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Project Guidelines:
Project Topics

e Any topics related to the course theme are
okay

e You can find topics by browsing recent papers

KAIST



Expectations

e Mid-term project presentation

e Introduce problems and explain why it is
important

e Give an overall idea on the related work

e Explain what problems those existing
techniques have

e (Optional) explain how you can address those
problems

e Explain roles of each member
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Expectations

e Final-term project presentation
e Cover all the materials that you talked for
your mid-term project
e Present your ideas that can address problems
of those state-of-the-art techniques

e Give your qualitatively (or intuitive) reasons
how your ideas address them

e Also, explain expected benefits and
drawbacks of your approach

e (Optional) backup your claims with
quantitative results collected by some
implementations

e Explain roles of each members
KAIST



A few more comments

e Start to implement a paper, if you don’t
have any clear ideas

e While you implement it, you may get ideas
about improving it

Role of each
student is
clear and well
Novelty of the | Practical benefits C?ef\f;lei):%tf Phe:S Total balanced?
Speaker | project and idea | of the method ) score
project (Yes or NO)
(1~5) (1~5) (1 ~ 5) (3 ~ 15)
XXX
YYY
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Project evaluation sheet

You name:
ID:

Score table: higher score is better.
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Web-Scale Visual Data and Novel
Applications

e Visual data are widely used for various
communication and, and are more widely
consumed at Web and mobile devices

e YouTube, Facebook, Flickr, etc.

e Processing them requires scalable
algorithms

e Web-scale visual data can enable new
applications
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Review: Efficient Image = EgigEs

Search

Deep Convolutional Neural Network Distance Encoded Optimized PQ

Ack.: Zhe Lin



Object Retrieval and Localization

[X. Shen et al,, CVPR 2012]



Object Retrieval and Localization

* Local correspondence voting for non-rigid object matching
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Object Retrieval and Localization

\_

Examples of Voting Maps
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Object Retrieval and Localization

Non-rigid cases



Product Image Recognition

|X. Shen et al.,, ECCV 2012]

Examples of product images in the database
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Examples of query images taken by mobile phones

13



14

Product Image Recognition

a) A query b) DB image c) A vote map
d) Aggregated e) Tri map f) Segmented

voting maps result
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Product Image Recognition

Support map Extraction GrabCut w/ manual init.
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Face Detection by Image Retrieval

[X. Shen et al.,, CVPR 2013]
[H. Li et al., CVPR 2014]



Face Detection by Image Retrieval

Database Images Voting Maps

Aggregation

By
Boosting
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Face Detection by Image Retrieval

Example detection results
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Facial Attribute Recognition

transfer landmark, pose, age, gender, expression...
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Data-Driven Object Segmentation

[J. Yang et al. CVPR 2014]

Find seg. examples and transfer
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Data-Driven Automatic Cropping

[A. Samii et al. CGF 2015]
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Automatic Image Tagging

Erolic ,ums ™

flower adorahlﬂ

bride hﬂallw adult

i white
people atll'al:ll\le
fashion women
asian
brunette girls wo m a n female

background

sleen ||ng=er|e
happy Ing ca“cgggl?lﬁg
married 19 ying DOWY



Deep-kNN Tagging System

—
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Free-Text Image Search

@ sydney opera house

» PersonalAlbum_10K » Images » 0000 » 0009

Organize Indlude in library * Share with ~ Slide show New folder

0883 0884 0885 0886 0887
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Image Recommendation: Collaborative

Feature Learnini from Social Media
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Image Recommendation: Collaborative
Feature Learning from Social Media
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Image Retrieval based
Image Watermarking [IWDW11]

e Exhaustive watermark matching
e Sequential one-to-one comparison
e Time-consuming job l

i with
by &
> B watermark

e Image Retrieval based
Image watermarking (IRIW)

e Reduce search domain by image search
o Achleve performa.nce_elmancement
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Result

e Accuracy (100 tests)
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Scene Completion using Millions of
Photographs [SIG. 07]
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Scene Descriptor Image Collection

_ Context matching
20 completions + blending 200 matches
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Photo Tourism [SIG. 11]







Photo Tourism overview

Input photographs

© 2006 Noah Snavely
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Visual Prediction

e Predict Bossible
actions by:

e Identify similar
patches in the
training videos
based on NNS ~""

® PI‘Opagating (a) Original Image ‘ (b) Prediction Heatmap '
them in the - A
query image

(c) Predicted Path -1 (d) Predicted Path -2
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Summary

Detectors and descriptors
Harris corner detector

SIFT
Bag-of-features
Mormalization

CNN-based search

Different aggregators
Loss functions

Fine tuning

Region network

Binary code embeddin Learning techniques

Locality sensitive hashing —D'Iscr'lmi.native methods
Spherical hashing =(senerative methods

Product quantization Image search —SVM
=CNM
-Mearest neighbor

Distance functions

Classification
Detection

Segmentation
Tag and attribute transfers

Indexi Inverted index
ndexing «_Binary code embedding

Applications

Instance—level search

Post—processin Spatial verification
P QC{ Luery expansion
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Classic image processing




Conclusions

e Visual data are more widely used for
various communication and are thus
associated at Web

e Processing them requires scalable
algorithms

e Web-scale visual data can enable new
applications

e Examples
e Photo tourism
e Scene completion
e Image-retrieval based image watermarking
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