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Review of  Team 2
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SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image
introduce and propagate geometry pseudo labels and semantic pseudo labels to guide the 
progressive training process

➢ train this semi-supervised framework via ground truth color and depth labels 
of the reference view and pseudo labels on unseen views

➢ use image warping to obtain geometry pseudo labels and utilize adversarial 
training as well as a pre-trained ViT for semantic pseudo labels.

learn to control the camera perspective in large-scale diffusion models, enabling zero-shot 
novel view synthesis and 3D reconstruction from a single image.

Zero-1-to-3: Zero-shot One Image to 3D Object

➢ capitalize on the geometric priors that large-scale diffusion models learn 
about natural images. 

➢ Uses a synthetic dataset to learn camera viewpoint controls, enabling 
generation of new images of the same object from specified angles.
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Forward and Inverse Rendering
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Target-Aware Image Denoising for Inverse Monte Carlo Rendering, Bochang Moon
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Inverse rendering (materials)
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Initial

Target
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Noisy gradients
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Optimizers (like Adam)
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• Can smooth out 
stochastic gradients

• Black box
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Noisy gradients
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Target-Aware Image Denoising for Inverse Monte Carlo Rendering, Bochang Moon

• Spatial (target aware) filter
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ReSTIR (unbiased spatiotemporal reuse)
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Sequence of 
similar noisy frames Reuse of

previous frames

Bitterli et al. SIGGRAPH 2020.
Spatiotemporal reservoir resampling for 
real-time ray tracing with dynamic direct 
lighting. 



BEST FOR You
O R G A N I C S  C O M P A N Y 10

Initial

Target

Temporal changes are small
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Adam
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Path Guiding, Jaeyoon Kim
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• Generate points Xi ~ q

• Pick one with probability proportional to f(Xi)

Resampled Importance Sampling (RIS)

Talbot et al. EGSR 2005.
Importance Resampling for Global 
Illumination.

A Gentle Introduction to ReSTIR: Path Reuse in Real-time, Wyman et al. ACM SIGGRAPH 2023 Courses
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ReSTIR temporal reuse

(spatial reuse is not used in ReSTIR DR)

A Gentle Introduction to ReSTIR: Path Reuse in Real-time, Wyman et al. ACM SIGGRAPH 2023 Courses
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Can we just apply ReSTIR then?
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Theoretical contributions
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• Parameter-Space Differentiable Rendering

• Resampling with Positive and Negative Functions
oPositivization
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The Problem with Pixel-centric Differentiable Rendering
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Forward 
Rendering

Differentiable 
Rendering

Single 
intensity 𝐼 
for each of 

N pixels
=

N samples

One derivative for 
each texel 𝜋𝑖  in 

each pixel

𝜕𝐼

𝜕𝜋2
⋯

𝜕𝐼

𝜕𝜋0

𝜕𝐼

𝜕𝜋1

M texels =
N ⋅ M samples
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Parameter-Space ReSTIR

18



BEST FOR You
O R G A N I C S  C O M P A N Y

Theoretical contributions
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• Parameter-Space Differentiable Rendering

• Resampling with Positive and Negative Functions
oPositivization
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Positive and negative function
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𝑥
𝑉

𝜕𝑓

𝜕𝑓
≠ 0

Noise due to sign
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Sample 𝑞+, 𝑞−

Positivization
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Variance → 0 when 
𝑞+ = max(𝜕𝑓, 0)      𝑞− = max(−𝜕𝑓, 0)

−−
𝑥

+

Owen et al. Journal of the American 
Statistical Association (2000)
Safe and effective importance sampling. 
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Theoretical contributions
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• Parameter-Space Differentiable Rendering

• Resampling with Positive and Negative Functions
oPositivization
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Iteration 𝑖 + 1Iteration 𝑖

Our Texture Optimization Algorithm
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Store
1 positive, 1 negative
sample per texel
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Result

25All experiments ran on an NVIDIA GeForce RTX 2080 Ti.

implemented method on top 
of a direct lighting integrator 
in Mitsuba 3

the recovery of the roughness 
texture of the chalice with many 
colored lights
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Results: Gradients – Disney BSDF Roughness
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Mitsuba 3

Baseline Ours Reference

0.24 ×1.00 × ← Error

Initial

Target

Texture Gradient

high variance computes 
noisy gradients
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Gradients – Disney BSDF Roughness
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reduces variance of gradient estimates, 
resulting faster inverse rendering
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Results: Inverse Rendering – Disney BSDF Anisotropy
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Results: Inverse Rendering – Disney BSDF Anisotropy
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derivatives with 
the wrong sign 
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Results: Inverse Rendering – Disney BSDF Anisotropy

30

Mitsuba 3

Baseline Ours Target

0.28 ×1.00 ×

Initial

2 − 3 ×    Faster Convergence

Rendering
← Error
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Results: Positivized (G)RIS

31

Without Pos. With Pos.

1.00 × 0.83 ×

Rendering
← Error

a slow and noisy 
optimization 
trajectory  
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Results: Inverse Rendering Video – 1 spp
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Mitsuba 3 Baseline Ours

Initial

Target
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Summary

» Parameter-space differentiable rendering enables efficient derivative reuse.

» Positivized RIS extends RIS to real-valued functions to achieve theoretical zero-
variance convergence of resampled derivative estimates.

» Reusing samples from previous gradient descent iterations results in faster 
inverse rendering.

» Limitation:

➢Assumes gradient correlation, which may fail at high learning rates.

➢Impact of gradient errors on convergence speed is unclear. 

33
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Conclusion
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» Physically-based differentiable rendering 
has historically been slow.

» But we can leverage decades of (real-time) 
rendering research to make it fast.  

» Our framework is applicable to other 
optimization problems outside rendering.
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Quiz
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