Disentangled Representation Learning GAN for Pose-Invariant Face Recognition [CVPR `17]

20189008 정병의

Review

• A Zero-Shot Framework for Sketch Based Image Retrieval [ECCV `18] (Speaker. Doheon Lee)

• Problems of Previous Works

- SBIR is usually used for fine-grained IR.
- They are focused on class-based retrieval.
- Shape or attributed-based retrieval are important.

Solution: Zero-shot learning for coarse-grained IR

- Zero-shot Learning to recognize images of novel classes.
- Proposed a new benchmark for zero-shot SBIR.
- Proposed a generative approach for the SBIR task.

Table of Contents

- Introduction PIFR
- Previous Works
- DR-GAN
- Experimental Result
- Conclusion

Introduction

Pose-Invariant Face Recognition (PIFR)

Introduction

Pose-Invariant Face Recognition (PIFR)

Face ID & Fraud detection

Many face images are Not taken in frontally!

Finding missing persons

5

Previous Works

Frontal to Profile Face Verification in the Wild [IEEE '16]

- Celebrities in Frontal-Profile (CFP) dataset.
- State-of-the-art algorithms are degraded more than 10% from Frontal-Frontal to Frontal-Profile verification.

Previous Works

Face Frontalization

- Limited in same scene face images.
- Limited in near frontal images.
- Not suitable for in-the-wild data.
- Only handle single image.

Overview

Conditional GAN

Generator G, Discriminator D

$$\begin{split} \min_{G} \max_{D} V(D,G) &= E_{\mathbf{x} \sim p_d(\mathbf{x})} [\log D(\mathbf{x})] + \\ & E_{\mathbf{z} \sim p_z(\mathbf{z})} [\log(1 - D(G(\mathbf{z})))]. \end{split}$$
(1)

In practice, maximizing log(D(G(z))) is better than instead of minimizing log (1- D(G(z))) $\max_{D} V_{D}(D,G) = E_{\mathbf{x} \sim p_{d}(\mathbf{x})}[\log D(\mathbf{x})] + E_{\mathbf{z} \sim p_{z}(\mathbf{z})}[\log(1 - D(G(\mathbf{z})))], \quad (2)$ $\max_{G} V_{G}(D,G) = E_{\mathbf{z} \sim p_{z}(\mathbf{z})}[\log(D(G(\mathbf{z}))]. \quad (3)$

Single-Image DR-GAN

Generator $\mathbf{x}^{\hat{}} = \mathbf{G}(\mathbf{x}, \mathbf{c}, \mathbf{z})$ D attempts to classify $\mathbf{x}^{\hat{}}$ as fake Maximize the probability of $\mathbf{x}^{\hat{}}$ being classified as a fake $\max_{D} V_D(D, G) = E_{\mathbf{x}, \mathbf{y} \sim p_d(\mathbf{x}, \mathbf{y})} [\log D_{y^d}^d(\mathbf{x}) + \log D_{y^p}^p(\mathbf{x})] + E_{\mathbf{x}, \mathbf{y} \sim p_d(\mathbf{x}, \mathbf{y})} [\log (D_{N^d+1}^d(G(\mathbf{x}, \mathbf{c}, \mathbf{z})))], (4)$

The goal of G is to fool D to classify $\mathbf{x}^{}$ $\max_{G} V_{G}(D,G) = E_{\mathbf{x},\mathbf{y}\sim p_{d}(\mathbf{x},\mathbf{y}),} [\log(D_{y^{d}}^{d}(G(\mathbf{x},\mathbf{c},\mathbf{z}))) + \log(D_{y^{t}}^{p}(G(\mathbf{x},\mathbf{c},\mathbf{z})))].$ (5)

yd represents the label for identity yp represents the label for pose

Multi-Image DR-GAN

Comparison to Prior GANs

Dataset

- **Multi-PIE:** The Largest database for evaluating face recognition under pose, illumination, and expression variations in controlled setting
 - 337 subjects with 9 poses within ±60 deg.

