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Overall Retrieval Framework
- Global descriptors for efficient ranking
- Local descriptors for precise re-ranking based on 

geometric similarity

Unifying Deep Local and Global Features for Image Search, Cao et al., ECCV 2020
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Motivation
- Re-ranking (e.g., spatial verification) is necessary 

because ranking via global descriptors often lack spatial 
context between local features (descriptors)

- Increasing initial search performance can reduce 
necessity of re-ranking, making retrieval efficient

- Add spatial context to global descriptors

Hypergraph Propagation and Community Selection for Objects Retrieval, An et al., NeurIPS 2021

Slide from CS588
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Brief Idea
Provide spatial context between local descriptors for global 
descriptor
Method 1: Learnable Smoothing
- Local spatial context 

Method 2: Spatial context-aware refinement 
- Global spatial context
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Method 1. Learnable Smoothing
- Gather neighbor local feature based on learned weight
- Learnable kernel bandwidth (receptive field) for smoothing
- Estimate self-confidence to reduce burstiness

Interactive Monte Carlo Denoising using Affinity of Neural Features, Isik et al., SIGGRAPH 2021
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Method 2. Spatial Context-aware Refinement

- Learnable smoothing focus on limited region of locality
- Each GCN propagates messages to next block
- Can consider global spatial and semantic context
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Global v.s. Local Descriptors
- Local descriptors

- Represents multiple keypoints
- Contains spatial & geometric relationship
- Exhaustive to match local descriptors between multiple images

- Global descriptors
- Represents an image
- Mostly an aggregation of local descriptors
- Efficient matching between multiple images
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Related Works - GeM
- Generalized Mean Pooling
- Channel-wise Learnable P
- Limitation

- Less control on spatial information
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Related Works - SOLAR
- Re-weighting local descriptor before GeM
- Confine clusters with second-order loss
- Limitation:

- Attention map requires expensive computational cost
- Cannot guarantee that it contains spatially contextual 

information

SOLAR: Second Order Loss and Attention for Image Retrieval, Ng et al., ECCV 2020
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Overall Method
- Learnable smoothing : Local spatial context
- Spatial Context-aware Refinement : Global spatial context
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Method 1. Learnable Smoothing
- Smoothing (i.e., AvgPool) adds spatial context & 

reduces burstiness of local features
- More sophisticated smoothing can provide finer spatial 

context

Learning and Aggregating Deep Local Descriptors for Instance-level Recognition, Tobias et al., ECCV 2020

w/o smoothing
w/ smoothing
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Method 1. Learnable Smoothing
- Gather neighbor local feature based on learned weight
- Learnable kernel bandwidth (receptive field) for smoothing
- Estimate self-confidence to reduce burstiness

Interactive Monte Carlo Denoising using Affinity of Neural Features, Isik et al., SIGGRAPH 2021
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Prelim. Gaussian Image Filter
- Gaussian image filter reduces high-frequency details

(e.g., noise) 
- Further developed for image denoising (e.g., bilateral filter)

On Filtering the Noise from the Random Parameters in Monte Carlo Rendering, Sen et al., ToG 2012

2d gaussian
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Learnable Smoothing Kernel
- Kernel Feature Generator       estimates three pixel-wise 

features
- Kernel feature
- Bandwidth
- Self-confidence

- Calculate Gaussian kernel weight 
       over K x K neighbors

Interactive Monte Carlo Denoising using Affinity of Neural Features, Isik et al., SIGGRAPH 2021
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Learnable Bandwidth
- Gaussian kernel with learnable bandwidth

- Larger bandwidth (Narrow): Spatially non-correlated info.
- Smaller bandwidth (Wide): Spatially correlated info.

Interactive Monte Carlo Denoising using Affinity of Neural Features, Isik et al., SIGGRAPH 2021

- Kernel feature
- Bandwidth
- Self-confidence

Identify high-frequency region for denoising
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Learnable Self-confidence
- Allows to reject itself when it is non-relevant for image 

retrieval

Interactive Monte Carlo Denoising using Affinity of Neural Features, Isik et al., SIGGRAPH 2021

- Kernel feature
- Bandwidth
- Self-confidence

Helps to reject when the center pixel is an outlier for denoising
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Method 2. Spatial Context-aware Refinement

- Learnable smoothing focus on limited region of locality
- Each GCN propagates messages to next block
- Can consider global spatial and semantic context
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Related Works - GNN
- Propagate messages via GCN
- Learn connection between contiguous nodes
- Image retrieval

- Each local descriptor can be represented as node 
- The spatial relation between each node can be 

represented as edge

Semi-Supervised Classification with Graph Convolutional Network, Kipf., ICLR 2017
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GNN for Image Retrieval
- Create a graph structure for image retrieval

- Node: Local descriptors (Top-K local features)
- Edge: Spatial coordinate, similarity

- Extract feature via GNN
- Context-aware local descriptor
- Local descriptor could contain not only spatial information but 

also semantic relations
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Verification for localization
- We have a rich global descriptor using learnable 

smoothing and spatial context-aware refinement
- How can we evaluate effectiveness of spatial context?

- We extend salient object detection to verify spatial 
context as localization performance
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Related Works - Pixel retrieval
- Evaluate localization methods for pixel retrieval

- Spatial Verification: SIFT, DELF and DELG
- One-shot Detection: Faster R-CNN, SSD and D2R
- Dense matching: GLUNet, WarpC, …

Towards Content-based Pixel Retrieval in Revisited Oxford and Paris, An., ICCV 2023
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Auxiliary. Salient Object Detection

- Pixel retrieval
- Query-based interaction
- Enhance user experience in retrieval results

- Salient Object Detection
- Identify foreground / distinctive part of objects in 

intra-image
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Related Works - SOD
- Unsupervised object discovery
- Assumption:

- Foreground features are less correlated than background 
- Less features of foreground than background

- Method:
- Use the information of degree
- Object seed: patch with the lowest degree
- Expand features similar with object seed

Localizing Objects with Self-Supervised Transformers and no Labels, Simeoni., BMVC 2021
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Related Works - SOD
- Pros

- Quick (60FPS)
- Simple and effective

- Cons
- Single object detection
- Issues when object covers most of image

Localizing Objects with Self-Supervised Transformers and no Labels, Simeoni., BMVC 2021

Object seed

Expand patches
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Auxiliary. Salient Object Detection

- Query-based interaction
a. Select initial seed in query image
b. Calculate similarity in each gallery image 

(Expansion)

Query
Rank1 Rank2
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Auxiliary. Salient Object Detection

- SOD Results on ROxford & RParis
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Summary
- Increase matching performance using global descriptor 

by providing spatial context of local features
- Learnable smoothing and Graph neural network for

local & global spatial context extraction
- Analyze spatial context via localization performance
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Plans & Schedule
- Jinhwan : Spatial Context-aware Refinement
- Kyu Beom : Learnable Smoothing

- Week 3-7. Survey
- Week 8. Mid-term
- Week 9. Install & baseline setup
- Week 10. Mid-term presentation
- Week 11-12. Implement our methods
- Week 13. Additional tuning for merging
- Week 14. Prepare final presentation
- Week 15. Final presentation


