CS688:

Web-Scale Image Search and Classification

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/IR

About the Instructor

- Joined KAIST at 2007
- Main research focus
 - Handling of massive data for various computer graphics and geometric problems
 - Paper and video: http://sglab.kaist.ac.kr/papers.htm
 - YouTube videos: http://www.youtube.com/user/sglabkaist

Research Theme: Scalable Ray Tracing, Image Search, Motion Planning

 Designing scalable graphics and geometric algorithms to efficiently handle massive models on commodity hardware

Photo-realistic rendering

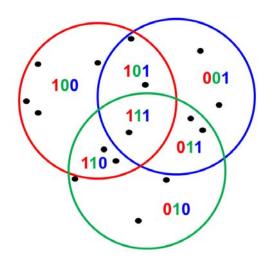


Image search

Motion planning

My Recent Work

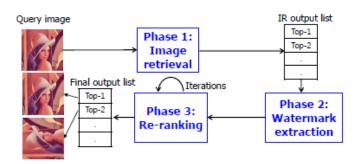
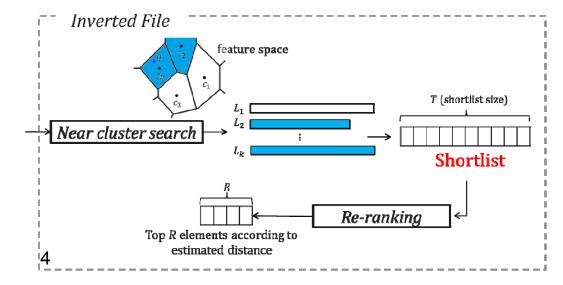
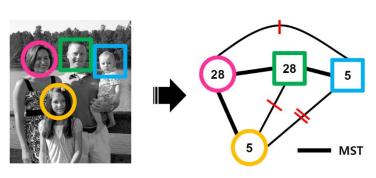




Fig. 1. This figure shows an overview of our IRIW framework.

My Recent Work


- Tutorial at CVPR 16 about:
 - Recent Image Search Techniques
 - Organizers: Sung-eui Yoon and Zhe Lin

Results of Image Search

- Collaborated with Adobe
 - 11M images
 - Use deep neural nets for image representations
 - Spend only 35 ms for a single CPU thread

About the Instructor

- Contact info
 - Email: sungeui@gmail.com
 - Office: 3432 at CS building
 - Homepage: http://sglab.kaist.ac.kr/~sungeui

Class Information

- Class time
 - 4:00pm ~ 5:15pm on TTh
- Office hours
 - Right after the class time
 - You can make arrangements by sending emails

TAs

- Soomin Kim (E3-1 3440)
- soo.kim813@gmail.com

- Taeyoung Kim (E3-1 3443)
- retupmoc14@gmail.com

About the Course

- We will focus on the following things:
 - Broad understanding on image (and video) search techniques and classification
 - In-depth knowledge on recent methods for web-scale data
 - Design better technologies as your final project
- Main theme: Scalability!
 - Better search accuracy w/ more objects
 - More compact memory requirement and faster query performance
 - Easier interaction and novel applications

Image Search or Content-Based Image Retrieval (CBIR)

