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Background: Novel View Synthesis

3D ,
ﬁ Scene ﬁ

Inverse Rendering RERIEsetaRon Rendering

Images from Novel Viewpoints

Images from multiple camera viewpoints
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Neural Radiance Fields eccv 2020 oral - Best Paper Honorable Mention

Input: images from various 1 Output: images from novel

camera viewpoints camera viewpoints

Examples (synthesized from novel views)

Videos: https://www.youtube.com/watch?v=JuH79E8rdKc&t=191s




Implicit Representation

f () is a parameterized 2D/3D scalar field

x: coordinate

flo) = llx*ll -1

Neural Network
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Represent 3D Scene as Continuous functions

Signed Distance Function (SDF) or Occupancy Fields
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NeRF 3D Representations

Neural Network as a continuous shape representaiton.

(z,vy, 2,0, ) —>III—> (r,g,0, a)
K’ S

Spatial Viewing Output Output
location direction 9 color density

Fully-connected
neural network
9 layers,
256 channels

How do we learn 3D representations from 2D images?
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https://www.matthewtancik.com/nerf




Method Overview

Cast Rays => Estimate 3D Representations => Volume Rendering => 2D Photometric Loss

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
(x.32,6,4) > — (RGBo)
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o g » 2 e S / . — gt
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Ray Distance
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Neural Volumetric Rendering
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Rendering

computing color along rays
through 3D space

e .

What color is this pixel?
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Cameras and rays

* We need the mathematical mapping
from (camera, pixel) — ray

* Then can abstract underlying problem

as learning the function ray — color
(the “plenoptic function”)

Camera
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Calculating points along a ray

O
O

0
o2 o0+t
/ 2
O A |
0 v .
\ Scalar t controls distance

along the ray
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Volumetric

continuous, differentiable
rendering model without
concrete ray/surface intersections
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Surface vs. volume rendering

Ray

Camera Scene
representation

Surface rendering — loop over geometry, check for ray hits
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Surface vs. volume rendering

Ray

Camera Scene
representation

Volume rendering — loop over ray points, query geometry
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Volumetric formulation for NeRF

Ray r(f) = 0 + 1d

Camera If a ray traveling through the scene hits
a particle at distance f along the ray,
we return its color ¢(7)
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https://sites.google.com/berkeley.edu/nerf-tutorial/home




What does it mean for a ray to “hit” the volume?

This notion is probabilistic: chance that ray hits
a particle in a small interval around t is o(%) dt.
o is called the “volume density”

KAIST 16

https://sites.google.com/berkeley.edu/nerf-tutorial/home




Probabilistic interpretation

P[no hits before t] = T(7)

To determine if t is the first hit along the ray,
need to know T(?): the probability that the
ray makes it through the volume up to .
1(¢) is called “transmittance”

KAIST 7

https://sites.google.com/berkeley.edu/nerf-tutorial/home




PDF for ray termination

P[no hits before t] = T(7)
, it at 1] = o(f) dt

Finally, we can write the probability that a ray terminates at ¢ as a function of only sigma
P[first hit at 1] = P[no hit before t] X P[hit at ¢]
= T(H)o(t)dt

= exp <—[ o(s) a's> o(t)dt

Iy
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Expected value of color along ray

This means the expected color returned by the ray will be

t color
J T(tH)o(t c(t)&a’t

0

Note the nested integral!
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Approximating the nested integral

4

We use quadrature to approximate the nested integral,
splitting the ray up into n segments with endpoints {#,, %, ..., .}
KAIST with lengths 6, = t,, | — ¢ N

https://sites.google.com/berkeley.edu/nerf-tutorial/home




Approximating the nested integral

We assume volume density and
color are roughly constant within
each interval o

https://sites.google.com/berkeley.edu/nerf-tutorial/home
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Summary: volume rendering integral estimate

