CS482: Instant Radiosity

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/ICG

Announcement

- Mid-term exam
 - Closed book
 - 1:00pm on Oct-20 at the class room

Coming Schedule and Homework

- Declare the team at the noah board by Oct-
- Browse recent papers (2012 ~ 2015)
 - You need to present two papers at the class
- Declare your chosen 2 papers at the board by Oct-14 (Wed.)
 - First come, first served
 - Paper title, conf. name, publication year
- Decide our talk schedule on Oct.-15 (Th)
- Student presentations will start right after the mid-term exam
 - 3 talks per each class; 20 min for each talk

Modified tentative schedule

10월

27일 Q and A

29일 Student Presentation 1

11월

3 Student Presentation 2 5 Student Presentation 3

12 Mid. Project Presentation 1

17 Mid. Project Presentation 2 19 Student Presentation 1

24 Student Presentation 2

12월

1 Student Presentation 3 3 Q and A

8 Final Presentation 1

10 Final Presentation 2

Presentation Guideline: Expectations

- Good summary, not full detail, of the paper
 - Talk about motivations of the work
 - Give a broad background on the related work
 - Explain main idea and results of the paper
 - Discuss strengths and weaknesses of the method

High-Level Ideas

- Deliver most important ideas and results
 - Do not talk about minor details
 - Give enough background instead

- Spend most time to figure out the most important things and prepare good slides for them
 - If possible, re-use existing slides/videos with ack.

Overall Structure

- Prepare an overview slide
 - Talk about most important things and connect them well

Be Honest

- Do not skip important ideas that you don't know
 - Explain as much as you know and mention that you don't understand some parts
- If you get questions you don't know good answers, just say it
- In the end, you need to explain them before the semester ends

Result Presentation

 Give full experiment settings and present data with the related information

- After showing the data, give a message that we can pull of the data
- Show images/videos, if there are

Prepare a Quiz

- Give two simple questions to draw attentions
 - Ask a keyword
 - Simple true or false questions
 - Multiple choice questions
- Grade them in the scale of 0 and 10, and send the score to TA

Audience feedback form

Date:
Talk title:
Speaker:

A. Was the talk well organized and well prepared?
5: Excellent 4: good 3: okay 2: less than average 1: poor

B. Was the talk comprehensible? How well were important concepts covered?
5: Excellent 4: good 3: okay 2: less than average 1: poor

Any comments to the speaker

Class Objective

- Understand instant radiosity
 - Its general procedure
 - Its computational bottlenecks: shadow maps
 - Use imperfect shadow map and some recent techniques

Radiosity Equation

Emitted radiosity = self-emitted radiosity + received & reflected radiosity

$$Radiosity_i = Radiosity_{self,i} + \sum_{j=1}^{N} a_{j \to i} Radiosity_j$$

Radiosity Algorithm

- Subdivide the scene in small polygons
- Compute a constant illumination value for each polygon
- Choose a viewpoint and display the visible polygon
 - Keep doing this process

From Donald Fong's slides

Instant Radiosity Howto

- Trace light paths from light source
- Place virtual point lights (VPLs) at intersections
- Render scene, use VPLs as 180° spots
- Global illumination ensues

Shadow maps [Williams 1978]

One-Bounce Indirect Illumination

Tabellion and Lamorlette, SIGGRAPH 2004

- Officially close enough to full GI solution
- Terminate light paths at first intersection

Baseline 1-Bounce Instant Radiosity

- Cast a bunch of rays from the light source
 - Rays must be distributed according to the emission function
- At each hit point, construct a VPL
 - Render shadow map (paraboloid)
 - Yes, that's a lot of shadow maps to render per frame
- Gather illumination from all VPLs
 - Yes, that's a lot of shadow map lookups per pixel

Improved Instant Radiosity

- LOD or approximation techniques
 - Imperfect shadow maps
 - Point clouds

PA2

 Compile and run our skeleton codes of instant radiosity

Imperfect Shadow Maps for Efficient Computation of Indirect Illumination

Tobias Ritschel et al.