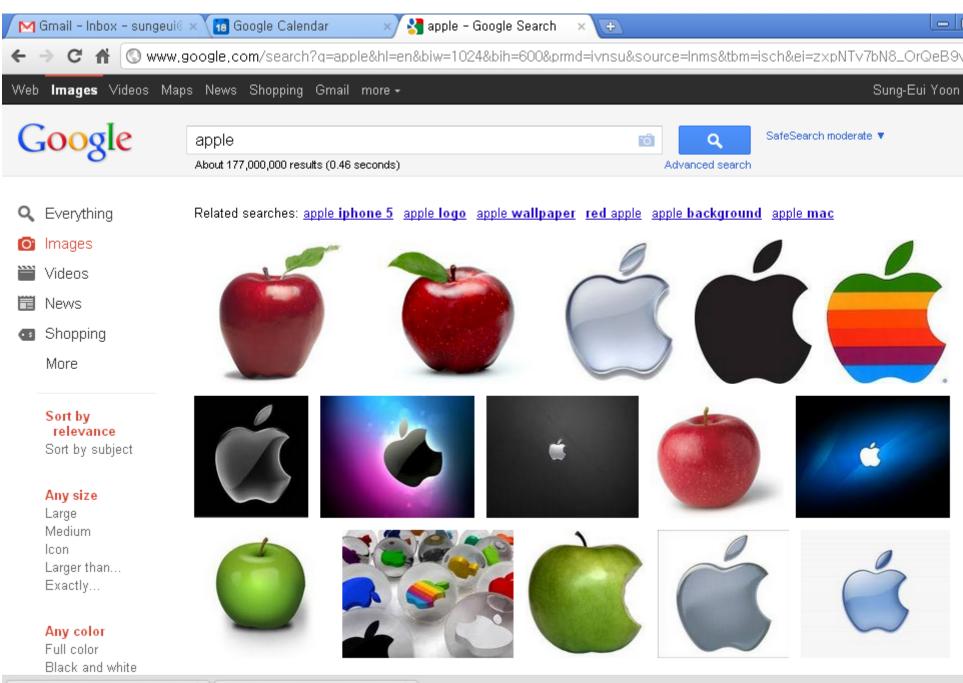
 Identify similar images given a userspecified image or other types of inputs

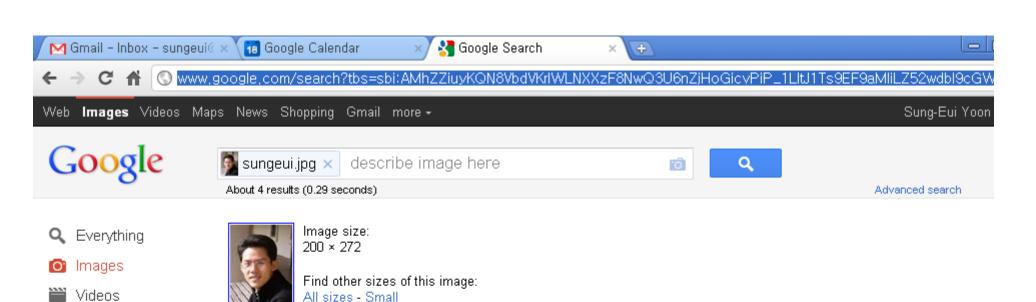
Image Search

 Identify similar images given a userspecified image or other types of inputs

Extract image descriptors (e.g., SIFT or CNNs)

Input


Web-scale image database



Output

Pages that include matching images

Sungeui Yoon (성의,윤성의) Q sglab.kaist.ac.kr/~sungeui/ - Cached

Sung-Eui Yoon (윤 성의) Assistant professor. Scalable Graphics/Geometric Algorithm Lab. Dept. of Computer Science - KAIST ...

 200×272

2010.09.13 - KGC 2011 🔍 - [Translate this page] www.kgconf.com/kor/html/conference_c_view.html?cate3... - Cached Kristian Segerstrale Playfish, 소셜게임의 미래 현재 소셜게임의 현주소와 빠르게 성 장하는 소셜게임의 미래를 예리한 견식으로 소개 ...

