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Before presentation

= Original presentation topic
= GANerated Hands for Real-Time 3D Hand Tracking from Monocular RGB
= CVPR 2018

= However
= This paper is dependent on CycleGAN.

= Therefore

= Today’s presentation topic
= Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

= Jun-Yan Zhu, et, al. ICCV 2017



Review

= Age Progression/Regression by Conditional Adversarial Autoencoder
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= Problems of Previous Works Query ,
= Group-wised learning bl st
= Query with label Regression
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= Step-by-step transition

= Solution
= Manifold Traversing
= The faces lies on a manifold
= Traversing on the manifold corresponds to age/personality transformation



Relationship between Image Retrieval and CycleGAN

» Label annotation and paired data set are essential for effective network learning
» However, there is realistic limitations

= CycleGAN can be one of the examples to solve this problem

= There are various applications using CycleGAN for IR
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Introduction

= CycleGAN

= to learn how to translate domains from unpaired data sets

= Problem
= Learning from an unpaired data set is important
= it is very difficult to establish an exact matching set of paired data

= Example
= if you want to change a landscape image to Monet's style, you must have Monet's
picture of the landscape you want.

= Solution

= GAN
= Cycle Consistency



Concept Unpaired Data Set

Domain A Domain B

Loss: LGAN (G(X); Y)

» G(x) should just look like a member
in the Domain B
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Concept Unpaired Data Set
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original image in the Domain A




Concept Unpaired Data Set

Domain A Domain B

Loan (G(x), y)+ ||F(G(x)) — x“1

» G(x) should just look like a member
in the Domain B

= And be able to reconstruct to
original image in the Domain A

» And F(G(x)) should be F(G(x)) = x,
where F is the inverse deep network




Unpaired Data Set

Concept Domain A Domain B

Loan(GOOL W+ |F(6)) x|, +  Lean(FOD. 0+ ||G(F)) =y,



Formulation - overview
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Formulation - Adversarial Loss
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Formulation - Cycle Consistency Loss
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Formulation - Full Objective
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Network architecture

= ResNet for the generator
= ResNet is effective for high resolution image processing

= PatchGAN (70 * 70) for the Discriminator

m Use Least Square GAN Loss instead cross entropy
= With cross entropy
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Result

GAN alone Ground truth
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Result

Monet = Photos _ eb L _ Summer 7= Winter
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BiGAN CoGAN CycleGAN pix2pix Ground truth
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Figure 5: Different methods for mapping aerial photos<+maps on Google
Maps. From left to right: input, BIGAN/ALI [6, 7], CoGAN [#], CycleGAN
(ours), pix2pix [ ()] trained on paired data, and ground truth.
Map — Photo Photo — Map
Loss % Turkers labeled real % Turkers labeled real
CoGAN [2¥] 0.6% =+ 0.5% 0.9% = 0.5%
BiGAN/ALI [/, 0] 2.1% £+ 1.0% 1.9% + 0.9%
Pixel loss + GAN [+”] 0.7% + 0.5% 2.6% + 1.1%
Feature loss + GAN 1.2% + 0.6% 0.3% + 0.2%
CycleGAN (ours) 26.8% + 2.8% 23.2% + 3.4%

Table 1: AMT “real vs fake” test on maps<—>aerial photos.



Applications
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Applications
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Limitations

Input

Output

Input

Output

apple — orange

¥ W

dog — cat

photo = Ukiyo-e photo—> Van Gogh iPhone photo — DSLR phot | ImageNet “wild horse” training imges |

= |t is difficult to change the shape
= Sensitive to data distribution



Summary

= To incorporate Cycle Consistency into the existing GAN model and work with
Unpaired Dataset.

= Use ResNet, LSGAN, PatchGAN for high resolution style transfer
= |t is difficult to make a large change in shape due to constraints.
= Slow learning due to large network



Q&A

e Thank you for listening



Quiz

m Q]
= What is the newly proposed loss function for unpaired data set in this paper?
= A) Cycle Consistency
= B) Rectangle Consistency
= () Triangle Consistency
= D) Adversarial

n Q2
= Which of the following is not related to the disadvantages of CycleGAN?
= A) high resolution style transfer
= B) Slow learning speed
= ()it is difficult to change the shape
= D) Sensitive to data distribution



