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Backgrounds - Denoisers
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Background - Image Filters
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Background - Image Filters

Gaussian Anisotropic diffusion

Total variation Neighborhood Non-local means
filtering



Background - Image Filters

Input (256 spp) RDFC WLR Reference

(a) MC Input (8 spp) (b) Our approach (RPF)

Cross-Bilateral Filter High-order filter

SEN P, DARABI S.: On filtering the noise from the random parameters in Monte Carlo rendering.

BITTERLI B et al. Nonlinearly weighted first-order regression for denoising Monte Carlo renderings.



Problem - Loss of Detail

Rendered Image Denoised Image Reference

Intel Open Image Denoise



Problem - Loss of Detail

Rendered Image Denoised Image Reference



Problem - Non-converging
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Method

Goal: To fix two major problems by mixing parameter «

Problems:

1. Loss of detail
2. Non - converging
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Pipeline

Auxiliary Feature

Error
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. Generate denoised image from rendered image.

Calculate error from denoised image.

Feed rendered image, denoised image and error
to neural network.

Receive a as output.

Rescale a with t-statistics.

Generate resulting image.
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Error Estimation - SURE

1. Generate denoised image from rendered image. Calculate error from denoised image.

1
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Error Estimation - SURE

Figure 3: Per-pixel squared error estimate of a denoised image
using SURE (left), and its actual squared error (right).
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Input swapping

2. Feed rendered image, denoised image and error to neural network.

3. Receive a as output.

Res.
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Figure 6: Overview of our network

mixing parameters O.. The initial 5>
follows all but the final convolution
along with estimates of their error (i

=il

lenoised counterpart y using per-pixel
convolutional layer. ReLU activation

le the rendered and denoised images,
of Vogels et al. [VRM™ 18].
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T-statistics

4. Rescale a with t-statistics.
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X, averages around pixel p in rendered image
z,: averages around pixel p in mixed image

Large t, 2 Decrease alpha
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Results

Mixed Image

Denoised Image
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Results
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Limitations

This part

RMSE
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Figure 13: Limitation of our method at very low sample counts, ©lnput @Denoised X Variance X SURE
2spp in this example, arising from insufficiently accurate sample

variance estimates.
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Input
Features

Figure 6: Overview of our network hyy(x,y, ...; Oy ) for mixing an unbiased MC rendering x with its denoised counterpart y using per-pixel
mixing parameters 0. The initial 5x 5 convolutional layer is followed by two residual blocks and a final convolutional layer. ReLU activation
follows all but the final convolution, which uses fact (see Sections 4.1 and 4.3). Input features include the rendered and denoised images,
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along with estimates of their error (Section 4.3). The use of residual blocks is inspired by the networks of Vogels et al. [VRM™ 18].
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Figure 11: Comparison of our method, Progressive Denoising
(PD), with Deep Combiner (DC), kitchen test scene. While DC con-
tinually improves upon the denoised image, our method performs
the best as the quality of the MC rendered input increases.



inputs model error
RMSE SMAPE FLIP

den 0.1964  0.0344  0.0816

HDR pro-den 0.0784 0.0284 0.0726

den 0.1022  0.0292  0.0736

HDR, VAR pro-den 0.0587  0.0277  0.0713

HDR, ALB, den 0.1247  0.0393  0.0947 inputs model error

NRM pro-den 0.0523 0.0298 0.0789 RMSE SMAPE  FLIP
HDR, ALB, den 0.0971  0.0326  0.0838 HDR oidn 0.0499  0.0278  0.0735
NRM, VAR pro-den 0.05336  0.0278  0.0742 pro-den 0.0394  0.0251  0.0685
mc-render  0.0841  0.0669  0.1049 HDR., ALB, oidn 0.0586  0.0265 0.0743
NRM pro-den 0.0489  0.0248  0.0705

Table 1: Comparison of our approach (pro-den) with simple de-
noising (den) for different input feature combinations.

mc-render  0.0841 0.0669 0.1049

Table 3: Applying our method (pro-den) to a pre-trained denoiser,
inputs model erTor Intel Open Image Denoise (oidn). Despite the already high-quality
RMSE SMAPE FLIP of OIDN, our method is still able to lower the overall error.

HDR, ALB, den-kpecn  0.1342  0.0362  0.0990
NRM, VAR pro-den 0.0640  0.0285  0.0788
mc-render  0.0841  0.0669  0.1049

Table 2: Our approach (pro-den) applied to a denoiser based on a
kernel predicting network (den-kpcn). The improvement is similar
as to when applied to the U-Net based denoisers of Table 1.
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Fig. 13. The ED, which takes a pair of unbiased and biased images, i.e., ED (PT, KPCN) and ED (PT, AFGSA), shows much higher errors than the other biased
results, including ours. This MSE-based method can be more robust when it takes only biased inputs, i.e.,, ED (NFOR, KPCN) and ED (NFOR, AFGSA), but
produces higher errors than its input NFOR for the DrAGON (from 256 to 2K spp) and CurLy-HAIR (from 16 to 128 spp and 2K spp) scenes. Our technique,
however, robustly improves our input denoisers and shows the best errors over the tested ranges.
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