■ News

Shopping

More

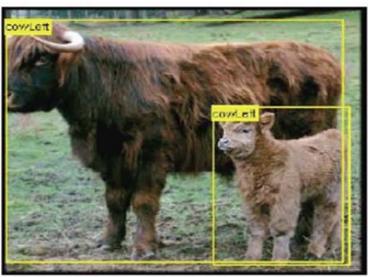
Applications

- Search
- Image stitching
- Object/scene/location recognitions
- Robot motion planning
- Copyright detection

Panorama Stitching

(a) Matier data set (7 images)

(b) Matier final stitch


[Brown, Szeliski, and Winder, 2005]

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Fei-Fei Li Lecture 12 - 32 9-Feb-11

Object Detection

Product Image Recognition

[X. Shen et al., ECCV 2012]

Examples of product images in the database

Examples of query images taken by mobile phones

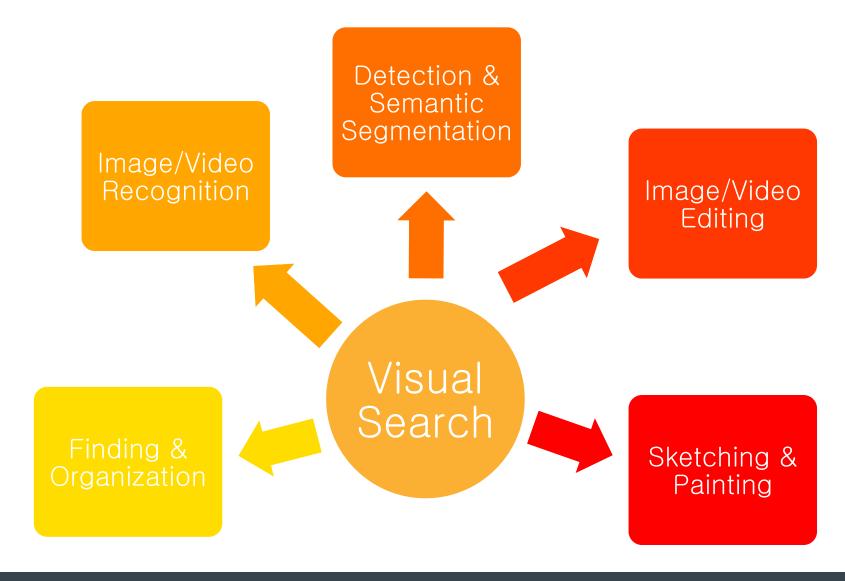
Landmark or Location Detection

query

City-scale image DB

Example: Transfiguring Portraits [SIG. 16]

"curly hair"


"india"

"1930"

Possible Application Domains

Web-Scale Visual Data and Novel Applications

- Visual data are widely used for various communication and, and are more widely consumed at Web and mobile devices
 - YouTube, Facebook, Flickr, etc.

Processing them requires scalable

algorithms

 Web-scale visual data can enable new applications (e.g., photo tourism and scene completion)

Issues of Web-Scale Image Search

- Accuracy issues
- Memory issues
- Performance issues, etc.
- Handling dynamic databases of images
- Novel applications?

Search Help Give us feedback

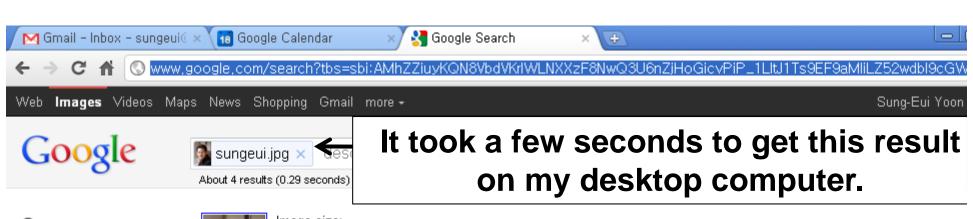


Image size: 200 × 272

Find other sizes of this image:

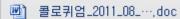
Videos All sizes - Small

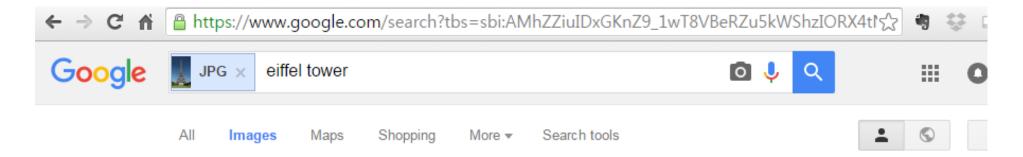
Pages that include matching images

Sungeui Yoon (성의,윤성의) 의 sglab.kaist.ac.kr/~sungeui/ - Cached Sung-Eui Yoon (윤 성의) Assistant professor. Scalable Graphics/Geometric Algorithm Lab. Dept. of Computer Science · KAIST ...