Rendering model for ray r(¢) = o + td:

n Ray
C~ Z Tiaici\
i=1 colors
weights
How much light is blocked earlier along ray: 3D volume

i—1
ri=110-a)
Lo P

How much light is contributed by ray segment i:
Detailed derivation

a; = 1 —exp(—0;9)
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https://vimeo.com/766415501

Volume rendering is trivially differentiable

Renderina n:odel foua%r f)=o0+1td:

n
~ differentiable w.r.t.c,c
e~ ) Tag;, TN

=1

Ray

colors

weights

How much light is blocked earlier along ray:

i—1
T,=[]a-o
j=1

How much light is contributed by ray segment i:

3D volume

‘Zamera

a= 1 - exp(=0)
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Mildenhall et al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020 2



Novel View Synthesis & View Dependency
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https://www.matthewtancik.com/nerf




Resources

ECCV'22 Tutorial: Neural
Volumetric Rendering for
Computer Vision

Neural Radiance Fields (NeRFs), presented in ECCV 2020 just two years ago demonstrated exciting potential for photo-realistic

and immersive 3D scene reconstruction from a set of calibrated images. It was followed by a surge of works that explore the

potential of using Neural Volumetric Rendering as a technique for enabling many excitir T o I

problems in Computer Vision, Graphics, Robotics and more. In this tutorial, we will pres s - l

Volumetric Rendering from the first principles, including its relation to the history of ima @ Radlance Fle dS Xomoo
core components and their derivations, common practices, future challenges, and hanc

half-day tutorial is not to present a series of talks on recent papers in this area, but to p

novice and intermediate researchers to deeply understand the material by abstracting ¢ .

Neural Volumetric Rendering.

PLATFORMS

3 3 : ] SuperSplat adds new Features
6 rgan izers lrrea;llx GaUSSIan Splattlng PlayCanvas's Super Splat, the online
Plugll‘l for After Effects editor and viewer for Gaussian...

Adobe After Effects has welcomed a new addition to its suite G a u S S I a n s . R s
—Radiance Fields, via the newly introduced irrealix plugin. S p I att | n g
—

Michael Rubloff ~ Apr 23,2024

After Effects plugin ” RefFusion: Inpainting with 3DGS
NVIDIA's recently announced
RefFusion, however, takes a...

Michael Rubloff ~ Apr19, 2024

5

Matt Tancik Ben Mildenhall Pratul Srinivasan Jon Barron Angjoo Kanazawa

UC Berkeley Google Google Google UC Berkeley
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Resources

KAIST

D] pypi package '1.0.3 Core Tests. [passing J| License Apache 2.0

[ ]
nerfstudio
A collaboration friendly studio for NeRFs

[ Documentationj[ ﬁi Viewer J[ () Colab J

D

Esqnerfstudis

> RESUME TRAINING
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3D Gaussian Splatting
SIGGRAPH 2023 best paper award
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Plenoxel [CVPR’22]: Fast Optimization / Rendering

M :‘) ® :‘) ® :‘) ® Spherical
PO OPO OO f
oo 9:‘\ 4 9:‘\ ® 006 Hamonies g "
» . Predicted
o e s g o Al Color
| i < r -l
o Ray Distance
/ ® c¢) Volumetric Rendering
~— 9 & g
minimi}ze Lorccon + ANCTv
A {0,@
Tlraining — .
mage . . . T
a) Sparse Voxel Grid b) Trilinear Interpolation d) Optimization

» Spherical Harmonics (SH) Coefficients

. o
What does it optimize? . Volume Density

=> No Neural Network

KAIST
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Spherical Harmonics (SH)

If we solve Laplace equation in surface point,

zZ A
Y. 0.4) = P, f)e’
"(0,9) T b e
m (‘+ |7Tl|) (— |m|)
P (cos ) = (-1 (—P cosf
£ ( ) ( ) ( |77l|)' ( )
y' 0.m=0,0
[=0 . m=20
=1 ( )C( - m=[-1,0,1]
(6 : polar angle, ¢ : azimuthal angle) Gnictil) UG Gm-g Gw-aD  Wni-a
=2 ‘ >€ N "’( D ' m=[-2-1,0,1,2]

