 2024

https://sites.google.com/berkeley.edu/nerf-tutorial/bome https://radiancefields.com/

Resources

A collaboration friendly studio for NeRFs

3D Gaussian Splatting SIGGRAPH 2023 best paper award

Plenoxel [CVPR'22]: Fast Optimization / Rendering

What does it optimize?

- Spherical Harmonics (SH) Coefficients
- Volume Density

=> No Neural Network

Spherical Harmonics (SH)

(θ : polar angle, ϕ : azimuthal angle)

If we solve Laplace equation in surface point,

$$\begin{split} Y_l^m(\theta,\phi) &= \sqrt{\frac{(2l+1)(l-|m|)!}{4\pi(l+|m|)!}} P_l^{|m|}(\cos\theta) e^{im\phi} \\ P_\ell^{(|m|)}(\cos\theta) &= (-1)^m \frac{(\ell+|m|)!}{(\ell-|m|)!} P_\ell^{(-|m|)}(\cos\theta) \end{split}$$

Fast Optimization / Rendering : Plenoxel [CVPR'22]

Mip-NeRF360 vs Plenoxels

Train	1.6 days	~ 30 mins
FPS	0.06s	6.8s
Mem ory	8.6MB	2.1GB

Gaussian Splatting: Fast 3D Reconstruction and Rendering (3DGS)

- Gaussian Splatting is a fast training and real-time rendering framework.
- Takes ~1hour training and achieves >120 FPS.

Gaussian Splatting: Fast 3D Reconstruction and Rendering

- Representation: 3D Gaussians

Generalized multivariate gaussian distribution (without normalization)

Gaussian Splatting: Fast 3D Reconstruction and Rendering

- Representation: 3D Gaussians

Each 3D Gaussian is parametrized by: •Mean μ : 3D position (x, y, z) •Covariance $\Sigma = RSS^T R^T$; (Scale S, Rotation R) •Opacity: $\sigma(\alpha)$ •Color parameters: spherical harmonics (SH) coefficients.

3D Gaussian Splatting (3D-GS)

3D Gaussian Splatting for Real-Time Radiance Field Rendering [SIGGRAPH'23 Best Paper Award]

Step 1. Initialize points via Structure from Motion (SfM)

3D Gaussian Splatting (3D-GS)

Step 2. Represent points with multivariate Gaussians and assign parameters

3D Gaussian Splatting for Real-Time Radiance Field Rendering [SIGGRAPH'23 Best Paper]

3D Gaussian Splatting (3D-GS)

Experimental Results

3DGS has shown high quality rendering with 130+ FPS (real-time).

Dataset	Mip-NeRF360					
Method Metric	$SSIM^{\uparrow}$	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem
Plenoxels	0.626	23.08	0.463	25m49s	6.79	2.1GB
INGP-Base	0.671	25.30	0.371	5m37s	11.7	13MB
INGP-Big	0.699	25.59	0.331	7m30s	9.43	48MB
M-NeRF360	0.792^{\dagger}	27.69 [†]	0.237^{\dagger}	48h	0.06	8.6MB
Ours-7K	0.770	25.60	0.279	6m25s	160	523MB
Ours-30K	0.815	27.21	0.214	41m33s	134	734MB

Implicit representation (Neural networks)

Volume Rendering

Slow rendering, low memory

Explicit representation (3D Gaussians)

Rasterization

Real-time rendering, higher memory

Applications

NeRF/3DGS Applications

1. Assume static scene => Dynamic Scene

2. Generative Models (Text-to-3D, Image-to-3D, etc.)

3. Relighting / Light Modeling

4. Navigation / Autonomous Driving

Etc.

List goes on and on...! NeRF has been cited 6800+ 3DGS, 1400+

The world we capture is usually Dynamic / Deformable

Dynamic NeRFs / 3DGS

RoDynRF, Liu et al. CVPR'23

DynlBaR, Li et al. CVPR'23

Bae et al. ECCV'24

https://www.albertpumarola.com/research/D-NeRF

NeRF/3DGS requires Per-Scene Optimization

Generalizable Methods with Prior Knowledge

NeRF/3DGS requires Per-Scene Optimization with Dense Views

1. Scene-specific representation

2. Sparse input camera viewpionts

Not Generalizable

Cannot share representations across scenes or views

Generalizable NeRF / 3DGS

- Note 1. No Per Scene Optimization 🗙, Generalizable 🗹
- Note 2. No Dense Views 🗙, Only 2-3 images 🔽
- One-Shot NeRF (pixelNeRF [Yu et al. CVPR'21])

PixelNeRF NeRF

One-Shot 3DGS (PixelSplat [Charatan et al. CVPR'24])

Input Views

Novel Views

Radiance Fields with Generative Models Text-to-3D, Image-to-3D

LGM, ECCV'24

"motorcycle"

"mech suit"

"ghost lantern"

"furry fox head"

"dresser"

"swivel chair"

"astronaut"

"mushroom house"

DreamScenes, ECCV'24

A DSLR photo of a living room

DSLR photo of a cyberpunk style bedroom, cyberpunk style

A minecraft cubes world with lake and mountains in the far distance and grass cubes in the near distance

DreamFusion [Poole et al. arXiv 2022]

SLAM Localization and Mapping

GaussNav, ECCV'24

Other applications

Table of contents

- Seminal Paper introducing 3D Gaussian Splatting
- <u>3D Object Detection</u>
- Autonomous Driving
- Avatars
- Classic work
- <u>Compression</u>
- Diffusion
- Dynamics and Deformation
- Editing
- Language Embedding
- Mesh Extraction and Physics
- <u>Misc</u>
- Regularization and Optimization
- Rendering
- Reviews
- SLAM
- Sparse
- Navigation and Autonomous Driving
- Poses
- Large-Scale

Explore other applications that might interest you

https://github.com/MrNeRF/awesome-3D-gaussian-splatting

Thank you

yjna2907@kaist.ac.kr