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Homework for Every Class

e Go over the next lecture slides

e Come up with one guestion on what we have
discussed today
e 1 for typical questions (that were answered in the class)

e 2 for questions with thoughts or that surprised me

e Write questions at least 4 times before the mid-
term

e Multiple questions in one time will be counted as one time

e Common guestions are addressed at my draft
e Some of questions will be discussed in the class

e If you want to know the answer of your question,
ask me or TA on person
KAIST



Homework for Every Class

e GO over recent papers on image search

e High quality papers: Papers published at the
top-tier conf. or close it can be presented; e.qg.,
CVPR, ICCV, ECCV, ACM ICMR, ACM MM, ACM
SIGGRAPH

e Recent publication: papers published since
2015

e Find and browse two papers, and submit your
summary before every beginning of the Thur.
class; submit two summaries

e Online submission is possible
e Think about possible team members

e Too late If you think them later.. KAIST



Computer Vision Field: CVPR,
ICCV, ECCV

e Handle various computer vision problems

e Get various machine learning techniques
from ICML, NIPS

KAIST



Example: R-CNN [CVPR 14, oral]

R-CNN: Regtans with CNN features

warped region ﬁ'l aeroplane? no.

____________________

x = =5 person? yes.
Cl\h'\

____________________ Q| tv mnmlnf? no.
1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) ~ CNN features regions

* Three Modules
() Category-independent region proposals

@ CNN that extracts a fixed-length feature vector from each region (Blackbox feature extractor)

@ Class-specific linear SVMs

Rich feature hierarchies for accurate object detection
5 and semantic segmentation, Slide is from Mr. Lee KAIST



Example: Localization Networks

e DenseCap, CVPR 16 (oral)

Whole Image Image Regions label density
_
Classification Detection
Single
Label Cat
| Skateboard |
Captioning Dense Captioning
Sequence |0range spotted cat
A cat Skateboard with
riding a S:::fds
Iat_:el skateboard skateboard
com D|e><lt}fv Brown hardwood
flooring

Figure 1. We address the Dense Captioning task (bottom right)
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Region features:
Conv features: BxCxXxY  Region Codes:

\\ CxWxH BxD q
CNN] H LSTM

/ Striped gray cat
Remgnmcn
PP T ommeea ] N heEamrI-c Cats watching TV
PPt "Localization Layer ~  TTTTtee--—o_____
/ Region Proposals: Sampling Grid ™,
) Ak x W' x H Best Proposals: BxXxYx2
- Bx4
| —|Conv| —~ BX] —3 I .
) Grid -
_— Sampling — I — Generator .
Region scores: - ®7
: | KX W x H ] i :
Conv features: \\ Bilinear Sampler Region fealures.
Cx W x H Bxd12x7x7

e Use bi-linear interpolation that is
differentiable and can be used for back-
propagation

7 KAIST



SIGGRPH

e Focus more on useful applications
e Wow factor is important

KAIST



Example: Transfiguring Portraits
[SIG. 16]




Overall System

Various feature extractions
(vision tech.) Image process tech.

~

I"Fﬂremplmtn: -'\l

. —¥| | F - [VGG
processing a ace rer. [VGG)
A gender
T age

Face

match

Input image & Search tech.
text

10 KAIST



ACM Multimedia and ACM ICMR

e ICMR (Multimedia retrieval)
e A recently created conf. since 2011

e Many papers on image/video search and
analysis

e IEEE multimedia
e The top-tier conf. in multimedia
e Many different topics related to image/video

1 KAIST



Example: MindFinder, Finding
Images by Sketching

e Sketch-based Image Retrieval
via Shape Words. ICMR 2015

e Representation for Sketch-
Based 3D Model Retrieval.
IEEE Signal Processing
Letters, 2014

e Indexing Billions of Images
for Sketch-based Retrieval.
ACM Multimedia 2013

e Efficient Image Contour

Detection using Edge Prior.
ICME 2013

e The Scale of Edges, in CVPR
12 2012 KAIST
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Class Objective (Ch. 2.2)

e Understand locally invariant features
e Key point localization
e Harris detector