0m=@3.-3) 0m=@3.-2) Lm=@.-1) 0m)=(@3,0) am=@3.1) am=(@3.2) a.m)=(@.3)
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Fast Optimization / Rendering : Plenoxel [CVPR’22]

Mip-NeRF360 vs Plenoxels

Train | 1.6 days ~ 30 mins
FPS 0.06s 6.8s

Mem | 8.6MB 2.1GB

ory

31




Gaussian Splatting: Fast 3D Reconstruction and Rendering (3DGS)

- Gaussian Splatting is a fast training and real-time rendering framework.
- Takes ~1hour training and achieves >120 FPS.

MipNeRF360
/ Gaussian Splatting

48n
/ MipNeRF360
o o

Ours7K

27.11
MipNeRF360 26.91
Ours30K

Timelapse of the Optimization
(NeRF-Synthetic Dataset)

25.2
24.92 Ours7K
Instant-NGP|

9.0
Instant-NGP

=
PSNR FPS Train

KAIST 32




Gaussian Splatting: Fast 3D Reconstruction and Rendering

- Representation: 3D Gaussians

iD i i
Gaussians 2D Gaussians 3D Gaussians

7202, m—
#2110, m—
22,0, m—

2205, .

9;.;0.'.

0.0

1 Ty—1
gx)=exp| —Sx—w X (x—p
Generalized multivariate gaussian distribution (without normalization)
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Gaussian Splatting: Fast 3D Reconstruction and Rendering

- Representation: 3D Gaussians

filp) = o() exp(—5(p — [ X7 (p —[pi)) Each 3D Gaussian is parametrized by:
*Mean u: 3D position (X, Y, z)
. «Covariance Z = RSSTR”; (Scale S, Rotation R)
P ,Q / -Opacity: o(a)
«Color parameters: spherical harmonics (SH) coefficients.

Input Views 3D Gaussian Novel Views

Fr
o 4 e

34
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3D Gaussian Splatting (3D-GS)

3D Gaussian Splatting for Real-Time Radiance Field Rendering [SIGGRAPH'23 Best Paper Award]

Camera

SfM Points

~\

Initialization

~Te

—

y 3D Gaussians

/

%
-

Projection

Adaptive
Density Control

\ Differentiable | —
/ Tile Rasterizer | €——

Image

I — Operation Flow ~ —3 Gradient Flow

Step 1. Initialize points via Structure from Motion (SfM)

KAIST

91
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3D Gaussian Splatting (3D-GS)

SfM Points

Camera

N\
-D0
Initialization | —» .
)

3D Gaussians

!

Projection

Adaptive
Density Control

Differentiable
Tile Rasterizer

Image

— Operation Flow

—p Gradient Flow

Step 2. Represent points with multivariate Gaussians and assign parameters

KAIST

u: Position

Z: Covariance
S: Color

a: alpha

3D Gaussian Splatting for Real-Time Radiance Field Rendering [SIGéRAPH’23 Best Paper]
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3D Gaussian Splatting (3D-GS)

SfM Points

Camera

-

Initialization | —» .

3D Gaussians

/k

TV

'd
2N

S~

Projection

Adaptive
Density Control

N4

Differentiable
Tile Rasterizer

Image

— Operation Flow

—p Gradient Flow )

Step 3. Convert Gaussian primitives into an Image (Rasterize)

Multivariate gaussians

KAIST

{ﬂ1: 21, S1, 051}
{ﬂzr 2y, Sy, “2}

{.UNI N, Shy aN}
4

—

Rasterization

1. Project into 2d according to the camera

optimize

2. Sort by depths
3. Aggregate gaussians (alpha-blending)

¥

Training (No Neural Network)

3D Gaussian Splatting for Real-Time Radiance Field Rendering [SIGGRAPH'23 Best Paper]
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Experimental Results

3DGS has shown high quality rendering with 130+ FPS (real-time).

