CS482:

Interactive Computer Graphics

- Focus on Sound Rendering & AR/VR

Sung-Eui Yoon (윤성의)

Course URL:

http://sglab.kaist.ac.kr/~sungeui/ICG

About the Instructor

- 2018~: ACM Senior member
- 2012~: IEEE Senior member
- 2011~2012: conf. and program co-chairs of ACM symp. on Interactive 3D Graphics and Games (I3D)
- 2011~2013: 이원부교수
- Joined KAIST at 2007
- Main research focus
 - Scalability of rendering, robotics, and vision

Past: Rendering Massive Geometric Data

Boeing 777, 470 M tri.

Large-scale virtual world, 83 M tri.

Scanned model, 372 M tri. (10 GB)

Over 3 Terabytes of geometric data

Present: Scalable Ray Tracing, Image Search, Motion Planning

 Designing scalable graphics and geometric algorithms to efficiently handle massive models on commodity hardware

Photo-realistic rendering

Image search

Motion planning

About the Instructor

- Contact info
 - Email: sungeui@kaist.edu
 - Office: 3432 at CS building (E3-1)
 - Homepage: http://sglab.kaist.ac.kr/~sungeui

Class Information

- Class time
 - 10:30am ~ 12:00pm on TTh
 - 112 at N1
- Office hours
 - Right after class

TA Information

- Inkyu Ahn (안인규)
 - dksdlsrb89@gmail.com
 - Office hour: right after the class on Tue
 - Room: E3-1 #3440
- Doheon Lee (이도헌)
 - doheonlee95@gmail.com
 - Office hour: right after the class on Thur
 - Room: E3-1 #3443

Overview

 We will discuss various parts of computer graphics, especially on interactive rendering

Modelling

Simulation & Rendering

Image

Computer vision inverts the process
Image processing deals with images
Robotics/AR combine real and virtual worlds
How about sounds?

Applications of Computer Graphics

- Games
- Augmented or virtual reality (AR/VR)
- Movies and film special effects
- Product design and analysis
- Medical applications
- Scientific visualization

Games

2D game

3D shooting game

Game Industry at Korea

One of biggest IT sectors in Korea

창원에 엔씨소프트 프로야구단 생긴다(종합)

새롭게 창단하는 구단은 모기업의 당기 순이 익이 1천억원 이상이거나, ...

KBO 이사회 개최

(서울=연합뉴스) 이상학 기자 =11일 오전 서울 강남구 도곡동 야구회관에서 열린 KBO 이사회에서 유영구 총재가 회의를 주재하고 있다. 8개 구단 사장단이 참석한 가운데 열린 이날 이사회에서는 9구단 중인 여부 등을 논의한다,2011,1,11 leesh@yna,co,kr

Movies and Film Special Effects

Toy story

Matrix

3D Movies

Avatar

Product Design and Analysis

Computer-aided design (CAD)

Medical Applications

Visualizing data of CT, MRI, etc

Rapidia homepage

Medical Applications

Visualizing data of CT, MRI, etc

Wikipedia

Mouse skull (CT)

Medical Applications

벤처 성공으로 유명세 타

... 신 교수는 1990년 대학원 학생들과 실험실 벤처 '3D메드'를 창업했다. 좋은 기술을 갖고 있었기 때문에 더 큰 벤처기업이 인수했고, 몇 년 전에 인수한 벤처기업이 코스닥 주식시장에 상장됐다. 당시 주식을 그대로 갖고 있었던 대학원생들은 꽤 돈을 벌었다고 한다. 기자가 넉넉하게 잡아 "몇 천만 원쯤 벌었나요"라고 물었더니 신 교수는 "집 한 채 샀지요"라고 에둘러 답했다... .

Scientific Applications

Weather visualization

LLNL

3D TV

Samsung 3D TV

Head-Mounted Display (HMD) for VR

HoloLens for Augmented Reality (AR)

Sound Rendering

Sound Localization

- React to sound in AR applications
 - Tightly couple real and simulated environments

About the Course

- We will focus on the following things:
 - Study basic concepts of physically-based rendering
 - Study its two applications, sound generation and augmented reality

Implement a recent technique, and discuss its

pros and cons

Photo-Realistic Rendering

Achieved by simulating light and material interactions

- Rendering equation
 - Mathematical formulation of light and material interactions

Global Illumination (GI)

- GI algorithms solve the rendering equation
 - Generate 2D image from 3D scene

Emission (light sources)
Geometry (objects)
BRDF (materials)

Classic Methods of Gl

- Ray tracing
 - Introdued by Whitted in 1980
- Radiosity
 - Introduced in 1984
- Monte Carlo rendering

Ray Tracing

Assume perfect specular or diffuse material

Radiosity

Assume diffuse inter-reflections

Advanced Global Illumination

- Extend to handle more realistic materials than just perfect specular/diffuse
 - Classic ray tracing and classic radiosity are basic building blocks

from Pixar movie

Sound and AR/VR Applications

- How can we interactively generate sounds?
- How can we effectively locate sound sources?
- How can we integrate them with AR/VR applications?

