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Recap on my previous paper presentation…



What is the problem?

● Use cases:
○ You can cluster the same images 

in many different ways

○ By mood, location, event

● They are doing image clustering

● Not just any kind of clustering
○ Clustering based on user query

○ Query is word based

K given



More example…



How does it work?



But there were some problems…



● Computationally VERY expensive

● Need to run every step for every query

● For every query:

○ Caption all images in the database using VLM

○ Cluster those captions using LLM

○ Put each image to corresponding cluster using LLMs

Cons about the paper… 🧐



Notice the three steps:

● For every query:

○ Caption all images in the database using VLM

○ Cluster those captions using LLM

○ Put each image to corresponding cluster using LLMs

The Question of this Project was?

Can we replace these LLM calls?



How Did I Approach?



What was my approach?

● Simple:

○ Generating caption like before

○ Then get text embedding of the caption

○ Perform embedding clustering

■ Using K-Means clustering algorithm



What was my approach?



But, does it actually work?



It is not obvious why it should work

● So, first experiment with CIFAR-10

○ Cluster CIFAR-10 test set

■ Majority label of each cluster is the label for all the 

images in that cluster



Results?

● Pretty Good!:
○ Accuracy: 0.97 

○ F1: 0.976

○ Precision: 0.977

○ Recall: 0.976

● Comparable with 0.987 (acc) 

reported in the paper

Note, number of samples are not same across classes. I was working 
with 1000 samples



That was proof of concept



Let’s solve the real problem



Stanford 40-Actions Dataset

● There are 40 

different actions 

people are doing

● We need to classify 

them

● Authors also relabel 

1000 data

○ Mood 

○ Location



How does my clustering method do?



The results are interesting…
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The results are interesting…



The results are interesting…

● Sometimes it works, sometimes it fails

● We got the labels by asking GPT4 [denoted gpt4 summary]

○ Taking the 20 images closest to each centroid

○ Summarizing their captions



Note that…

● Our label does not 
always correspond to 
the label given the 
dataset

● There is no “sitting” 
cluster in the dataset

● But “sitting” cluster is 
just as valid



Note that…

● The label is “on beach”
● Which is kind of right



Note that…

● Sometimes the cluster 

we get is same as the 

given dataset

● “Climbing” is indeed a 

category in the dataset



Note that…

● Sometimes our cluster 

name is slightly 

different



Note that

● Sometimes the 

clustering is not very 

good



Let’s see the numbers



Note that, the numbers are not really comparable:

● Their cluster membership inference requires 

several more LLM/nltk calls

● While mine does not

My implementation vs paper’s expensive 
implementation

Mine
0.580465
 0.741
0.5461

My implementation:

● Much faster (~ 1 min max)

○ No complex prompting

● But does not reach as high score



Why it doesn’t reach as high score?

● Sometimes the caption model fails

○ It was LLaVa model

○ Happens often

● Got classified as “planting flowers”

The person, a young boy, is located 
in a garden, standing next to a 
bush
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Why it doesn’t reach as high score?

● Sometimes it is not really a 

“mistake”

● It got classified as “cooking”



We can control K, right?



What happens if you control K?

● K = 2
○ Only “Standing” and “Sitting”

● K = 5
○ “Standing”, “Sitting”, “Working”, 

“Climbing”, “Walking”

● K = 10
○ 'Standing', 'Playing guitar', 'Washing 

dishes', 'Standing in a field', 'Walking', 

'Sitting', 'Climbing', 'Boating', 'Next to 

car', 'Positioned' (?!)

The larger K, the 
more fine-grained 
the clustering



What’s Next?



One easy way might improve it:

● Spurious correlation hurt generalization

○ Water in the background != boating

○ A simple post processing might help

○ I want to avoid expensive LLM calls

■ Cosine similarity with embeddings might 

work



In Summary



Summary

● I found a very easy solution to speed up the 

computation

○ Original implementation takes several hours per 

query 

○ Mine takes ~1 mins 

● My results are qualitatively good

○ But not as good as the ones on the paper

● Some simple post processing might

○ Improve the numbers even further



Thanks for listening 🤗


