Spatial Localization and Detection

Sung-eui Yoon, 2016

Slide Credits: Ric Poirson, Justin Johnson, Andrej Karpathy, Fei-Fei Li, Svetlana Lazebnik

Localization and Detection

Results from Faster R-CNN, Ren et al 2015

Recent developments in object detection

Computer Vision Tasks

Computer Vision Tasks

Classification

Classification + Localization

Object Detection

Instance Segmentation

Classification + Localization: Task

Classification: C classes

Input: Image

Output: Class label

Evaluation metric: Accuracy

— ► CAT

Localization:

Input: Image

Output: Box in the image (x, y, w, h)

Evaluation metric: Intersection over Union

→ (x, y, w, h)

Classification + Localization: Do both

Classification + Localization: ImageNet

1000 classes (same as classification)

Each image has 1 class, at least one bounding box

~800 training images per class

Algorithm produces 5 (class, box) guesses

Example is correct if at least one one guess has correct class AND bounding box at least 0.5 intersection over union (IoU)

Krizhevsky et. al. 2012

Idea #1: Localization as Regression

Input: image

Only one object, simpler than detection

Output:
Box coordinates
(4 numbers)

Correct output:

box coordinates (4 numbers)

Loss:

L2 distance

Step 1: Train (or download) a classification model (AlexNet, VGG, GoogLeNet)

Step 2: Attach new fully-connected "regression head" to the network

Step 3: Train the regression head only with SGD and L2 loss

Step 4: At test time use both heads

Per-class vs class agnostic regression

Aside: Localizing multiple objects

Want to localize **exactly** K objects in each image

K x 4 numbers (one box per object)

Idea #2: Sliding Window

- Run classification + regression network at multiple locations on a highresolution image
- Convert fully-connected layers into convolutional layers for efficient computation
- Combine classifier and regressor predictions across all scales for final prediction

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

Classification scores: P(cat)

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.5	0.75

Classification scores: P(cat)

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.5	0.75
0.6	

Classification scores: P(cat)

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.5	0.75
0.6	0.8

Classification scores: P(cat)

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

0.5	0.75
0.6	0.8

Classification scores: P(cat)

Greedily merge boxes and scores (details in paper)

Network input: 3 x 221 x 221

Larger image: 3 x 257 x 257

8.0

Classification score: P (cat)

In practice use many sliding window locations and multiple scales

Window positions + score maps

Box regression outputs

Final Predictions

Sermanet et al, "Integrated Recognition, Localization and Detection using Convolutional Networks", ICLR 2014

Efficient Sliding Window: Overfeat

Efficient Sliding Window: Overfeat

Efficient sliding window by converting fullyconnected layers into convolutions

Efficient Sliding Window: Overfeat

Sermanet et al, "Integrated Recognition, Localization and Detection using Convolutional Networks", ICLR 2014

ImageNet Classification + Localization

AlexNet: Localization method not published

Overfeat: Multiscale convolutional regression with box merging

VGG: Same as Overfeat, but fewer scales and locations; simpler method, gains all due to deeper features

ResNet: Different localization method (RPN) and much deeper features

Computer Vision Tasks

Classification

Classification + Localization

Object Detection

Instance Segmentation

Computer Vision Tasks

Classification

Classification + Localization

Object Detection

Instance Segmentation

Detection as Regression?

DOG, (x, y, w, h)
CAT, (x, y, w, h)
CAT, (x, y, w, h)
DUCK (x, y, w, h)

= 16 numbers

Detection as Regression?

DOG, (x, y, w, h) CAT, (x, y, w, h)

= 8 numbers

Detection as Regression?

Need variable sized outputs

Detection as Classification

CAT? NO

DOG? NO

Detection as Classification

CAT? YES!

