Team 1

Parameter-space ReSTIR for Differentiable and Inverse Rendering (ReSTIR DR)

Niklas Sanden Tan Chao

Review of Team 2

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image

introduce and propagate geometry pseudo labels and semantic pseudo labels to guide the progressive training process

- \triangleright train this semi-supervised framework via ground truth color and depth labels of the reference view and pseudo labels on unseen views
- ➢ use image warping to obtain geometry pseudo labels and utilize adversarial training as well as a pre-trained ViT for semantic pseudo labels.

Zero-1-to-3: Zero-shot One Image to 3D Object

learn to control the camera perspective in large-scale diffusion models, enabling zero-shot novel view synthesis and 3D reconstruction from a single image.

- \triangleright capitalize on the geometric priors that large-scale diffusion models learn about natural images.
- ➢ Uses a synthetic dataset to learn camera viewpoint controls, enabling generation of new images of the same object from specified angles.

THE PREMIER CONFERENCE & EXHIBITION ON COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES

Parameter-space ReSTIR for Differentiable and Inverse Rendering

Wesley Chang¹ , Venkataram Sivaram¹ , Derek Nowrouzezahrai² , Toshiya Hachisuka³ , Ravi Ramamoorthi¹, and Tzu-Mao Li¹.

¹UCSD ²McGill University ³University of Waterloo

Forward and Inverse Rendering

Target-Aware Image Denoising for Inverse Monte Carlo Rendering, Bochang Moon

Inverse rendering (materials)

Initial

Target

Noisy gradients

Optimizers (like Adam)

- Can smooth out stochastic gradients
- Black box

Noisy gradients

Target-Aware Image Denoising for Inverse Monte Carlo Rendering, Bochang Moon

• Spatial (target aware) filter

Bitterli et al. *SIGGRAPH 2020.* Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting.

ReSTIR(unbiased spatiotemporal reuse)

Sequence of similar noisy frames Reuse of

previous frames

Temporal changes are small

Initial

Target

• If $p \propto L_i f_s \cos \theta_i$, $Var[\langle L_o(\mathbf{x}, \omega_o) \rangle] = 0$

Talbot et al. *EGSR 2005.* Importance Resampling for Global Illumination.

Resampled Importance Sampling (RIS)

- Generate points Xi ~ q
- Pick one with probability proportional to f(Xi)

A Gentle Introduction to ReSTIR: Path Reuse in Real-time, Wyman et al. *ACM SIGGRAPH 2023 Courses 13*

ReSTIR temporal reuse

(spatial reuse is not used in ReSTIRDR)

A Gentle Introduction to ReSTIR: Path Reuse in Real-time, Wyman et al. *ACM SIGGRAPH 2023 Courses* (14 Metath 2013)

Can we just apply ReSTIR then?

Theoretical contributions

- Parameter-Space Differentiable Rendering
- Resampling with Positive and Negative Functions oPositivization

The Problem with Pixel-centric Differentiable Rendering

BEST FOR *You*

Parameter-Space ReSTIR

Theoretical contributions

- Parameter-Space Differentiable Rendering
- Resampling with Positive and Negative Functions oPositivization

Positive and negative function

Noise due to sign

Owen et al. *Journal of the American Statistical Association (2000)* Safe and effective importance sampling.

Positivization

Sample q_+ , q_-

Variance $\rightarrow 0$ when $q_+ = \max(\partial f, 0)$ $q_- = \max(-\partial f, 0)$

Theoretical contributions

- Parameter-Space Differentiable Rendering
- Resampling with Positive and Negative Functions oPositivization

Our Texture Optimization Algorithm

Result

implemented method on top of a direct lighting integrator in Mitsuba 3

the recovery of the roughness texture of the chalice with many colored lights

All experiments ran on an NVIDIA GeForce RTX 2080 Ti. $\hspace{1cm} 25$

Results: Gradients –Disney BSDF Roughness

Gradients –Disney BSDF Roughness

reduces variance of gradient estimates, resulting **faster** inverse rendering

Results: Inverse Rendering –Disney BSDF Anisotropy

28

Results: Inverse Rendering –Disney BSDF Anisotropy

BEST FOR *You* the wrong sign derivatives with

Results: Inverse Rendering –Disney BSDF Anisotropy

Results: Positivized (G)RIS

Results: Inverse Rendering Video – 1 spp

Initial

Target

Mitsuba 3 Baseline **Ours**

Summary

- » **Parameter-space differentiable rendering** enables efficient derivative reuse.
- » **Positivized RIS** extends RIS to real-valued functions to achieve theoretical zerovariance convergence of resampled derivative estimates.
- » **Reusing samples** from previous gradient descent iterations results in faster inverse rendering.
- » **Limitation:**
	- ➢Assumes gradient correlation, which may fail at high learning rates. ➢Impact of gradient errors on convergence speed is unclear.

Conclusion

- » Physically-based differentiable rendering has historically been slow.
- » But we can leverage decades of (real-time) rendering research to make it fast.
- » Our framework is applicable to other optimization problems outside rendering.

Quiz

