Deep Learning based Image Search

Sung-eui Yoon 윤성의

Announcements

There are only 6 students in the class

- You can do a single-man project or projects w/ 2 people
- You can bring your own research as long as it is clearly related to the course theme

Each student

- Give two talks; each talk time is 15 min
- Each talk covers one main paper with related papers

Each team

- Give a mid-term review presentation for the project
- Give the final project presentation

Schedule

- Apr-17 (Wed): mid-term exam
- Apr 22, 24, 29, Paper Presentation I
- May 1, 8 Mid-term Project Presentation
- May 13 (no class due to ICRA):
- May 20, 22, 27 Paper Presentation II
- May 29, Reserved
- Jul, 3, 5: Final-term project presentation
- Jul, 10, 12 Reserved (final exam)

Deadlines

- Declare project team members
 - At the class of 3/20-at KLMS
- Confirm schedules of paper talks and project talks at 3/20
- Declare two papers for student presentations
 - by 3/26 at KLMS
 - Discuss them at the class time of 3/27

Deadlines

- Declare project team members
 - At the class of 3/20-at KLMS
- Confirm schedules of paper talks and project talks at 3/20
- Declare two papers for student presentations
 - by 3/26 at KLMS
 - Discuss them at the class time of 3/27

Class Objectives

Deep learning based image search

- CNN based image descriptors
- Training losses, and data
- Benchmarks

• At last time, we discussed:

- Scale invariant region selection
- SIFT as a local descriptor

Learning-based methods

Most of this presentation materials was built upon Tolias's, and prepared by TA

Ack.: Jaeyoon Kim (김재윤)

- Instance search reduces to similarity search in d-dimensional space
- Compatible with efficient nearest neighbor techniques

Global descriptors with CNNs

Global desc. by aggregation g():

 $\sum g(\mathbf{x})$ $X \propto$

 $\mathbf{x} {\in} \mathcal{X}$ \mathcal{X} : a set of local descriptors

Neural Codes for Image Retrieval [ECCV 14]

Uses top layers of CNNs as high-level global descriptors (Neural Codes) for image search

Visualizing filters

• Example: filter in the first layer of AlexNet

Edges in various angle (horizontal, vertical, diagonal, etc.)

Color patterns (green, magenta, etc.)

• **Conv1** feature map in AlexNet

Strong activation around object boundary (edge)

E.g. horizontal

E.g. vertical

Yosinki et al., Understanding Neural Networks Through Deep Visualization

• **Conv3** feature map in AlexNet

Strong activation in more meaningful groups

E.g. Skin colors

Yosinki et al., Understanding Neural Networks Through Deep Visualization

• **Conv5** feature map in AlexNet

Strong activation in more meaningful groups

E.g. Face

It's also much sparse → activated for more larger semantic groups

Yosinki et al., Understanding Neural Networks Through Deep Visualization

• 151th filter at conv5 layer does the face detection!

Yosinki et al., Understanding Neural Networks Through Deep Visualization

BoW (Bag-of-visual-Words) with CNN features

- Inspired by a classical BoW approach; a type of aggregation
- Less commonly used now

- Used with pre-trained features and hard assignment
- Soft assignment needed for training

[Mohedano et al. ICMR'16]

Sum pooling – SPoC (Sum Pooling w/ Center prior) descriptor

Descriptor by simple summation

$$X \propto \sum_{\mathbf{x} \in \mathcal{X}} \mathbf{x}$$

• Pair-wise similarity of two images; dot product, cosign similarity

$$X^{\top}Y \propto \sum_{\mathbf{x} \in \mathcal{X}} \sum_{\mathbf{y} \in \mathcal{Y}} \mathbf{x}^{\top}\mathbf{y}$$

- Simple but works
 - \rightarrow discriminative power of CNN activations

[Babenko & Lempitsky, ICCV'15]

Weighted sum pooling – CroW (Crossdim. Weighted) descriptor

a: weight based on L2 norm of local descriptors β : channel-wise attention

example of a

[Kalantidis et al., ECCV'16]

Max pooling – MAC (Max. Activation of Conv.) descriptor

Input image

conv₅ filter K

 $MAC = [f_1, \dots, f_i, \dots, f_K]$

f_i: a scalar value of corresponding position at filter i [Razavian et al., MTA'16] [Tolias et al., ICLR'16]

Max pooling – MAC descriptor

regions for top matching components different color per component

[Razavian et al., MTA'16] [Tolias et al., ICLR'16]

Generalized mean pooling – GeM descriptor

$$X \propto \left(\frac{1}{|\mathcal{X}|} \sum_{\mathbf{x} \in \mathcal{X}} \mathbf{x}^p\right)^{\frac{1}{p}}$$

where \mathbf{x}^p is element-wise power

 $p \rightarrow \infty$ max pool (MAC) p = 1 avg pool (SPoC)

Red regions show activated regions

[Radenovic et al., PAMI'19]