DOG? NO

Detection as Classification

CAT? NO

DOG? NO

Detection as Classification

Problem: Need to test many positions and scales, and use a computationally demanding classifier (CNN)

Solution: Only look at a tiny subset of possible positions

Region Proposals

- Find "blobby" image regions that are likely to contain objects
- "Class-agnostic" object detector
- Look for "blob-like" regions

Region Proposals: Selective Search

Bottom-up segmentation, merging regions at multiple scales

Uijlings et al, "Selective Search for Object Recognition", IJCV 2013

Another proposal method: EdgeBoxes

- Box score: number of edges in the box minus number of edges that overlap the box boundary
- Uses a trained edge detector
- Uses efficient data structures for fast evaluation
- Gets 75% recall with 800 boxes (vs. 1400 for Selective Search), is 40 times faster

C. Zitnick and P. Dollar, <u>Edge Boxes: Locating Object Proposals from Edges</u>, ECCV 2014.

Putting it together: R-CNN

Girschick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014

Slide credit: Ross Girschick

Step 1: Train (or download) a classification model for ImageNet (AlexNet)

Step 2: Fine-tune model for detection

- Instead of 1000 ImageNet classes, want 20 object classes + background
- Throw away final fully-connected layer, reinitialize from scratch
- Keep training model using positive / negative regions from detection images

Step 3: Extract features

- Extract region proposals for all images
- For each region: warp to CNN input size, run forward through CNN, save pool5 features to disk
- Have a big hard drive: features are ~200GB for PASCAL dataset!

Step 4: Train one binary SVM per class to classify region features

Step 4: Train one binary SVM per class to classify region features

Step 5 (bbox regression): For each class, train a linear regression model to map from cached features to offsets to GT boxes to make up for "slightly wrong" proposals

Object Detection: Datasets

	PASCAL VOC (2010)	ImageNet Detection (ILSVRC 2014)	MS-COCO (2014)
Number of classes	20	200	80
Number of images (train + val)	~20k	~470k	~120k
Mean objects per image	2.4	1.1	7.2

Object Detection: Evaluation

We use a metric called "mean average precision" (mAP)

Compute average precision (AP) separately for each class, then average over classes

A detection is a true positive if it has IoU with a ground-truth box greater than some threshold (usually 0.5) (mAP@0.5)

Combine all detections from all test images to draw a precision / recall curve for each class; AP is area under the curve

TL;DR mAP is a number from 0 to 100; high is good

Wang et al, "Regionlets for Generic Object Detection", ICCV 2013

Big improvement compared to pre-CNN methods

Bounding box regression helps a bit

Features from a deeper network help a lot

R-CNN Problems

- 1. Slow at test-time: need to run full forward pass of CNN for each region proposal
- 2. SVMs and regressors are post-hoc: CNN features not updated in response to SVMs and regressors
- 3. Complex multistage training pipeline

Girschick, "Fast R-CNN", ICCV 2015

Slide credit: Ross Girschick

R-CNN Problem #1: Slow at test-time due to independent forward passes of the CNN

Solution:

Share computation of convolutional layers between proposals for an image

R-CNN Problem #2:

Post-hoc training: CNN not updated in response to final classifiers and regressors

R-CNN Problem #3:

Complex training pipeline

Solution:

Just train the whole system end-to-end all at once!

Slide credit: Ross Girschick

Convolution and Pooling

Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: C x H x W with region proposal Fully-connected layers

Problem: Fully-connected layers expect low-res conv features: C x h x w

Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: C x H x W with region proposal Fully-connected layers

Problem: Fully-connected layers expect low-res conv features: C x h x w

Fast R-CNN Results

Faster!

	R-CNN	Fast R-CNN
Training Time:	84 hours	9.5 hours
(Speedup)	1x	8.8x

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Results

		R-CNN	Fast R-CNN
Contorl	Training Time:	84 hours	9.5 hours
Faster!	(Speedup)	1x	8.8x
EASTEDI	Test time per image	47 seconds	0.32 seconds
FASTER!	(Speedup)	1x	146x

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Results

		R-CNN	Fast R-CNN
Faster!	Training Time:	84 hours	9.5 hours
	(Speedup)	1x	8.8x
FASTER!	Test time per image	47 seconds	0.32 seconds
FASTER!	(Speedup)	1x	146x
Better!	mAP (VOC 2007)	66.0	66.9

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Problem:

Test-time speeds don't include region proposals

	R-CNN	Fast R-CNN
Test time per image	47 seconds	0.32 seconds
(Speedup)	1x	146x
Test time per image with Selective Search	50 seconds	2 seconds
(Speedup)	1x	25x

Fast R-CNN Problem Solution:

Test-time speeds don't include region proposals Just make the CNN do region proposals too!