 200×272

آدرس ابن صفحه <u>원사이언스 공학 WebST :::::</u> - <u>원사이언스 공학 WebST</u> - [Translate this page] webst.kaist.ac.kr/content.php?db=professor - Cached 이름Cha, Meeyoung (차미영) 조교수; 연구분야Social Computing, Data-Driven Social Science; 학위PhD, KAIST, 2008; 전화번호+82-42-350-2922; 이 메일meeyoungcha

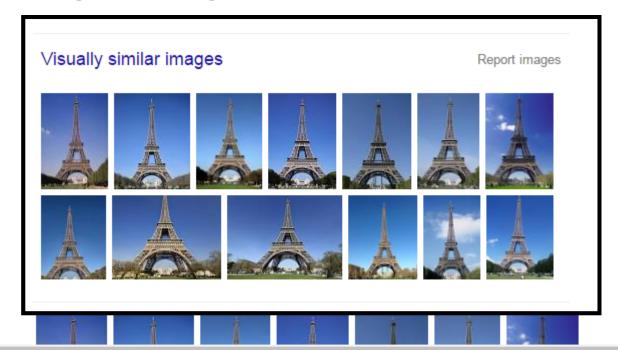

2010.09.13 - KGC 2011 ♀ - [Translate this page]
www.kgconf.com/kor/html/conference_c_view.html?cate3... - Cached
Kristian Segerstrale Playfish, 소셜게임의 미래 현재 소셜게임의 현주소와 빠르게 성장하는 소셜게임의 미래를 예리한 견식으로 소개 ...


100 × 100

News

Shopping

More


About 453 results (0.64 seconds)

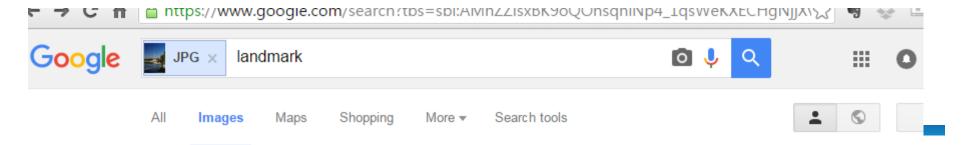


Image size: 240 × 400

Find other sizes of this image: All sizes - Small - Medium - Large

Best guess for this image: eiffel tower

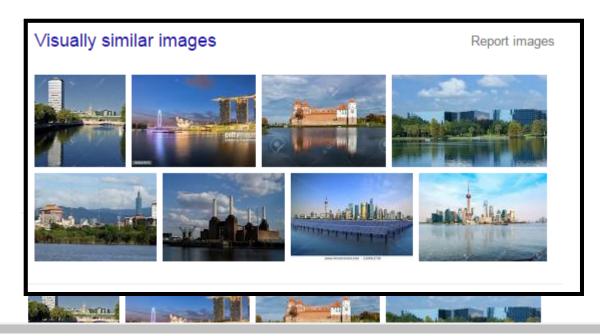

About 7 results (0.61 seconds)

Image size: 433 × 624

Find other sizes of this image: All sizes - Medium

Best guess for this image: landmark

Some of Topic Lists

- Feature detectors
- Descriptors
- Nearest neighbor search
- Bag-of-Word
- Visual vocabulary
- Convolutional neural network

- Generative and discriminative models
- Hashing techniques
- Large-scale retrieval indexing techniques
- Video related techniques
- Various applications

Prerequisites

- Basic knowledge of linear algebra and data structures
 - No prior knowledge on computer graphics and computer vision
- Some prior experiences on programming
- If you are not sure, please consult the instructor at the end of the course

Course Overview

- Half of lectures and other half of student presentations
 - This is a research-oriented course
- What you will do:
 - Choose papers and present them
 - Propose ideas that can improve the state-ofthe-art techniques
 - Quiz, mid-term, final-term exams, and
 - Have fun!