Indoor Light Estimation

Gardner et al.

Some of Topic Lists

- Ray tracing
- Path tracing
- BRDF
- Rendering equations
- Monte Carlo method
- Textures
- Lighting and shading
- Radiosity
- Instant radiosity

- GPU acceleration
- Sampling and reconstruction
- Sound rendering and localization
- Rendering for AR/VR
- Deep learning for light/material estimation

Prerequisites

- More or less CS380
- Basic programming skill
- Basic understanding on data structures (e.g., stack) and linear algebra (e.g., matrix multiplication)
- If you are not sure, please consult the instructor at the end of the course

Resource

- - 1st edition, July 2018, 148 pages
 - Sung-eui Yoon, Copyright 2018
- Reference
 - Physically based renderig, Matt Pharr et al.
 - Advanced Global Illumination, Philip Dutre et al. 2nd edition
 - Realistic Image Synthesis Using Photon Mapping, Henrik Jensen
 - Realistic Ray Tracing, 2nd edition, Peter Shirley et al.

FREELY AVAILABLE ON THE INTERNET

SUNG-EUI YOON, KAIST

RENDERING

Other Reference

- Technical papers
 - Graphics-related conference (SIGGRAPH, etc)
 - http://kesen.huang.googlepages.com/
- SIGGRAPH (Asia), ISMAR, CVPR/ICCV, ICRA/IROS papers and tutorials
- Course homepages
- Google or Google scholar

Course Overview

- 1/2 of lectures and 1/2 of student presentations
 - Mid-term & final-term exams with a few quiz
 - A few programming assignments
 - A few paper presentations
 - Team project

What you will do

- Paper presentation and final team project
 - Make a team of two or three members
 - Choose a topic for the team, and each team member presents a paper related to it
 - All the team members implement techniques of a paper and improve them
 - Role of each team member should be clear
 - Present what the team did for the team project

Course Awards

- Best speaker and best project
 - Lunch or dinner for awardees with me and TAs
- A high grade will be given to members of the best project

Grading

- Quiz, assignments, and exams: 40%
- Class presentations: 30%
- Final project: 30%
- Late policy
 - No score for late submissions
 - Submit your work before the deadline!
- Instructor and students will evaluate presentations and projects
 - Instructor: 50% weights
 - Students: 50% weights

Class Attendance Rule

- Late two times → count as one absence
- Every two absences → lower your grade (e.g., A- → B+)
- To check attendance, I'll call your names or take pictures
- If you are in situations where you should be late, notify earlier

Honor Code

- Collaboration encouraged, but assignments must be your own work
- Cite any other's work if you use their code
- Classroom etiquette: help you and your peer to focus on the class
 - Turn off cell phones
 - Arrive to the class on time
 - Avoid private conversations
 - Be attentive in class

Official Language in Class

- English
 - I'll give lectures in English
 - I may explain again in Korean if materials are unclear to you
 - You are also recommended to use English, but not required

Schedule

- Please refer the course homepage:
 - http://sglab.kaist.ac.kr/~sungeui/ICG/

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today and submit at the end of the class
 - 1 for typical questions
 - 2 for questions with thoughts or that surprised me
- Write a question more than 4 times on Sep./Oct.
 - Online submission is available at the course webpage

My Responses to Those Questions

- Identify common questions and address them at the Q&A file
- Some of questions will be discussed in the class
- If you want to know the answer of your question, ask me or TA on person
 - Feel free to ask questions in the class
- We are focusing on having good questions!
 - All of us are already well trained for answering questions

Homework

- Watch 2 SIGGRAPH or CVPR Videos
 - EGSR, HPG and I3D are also possible
 - ISMAR, ICRA, ECCV/ICCV are also possible
 - Write their abstracts and submit at the beginning of every Tue. class, or
 - Submit it online before the Tue. class
- Example of an abstract
 - Just one paragraph for each abstract

Title: XXX XXXX XXXX, Year: 2017
Abstract: this video is about accelerating the performance of ray tracing. To achieve its goal, they design a new technique for reordering rays, since by doing so, they can improve the ray coherence and thus improve the overall performance.

About You

- Name
- Your (non hanmail.net) email address
- What is your major?
- Previous graphics experience
- Any questions

Next Time

Ray tracing and radiosity