	R-CNN	Fast R-CNN
Test time per image	47 seconds	0.32 seconds
(Speedup)	1x	146x
Test time per image with Selective Search	50 seconds	2 seconds
(Speedup)	1x	25x

Faster R-CNN:

Insert a Region Proposal
Network (RPN) after the last
convolutional layer

RPN trained to produce region proposals directly; no need for external region proposals!

After RPN, use Rol Pooling and an upstream classifier and bbox regressor just like Fast R-CNN

Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

Slide credit: Ross Girschick

Faster R-CNN: Region Proposal Network

Slide a small window on the feature map

Build a small network for:

- · classifying object or not-object, and
- regressing bbox locations

Position of the sliding window provides localization information with reference to the image

Box regression provides finer localization information with reference to this sliding window

Slide credit: Kaiming He

Faster R-CNN: Region Proposal Network

Use N anchor boxes at each location

Anchors are **translation invariant**: use the same ones at every location

Regression gives offsets from anchor boxes

Classification gives the probability that each (regressed) anchor shows an object

Faster R-CNN: Training

In the paper: Ugly pipeline

- Use alternating optimization to train RPN, then Fast R-CNN with RPN proposals, etc.
- More complex than it has to be

Since publication: Joint training! One network, four losses

- RPN classification (anchor good / bad)
- RPN regression (anchor -> proposal)
- Fast R-CNN classification (over classes)
- Fast R-CNN regression (proposal -> box)

Slide credit: Ross Girschick

Faster R-CNN: Results

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

Object Detection State-of-the-art: ResNet 101 + Faster R-CNN + some extras

training data	COCO train		COCO trainval	
test data	COCO val		COCO test-dev	
mAP	@.5	@[.5, .95]	@.5	@[.5, .95]
baseline Faster R-CNN (VGG-16)	41.5	21.2		
baseline Faster R-CNN (ResNet-101)	48.4	27.2		
+box refinement	49.9	29.9		
+context	51.1	30.0	53.3	32.2
+multi-scale testing	53.8	32.5	55.7	34.9
ensemble			59.0	37.4

He et. al, "Deep Residual Learning for Image Recognition", arXiv 2015

ImageNet Detection 2013 - 2015

ImageNet Detection (mAP)

Object detection progress

Next trends

- New datasets: MSCOCO
 - 80 categories instead of PASCAL's 20
 - Current best mAP: 37%

What is Microsoft COCO?

Microsoft COCO is a new image recognition, segmentation, and captioning dataset. Microsoft COCO has several features:

- Object segmentation
- **Recognition in Context**
- Multiple objects per image
- More than 300,000 images
- More than 2 Million instances
- 80 object categories
- 5 captions per image

http://mscoco.org/home/

Next trends

Fully convolutional detection networks

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, <u>SSD: Single Shot MultiBox Detector</u>, arXiv 2016.

Next trends

Networks with context

S. Bell, L. Zitnick, K. Bala, and R. Girshick, <u>Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks</u>, CVPR 16

YOLO [CVPR 2016]

Simple and very fast detection performance (45 ~ 100 fps) directly work on object detection as a regression problem, instead of re-using CNN classifiers

YOLO Model

Works with a S x S grid of the image Each cell predicts

- Two bounding box info. w/ their confidence (IOU)

- 20 class probabilities

YOLO [CVPR 2016]

Very fast performance

directly work on object detection as a regression problem, instead of re-using CNN classifiers

$$\begin{split} \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ + \sum_{i=0}^{S^2} \mathbb{1}_{ij}^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2 \end{split}$$