Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu, et, al. ICCV 2017

2018.11.01 20185209 Sangyoon Lee

Table of contents

- Before presentation
- Review
- Relationship between Image Retrieval and CycleGAN
- CycleGAN
 - Introduction
 - Concept
 - Formulation
 - Network architecture
 - Result
 - Applications
 - Limitations
 - Summary

**ref: https://www.youtube.com/watch?v=Fkqf3dS9Cqw&t=1700s

Before presentation

- Original presentation topic
 - GANerated Hands for Real-Time 3D Hand Tracking from Monocular RGB
 - CVPR 2018
- However
 - This paper is dependent on CycleGAN.
- Therefore
 - Today's presentation topic
 - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
 - Jun-Yan Zhu, et, al. ICCV 2017

Review

- Age Progression/Regression by Conditional Adversarial Autoencoder [CVPR `17]
- Problems of Previous Works
 - Group-wised learning
 - Query with label
 - Step-by-step transition
- Solution
 - Manifold Traversing
 - The faces lies on a manifold
 - Traversing on the manifold corresponds to age/personality transformation

Relationship between Image Retrieval and CycleGAN

- Label annotation and paired data set are essential for effective network learning
- However, there is realistic limitations
- CycleGAN can be one of the examples to solve this problem
- There are various applications using CycleGAN for IR

Introduction

- CycleGAN
 - to learn how to translate domains from unpaired data sets
- Problem
 - Learning from an unpaired data set is important
 - it is very difficult to establish an exact matching set of paired data
 - Example
 - if you want to change a landscape image to Monet's style, you must have Monet's picture of the landscape you want.
- Solution
 - GAN
 - Cycle Consistency

Loss: $L_{GAN}(G(x), y)$

 G(x) should just look like a member in the Domain B

Loss: $L_{GAN}(G(x), y)$

 G(x) should just look like a member in the Domain B

Loss: $L_{GAN}(G(x), y)$

- G(x) should just look like a member in the Domain B
- And be able to reconstruct to original image in the Domain A

$$L_{GAN}(G(x), y) + \|F(G(x)) - x\|_{1}$$

- G(x) should just look like a member in the Domain B
- And be able to reconstruct to original image in the Domain A
- And F(G(x)) should be F(G(x)) = x, where F is the inverse deep network

Formulation - overview

Formulation - Adversarial Loss

$$\mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) = \mathbb{E}_{y \sim p_{\text{data}}(y)} [\log D_Y(y)] + \mathbb{E}_{x \sim p_{\text{data}}(x)} [\log(1 - D_Y(G(x))],$$
(1)

Formulation - Cycle Consistency Loss

$$\mathcal{L}_{cyc}(G, F) = \mathbb{E}_{x \sim p_{data}(x)} [\|F(G(x)) - x\|_1] + \mathbb{E}_{y \sim p_{data}(y)} [\|G(F(y)) - y\|_1].$$
(2)

Formulation - Full Objective

$$\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) + \mathcal{L}_{\text{GAN}}(F, D_X, Y, X) + \lambda \mathcal{L}_{\text{cyc}}(G, F),$$
(3)

Network architecture

- ResNet for the generator
 - ResNet is effective for high resolution image processing
- PatchGAN (70 * 70) for the Discriminator
- Use Least Square GAN Loss instead cross entropy
 - With cross entropy

 $\mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) = \mathbb{E}_{y \sim p_{\text{data}}(y)} [\log D_Y(y)] \\ + \mathbb{E}_{x \sim p_{\text{data}}(x)} [\log(1 - D_Y(G(x)))],$

With Least Square

$$\mathcal{L}_{\text{LSGAN}}(G, D_Y, X, Y) = \mathbb{E}_{y \sim p_{\text{data}}(y)} [(D_Y(y) - 1)^2] \\ + \mathbb{E}_{x \sim p_{\text{data}}(x)} [D_Y(G(x))^2],$$

Result

Result

Result

Figure 5: Different methods for mapping aerial photos↔maps on Google Maps. From left to right: input, BiGAN/ALI [6, 7], CoGAN [28], CycleGAN (ours), pix2pix [20] trained on paired data, and ground truth.

	$\mathbf{Map} ightarrow \mathbf{Photo}$	Photo \rightarrow Map
Loss	% Turkers labeled real	% Turkers labeled real
CoGAN [28]	$0.6\%\pm0.5\%$	$0.9\%\pm0.5\%$
BiGAN/ALI [7, 6]	$2.1\%\pm1.0\%$	$1.9\%\pm0.9\%$
Pixel loss + GAN [42]	$0.7\%\pm0.5\%$	$2.6\%\pm1.1\%$
Feature loss + GAN	$1.2\%\pm0.6\%$	$0.3\%\pm0.2\%$
CycleGAN (ours)	$\textbf{26.8\%} \pm \textbf{2.8\%}$	$\textbf{23.2\%} \pm \textbf{3.4\%}$

Table 1: AMT "real vs fake" test on maps \leftrightarrow aerial photos.

Applications

horse \rightarrow zebra

 $zebra \rightarrow horse$

winter Yosemite \rightarrow summer Yosemite

summer Yosemite → winter Yosemite

orange \rightarrow apple

Applications

Limitations

- It is difficult to change the shape
- Sensitive to data distribution

Summary

- To incorporate Cycle Consistency into the existing GAN model and work with Unpaired Dataset.
- Use ResNet, LSGAN, PatchGAN for high resolution style transfer
- It is difficult to make a large change in shape due to constraints.
- Slow learning due to large network

Q & A

• Thank you for listening

Quiz

Q1

• What is the newly proposed loss function for unpaired data set in this paper?

- A) Cycle Consistency
- B) Rectangle Consistency
- C) Triangle Consistency
- D) Adversarial

Q2

- Which of the following is not related to the disadvantages of CycleGAN?
 - A) high resolution style transfer
 - B) Slow learning speed
 - C) it is difficult to change the shape
 - D) Sensitive to data distribution