Course Overview

- Grade policy
 - Quiz, assignment, and exams: 30%
 - Class attendance and presentations: 30%
 - Final project: 40%
 - Class presentation and projects are the most important activities in this class
- Instructor and students will evaluate presentations and projects
 - Instructor: 50% weights
 - Students: 50% weights

Presentations

- Read papers
 - Given a main paper, read two or three related papers
 - Look at pros and cons of each method
 - Think about how we can efficiently more realistic and complex search and classification issues, and think about novel applications

Final Project

- Propose ideas to address problems identified from your presentation papers
 - Show benefits of your ideas and how your ideas can improve the state-of-the-art techniques in a logical manner
 - Implementation of your ideas is not required, but is recommended
- Team project is allowed
 - Role of each student should be very clear

Course Awards

- Best speaker and best project awards
- A high grade will be given to members of the best project
- Lunch or dinner for awardees with me and TAs

Programming HWs and Exams

- Two programming assignments
 - Implement basic image search components
- Late policy
 - No score for late submissions
 - Submit your work before the deadline!
- Two exams
 - Mid-term exam covers class materials
 - Final-term exam covers presentation materials of students

Honor Code

- Collaboration encouraged, but assignments must be your own work
- Cite any other's work if you use their code

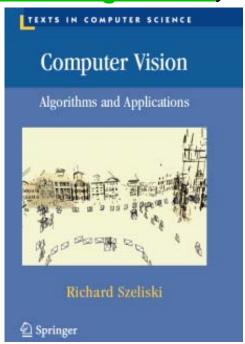
Question HWs for Every Class

- Come up with one question in the class and submit at the end of the class
 - 1 for typical questions (that were answered in the class)
 - 2 for questions with thoughts or that surprised me
- Write questions at least 4 times
 - Write a question per month
 - Multiple questions in one time will be counted as once
- Common questions are addressed at my draft
 - Some of questions will be discussed in the class
- If you want to know the answer of your question, ask me or TA on person

Homework for Every Week

- Go over recent papers on image search
 - Those should be high quality and recent ones
 - Find two papers, and submit your summary before every beginning of the Thur. class
 - Online submission is possible
- Think about possible team members
- Too late if you think them later...

Class Attendance Rule


- Late two times → count as one absence
- Every two absences → lower your grade (e.g., A- → B+)
- To check attendance, I'll call your names
- If you are in situations where you should be late, notify earlier

Resource

- My ongoing draft on image search
 - pdf file is available at the webpage
- Reference
 - Computer vision: algorithms and applications
 - Its file is available (http://szeliski.org/Book/)

Other Resources

- Technical papers
 - CVPR, ICCV, ICMR, ACM MM, SIGGRAPH, etc.
 - Computer vision resource (http://www.cvpapers.com/)
 - Multimedia information retrieval (http://www.mirsociety.org/mweb/)
- Course homepages
- Google or Google scholar

Schedule

- Please refer the course homepage:
 - http://sglab.kaist.ac.kr/~sungeui/IR

Official Language in Class

English

- I'll give lectures in English
- I may explain again in Korean if materials are unclear to you
- You are no required to use English, but are recommended
- To non-native Korean speakers
 - Many Korean students prefer to use Korean for deeper discussions
 - In these cases, we will use Korean, but I will summarize main points in English

My Wish for You

- Follow up lecture materials and do various class activities/HWs well
- Lead to your next publication, or
- Lead to your next start-up

Next Time

Feature detectors

About You

- Name
- Your (non hanmail.net) email address
- What is your major?
- Previous experience on image search and computer vision
- Credit/audit