• CASIA-WebFace:

- 500,000 near-frontal faces of 10,000 subjects
- CFP (Celebrities in Frontal-Profile):
 - 500 subjects each with 10 frontal and 4 profile
- IJB-A (IARPA Janus Benchmark A):
 - 500 subjects from images and video frames

Single vs. Multiple Training Images (CFP) Face Identification Performance

Method	Frontal-Frontal	Frontal-Profile
Sengupta et al. [34] Sankarana et al. [32] Chen et al. [4] Human	$\begin{array}{c} 96.40 \pm 0.69 \\ 96.93 \pm 0.61 \\ \textbf{98.67} \pm 0.36 \\ 96.24 \pm 0.67 \end{array}$	$\begin{array}{c} 84.91 \pm 1.82 \\ 89.17 \pm 2.35 \\ 91.97 \pm 1.70 \\ 94.57 \pm 1.10 \end{array}$
DR-GAN: synthetic DR-GAN: n=1 DR-GAN: n=4 DR-GAN: n=6	97.08 ± 0.62 97.13 ± 0.68 97.86 ± 0.75 97.84 ± 0.79	91.02 ± 1.59 90.82 ± 0.28 92.93 ± 1.39 93.41 ± 1.17

Table 2: Performance comparison on CFP.

N > 6 : limitation of computation capacity

Result on Benchmark Datasets (Multi-PIE) Face Identification Performance

Table 4: Benchmark comparison on Multi-PIE.						
Method	0°	15°	30°	45°	60°	Average
Zhu et al. [44]	94.3	90.7	80.7	64.1	45.9	72.9
Zhu et al. [45]	95.7	92.8	83.7	72.9	60.1	79.3
Yim et al. [40]	99.5	95.0	88.5	79.9	61.9	83.3
Using $L2$ loss	95.1	90.8	82.7	72.7	57.9	78.3
DR-GAN (n=6)	97.0	94.0	90.1	86.2	83.2	89.2

Result on Benchmark Datasets (IJB-A)

Face Identification Performance

	Veri	fication	Identification			
Method	@FAR=.01	@FAR=.001	@Rank-1	@Rank-5		
OpenBR [16]	23.6 ± 0.9	10.4 ± 1.4	24.6 ± 1.1	37.5 ± 0.8		
GOTS [16]	40.6 ± 1.4	19.8 ± 0.8	44.3 ± 2.1	59.5 ± 2.0		
Wang et al. [36]	72.9 ± 3.5	51.0 ± 6.1	82.2 ± 2.3	93.1 ± 1.4		
PAM [25]	73.3 ± 1.8	55.2 ± 3.2	77.1 ± 1.6	88.7 ± 0.9		
DCNN [3]	78.7 ± 4.3	-	85.2 ± 1.8	93.7 ± 1.0		
DR-GAN (avg.)	75.5 ± 2.8	51.8 ± 6.8	84.3 ± 1.3	93.2 ± 0.8		
DR-GAN (fuse)	77.4 ± 2.7	53.9 ± 4.3	85.5 ± 1.5	94.7 ± 1.1		

Table 5: Performance comparison on IJB-A.

False Accept Rates

Single vs. Multiple Testing Images.

_	Table 3: Identification rates of three approaches on Multi-PIE.					
	n_t	1	2	3	4	5
(n=6)	single-image (avg.)	84.6	91.8	94.1	95.3	95.8
(n=6)	multi-image (avg.)	85.9	92.4	94.5	95.5	95.9
(n=6)	multi-image (fuse)	85.9	92.8	95.1	96.0	96.5

cosine distances of representation

• DR-GAN (Adversarial) Loss vs. L2 Loss

Interpolation of Representations (f(x))

Interpolation of c (pose code, degree)

• Face Rotation in CFP

"To the best of our knowledge, this is the first work that is able to *frontalizate a profile-view in-the-wild face image*."

• Face Rotation on IJB-A with Multi-Images

KAIST

21

Conclusion

- Authors proposed DR-GAN for pose-invariant face recognition and face synthesis.
- Their Representation learning.
 - Generative: Image synthesis
 - Discriminative: PIFR
- First work for extreme-pose in-the-wild face frontalization.
- Fusing multiple in-the-wild faces of the same subject into one representation.

THANK YOU