27.11
MipNeRF360 5 5 o]

24.92
Instant-NGP

PSNR

KAIST

48h
MipNeRF360

167.9
QOurs7K

9.0
Instant-NGP

NeRF360

7.5min
Instant-NGP

Dataset Mip-NeRF360
Method|Metric | SSIMT PSNR! LPIPS! Train FPS Mem
Plenoxels 0.626 23.08 0.463 25m49s  6.79 2.1GB
INGP-Base 0.671 25.30 0371  5m37s 117 13MB
INGP-Big 0.699  25.59 0331  7m30s 9.43 48MB
M-NeRF360 07927 = 27.69"  0.2377 48h __ 0.06_ 8.6MB
Ours-7K 0770  25.60 0279 | 6m25s 160 | 523MB
Ours-30K 0815  27.21 0.214 | 41m33s 134 | 734MB
38



NeRF Gaussian Splatting

@ N (<>\J

{u1, 21, S1, a4}

\ G {12, 22, S2, a2}
MLP

l {:uNI ZNI SNI aN}
(color, density)

Implicit representation (Neural networks) Explicit representation (3D Gaussians)
Volume Rendering Rasterization
Slow rendering, low memory Real-time rendering, higher memory

KAIST 39




Applications
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NeRF/3DGS Applications

1. Assume static scene => Dynamic Scene
2. Generative Models (Text-to-3D, Image-to-3D, etc.)
3. Relighting / Light Modeling
4. Navigation / Autonomous Driving
Etc.
List goes on and on...!

NeRF has been cited 6800+
KAIST 3DGS, 1400+
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The world we capture is usually Dynamic / Deformable

KAIST
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Dynamic NeRFs / 3DGS

Bae et al. ECCV’'24

43
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https://www.albertpumarola.com/research/D-NeRF



https://www.albertpumarola.com/research/D-NeRF

NeRF/3DGS requires Per-Scene Optimization

Generalizable Methods with Prior Knowledge

44



NeRF/3DGS requires Per-Scene Optimization with Dense Views

1. Scene-specific representation

Not Generalizable

Cannot share representations across
SCEeNnes or views

45



Generalizable NeRF / 3DGS

- Note 1. No Per Scene Optimization X, Generalizable
- Note 2. No Dense Views x, Only 2-3 images

* One-Shot NeRF (pixelNeRF [Yu et al. CVPR’21))

\ « One-Shot 3DGS (PixelSplat [Charatan et al. CVPR’24])
Input View w

(RGBo)
HDHH Input Views Novel Views

N W( 7)

h

CNN Encoder Target View

PixelNeRF NeRF



Radiance Fields with Generative Models
Text-to-3D, Image-to-3D
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LGM, ECCV'24

“motorcycle” “mech suit” “furry fox head”

N

¢

¢

¢

“dresser” “swivel chair” “astronaut” “mushroom house”

48



DreamScenes, ECCV’'24

A DSLR photo of a living room

DSLR photo of a cyberpunk style
bedroom, cyberpunk style

A minecraft cubes world with lake and
mountains in the far distance and grass
cubes in the near distance

DreamFusion [Poole et al. arXiv 2022]
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SLAM
Localization and Mapping

50



GaussNav, ECCV’24

Goal Image

1

Semantic Gaussians

£ A;
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Other applications

Table of contents

« Seminal Paper introducing 3D Gaussian Splatting

« 3D Object Detection

¢ Autonomous Driving
o Avatars

¢ Classic work

e Compression

« Diffusion

« Dynamics and Deformation
¢ Language Embedding

« Mesh Extraction and Physics

* Misc
« Regularization and Optimization
¢ Rendering

¢ Reviews

e SLAM

e Sparse
« Navigation and Autonomous Driving

¢ Poses

¢ Large-Scale

Explore other applications that
might interest you

https://github.com/MrNeRF/awesome-3D-gaussian-splatting
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Thank you

yjna2907 @kaist.ac.kr
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