Modfied from the author's slides

Motivation

Local illumination

Global illumination

Global illumination is perceptually important

Motivation

Challenging: Dynamic indirect visibility

Instant Radiosity

Indirect light

Instant Radiosity

Instant Radiosity bottleneck

- 1024 VPLs
- 100k 3D model
- 32x32 depth map
- 100x overdraw

西京科田科田科西田田田の田中北州市田科田

32

Imperfect shadow maps

Our observations:

Low quality (imperfect) depth maps sufficient for many faint VPLs that form smooth lighting

• Our contribution:

Efficient generation of low quality depth maps

- Main steps (detailed next)
 - 1. VPL generation
 - 2. Point-based depth maps
 - 3. Pull-push to fill holes
 - 4. Shading

Step 1 VPL generation

Step 2 Point based depth maps

Step 3 Pull push

Step 4 Shading

Step 1: VPL generation

Render the scene into the cube map

Environment or Shadow Mapping

- Cube Maps
 - Low distortion
 - Accelerated by GPU
 - Introduces Seams

Environment or ShadowMapping

• Dual Paraboloid

Figure 2: The rays of an orthographic camera reflected on a paraboloid sample a complete hemisphere of directions.

Step 1 VPL generation

Step 2 Point based depth maps

Step 3 Pull push

Step 4 Shading

Step 2: Point-based depth maps

- Goal: Fill ~1000 depth maps for every frame?
 - Classic approach takes ca.500ms for "Sponza"
 - As correct as possible
 - Using only little bandwidth
- Solution: Simplify!
 - Use points (no connectivity)
 - As many as there are pixels

Step 2: Point-based depth maps

Step 2: Point-based depth maps

- Paraboloid depth maps
 - Single pass
 - Only with areas (e.g. tris)
- No tessellation problem
 - Tris need to be subdivided
 - Not with points

Step 2: Point-based depth maps

• Pre-process:

Distribute points on surface

- ~8k points for every VPL
- Different set for every VPLs

• At runtime:

Deform this distribution

VPL / Depth map

Step 2: Point-based depth maps

Store points relative to tris: deforms on-the-fly

Step 1 VPL generation

Step 2 Point based depth maps

Step 3 Pull push

Step 4 Shading

Step 3: Pull-Push

Depth maps from points have holes

Step 3: Pull-Push

• We fill those holes using pull-push ..

Classic

Without pull-push

With pull-push

Pull-Push Method

Remove black holes by using the pyramid and by pushing values in the top-down manner

Step 3: Pull-Push

• .. on all depth maps in parallel.

Without pull-push

With pull-push

Step 1 VPL generation

Step 2 Point based depth maps

Step 3 Pull push

Step 4 Shading

Step 4: Shading

- Separate direct and indirect, both deferred
- Indirect: Interleaved sampling, geometry aware blur filter

Interleaved Sampling

- Reduces the number of shadow map lookups per pixel
- For each pixel, use a subset of all VPLs
- Apply geometry-aware filtering

Results: Performance

- "Christo's Sponza"
 - 70k faces, dynamic
 - 1024 VPLs
 - 256x256 depth maps
 - 8k points each

- Breakdown
 - 7 ms VPL generation
 - 44 ms ISM
 - 8 ms Pull-push
 - 15 ms Rendering
 - 4 ms G-Buffer
 - 11 ms Direct light
- Total
 - 89 ms frame time
 - 11 frames / s

Results: Quality (PBRT, hours)

Results: Quality (Ours, 11 fps)

Results

Cornell box horse

Christo's Sponza

Multiple bounces

Complex, local area lights

Natural illumination

Caustics

Timings: Nvidia GeForce 8800 GTX

Multiple bounces

- Imperfect reflective shadow maps
 - Multiple bounces
 - Complex direct lighting

Conclusion

- Conclusion
 - Indirect visibility can be simplified
 - Imperfect shadow maps exploit this
- Future work
 - More scalable
 - Adaptive
 - Better points
 - view dependant
 - Perceptual evaluation

Class Objective were:

- Understand instant radiosity
 - Its general procedure
 - Its computational bottlenecks: shadow maps
 - Use imperfect shadow map and some recent techniques

Any Questions and HWs

- Come up with one question on what we have discussed in the class and submit at the end of the class
 - Submit four times in Sep./Oct.
 - 1 for typical questions
 - 2 for questions that have some thoughts or surprise me
- Go over the next lecture slides before the class
- Watch 2 SIG/I3D/HPG videos and submit your summaries every Tue. class

Next Time

Microrendering