Hybrid – R-MAC descriptor

Regional feature maps 4 scales

- Multi-scale region sampling
- Sum aggregate over regions

[Tolias et al., ICLR'16]

Performance comparison

Precision@10 on R-Oxford+1M distractors

Fine-tuning improvement for GeM: +26.6%

Fine-Tuning for Search

- Use CNN features that were trained with ImageNet
- Retraining with a task-specific dataset achieve higher accuracy
 - Can lower accuracy when using dissimilar datasets

Fine-Tuning for Search

Results before & after retraining

		· · · · · · · · · · · · · · · · · · ·			
Neural codes trained on ILSVRC					
Layer 5	9216	0.389		0.690*	3.09
Layer 6	4096	0.435	0.392	0.749^{*}	3.43
Layer 7	4096	0.430		0.736^{*}	3.39
After retraining on the Landmarks dataset					
Layer 5	9216	0.387	—	0.674^{*}	2.99
Layer 6	4096	0.545	0.512	0.793^{*}	3.29
Layer 7	4096	0.538	—	0.764^{*}	3.19
After retraining on turntable views (Multi-view RGB-D)					
Layer 5	9216	0.348		0.682^{*}	3.13
Layer 6	4096	0.393	0.351	0.754^{*}	3.56
Layer 7	4096	0.362		0.730^{*}	3.53

Ack.: Neural Codes for Image Retrieval

Landmark dataset has similar images to Oxford

Training loss

Loss functions for metric learning

- Sampling from discrete class labels
 - problem: large intra-class variability
- Need automatic ways for pair-wise labels

Average Precision loss

• Definition of recall and precision

Average Precision loss

Two examples of average precision

Ranking #1: (1.0 + 0.67 + 0.75 + 0.8 + 0.83 + 0.6)/6 = 0.78

Ranking #2: (0.5 + 0.4 + 0.5 + 0.57 + 0.56 + 0.6)/6 = 0.52

Average Precision loss

Same colors indicate positive pairs

The larger the batch the better and less dependency on sampling

30 [Revaud et al., ICCV'19]

Training data

Training data from SfM

7.4M images \rightarrow 713 training 3D models

[Schonberger et al. CVPR'15] [Radenovic et al. CVPR'16]

Training data from SfM

camera orientation known number of inliers known

7.4M images \rightarrow 713 training 3D models

[Schonberger et al. CVPR'15] [Radenovic et al. CVPR'16]

Training data from SfM: hard negatives

Negative examples: images from different 3D models than the query **Hard negatives**: closest negative examples to the query

[Radenovic et al. PAMI'19]

Training data from SfM: hard positives

Positive examples: images that share 3D points with the query **Hard positives:** positive examples not close enough to the query

anchor top 1 by CNN top 1 by inliers top k by inliers harder positives

[Radenovic et al. PAMI'19]

random from

Class labels + cleaning

Use classical computer vision to collect training data: \rightarrow Bag-of-Words and spatial verification

A represents affine transformation matrix

[Gordo et al. IJCV'18]

Benchmarks

Instance retrieval (buildings, landmarks)

Manually constructed ground truth

- Oxford buildings [Philbin et al., CVPR'07]
- Paris [Philbin et al., CVPR'08]
- Oxford/Paris revisited + 1M distractors [Radenovic et al., CVPR'18]

http://cmp.felk.cvut.cz/revisitop/

Landmark recognition and retrieval

Crowd-sourced ground truth

Google Landmarks Dataset

https://github.com/cvdfoundation/google-landmark

- Recognition training set 4.1m images 200k landmarks
- Retrieval index set
 762k images
 101k landmarks
 - Test set 118k images about 1% depicts landmarks

Pixel retrieval [ICCV 23]

- Benchmark: PROxford/PRParis
 - Use same query and database images with Oxford/Paris
 - Provide pixel-level annotation
- Search pixels that depict the query object from the database

Why pixel retrieval?

Image retrieval

- Search the **images** which contain the query object from the database
- A real-world image has several different objects with complex background
- Users may be difficult to identify the query object from the ranking list

Pixel retrieval

- Search **pixels** that depict the query object from the database
- Retrieve, localize, and segment the target object from the database images

Difficult to check which image is correct.

It is easier for users to find the target object if the search engine gives the pixel-level result.

Try more examples: <u>user study</u>

Current SOTA

- Performance of current SOTA methods are not good.
- Need more future studies.

Pixel retrieval performance

PA1

Understand and implement a basic image retrieval system

- Use a simple UKBenchmark
- Measure its accuracy

Class Objectives were:

• Deep learning based image search

- CNN based image descriptors
- Training losses, and data
- Benchmarks

Next Time...

Some post-processing methods and indexing structures

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today
 - 1 for typical questions (that were answered in the class)
 - 2 for questions with thoughts or that surprised me
- Write questions 3 times before the mid-term exam
 - Write a question about one out of every four classes
 - Multiple questions in one time will be counted as one time
- Common questions are compiled at the Q&A file
 - Some of questions will be discussed in the class
- If you want to know the answer of your question, ask me or TA on person