KAIST



Content-Based Image Retrieval
(CBIR)

e Identify similar images given a user-
specified image or other types of inputs

Extract image oV

descriptors (e.qg.,
SIFT) < > '
Web-scale

Image database
N— A

Input Output
14 P P KAIST



Key Components of Image
Search

e Image representations
e Indexing algorithms
e Matching methods

e Classification, Localization, etc.

e Apply image search (or nearest neighbor
search)

e Data-driven approach

Offline Stage

Image ‘:> Image |:> Image l::> Database ;
Crawling Database Representation Indexmg Zhou et al arxiv

User Query |:> Image E> Image |:> Search |:> Retrieval
Intention Formation Representation Scoring Reranking Browsing

Online Stage
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Image Representations

e SIFT, GIST, CNN, etc.
e Invariant to different transformations

KAIST



Quality of Images

e Search results depend highly on quality of
query images
e Suggest re-takes in mobile search

e Select potential candidates from initial results
with high precisions in the server side

e Learning to judge image search results, ACM
Multimedia

(b) The top-10 images returned on query “White House”.

Quality varies depending on algorithms

17 KAIST
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Image Retrieval

e At pre-processing, build a database for
efficient retrieval at runtime

KAIST



Image Retrieval

e At pre-processing, build a database for
efficient retrieval at runtime

== |Index schemes:

vocabulary trees,
hashing, and
iInverted files

19 KAIST



20

Image Retrieval: Runtime
Procedure

Query Image

.

KAIST
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Image Retrieval: Runtime
Procedure

Query Image
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Post-Processing

Re-ranking
(spatial verification)



Motivation

* Global representations have major limitations
* Instead, describe and match only local regions

* |ncreased robustness to
— Qcclusions

— Articulation

— Intra-category variations




Michelangelo 1475-1564



Challenges: illumination

image credit J. Koenderink




Challenges: scale



Challenges: deformation




Challenges:
occlusion

Magritte, 1957




Challenges: background clutter

Kilmeny Niland. 1995




Challenges: intra-class variation




Application: Image Matching

by Diva Sian

by swashford

Slide credit: Steve Seitz



by Diva Sian

Harder Case

Slide credit: Steve Seitz



Harder Still?

Z}195 2A21S 111paUd 3PUS

NASA Mars Rover images

U
@
2
@
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Fei-Fei Li

Application: Image Stitching

Darya Frolova, Denis Simakov

Slide credit



Application: Image Stitc

* Procedure:
— Detect feature points in both images

Fei-Feil Li

is Simakov

Darya Frolova, Den

Slide credit



Application: Image Stitching

* Procedure:
— Detect feature points in both images
— Find corresponding pairs

Darya Frolova, Denis Simakov

Slide credit




Application: Image Stitching

* Procedure:
— Detect feature points in both images
— Find corresponding pairs
— Use these pairs to align the images

Slide credit: Darya Frolova, Denis Simakoy



Common Requirements

* Problem 1:

— Detect the same point independently in both images

No chance to match!

This lecture

We need a repeatable detector!

Slide credit: Darya Frolova, Denis Simakoy



Common Requirements

* Problem 1:

— Detect the same point independently in both images

* Problem 2:

— For each point correctly recognize the corresponding one

Next lecture

We need a reliable and distinctive descriptor!

Slide credit: Darya Frolova, Denis Simakoy



Invariance: Geometric Transformations

Multiple View
Geometry

17 SOMaUler vainn

Slide credit: Steve Seitz



Levels of Geometric Invariance

l /
translation

e

___._-=r
Euclidean

sumilarity Q projective i

'1ff"111e

e %

Slide credit; Bastian Leibe



Invariance: Photometric Transformations

« (Often modeled as a linear
transformation:

— Scaling + Offset

Slide credit: Tinne Tuytelaars




Requirements

* Region extraction needs to be repeatable and accurate
— |Invariant to translation, rotation, scale changes
— Robust or covariant to out-of-plane (=affine) transformations

— Robust to lighting variations, noise, blur, quantization

* Locality: Features are local, therefore robust to occlusion
and clutter.

* Quantity: We need a sufficient number of regions to cover
the object.

» Distinctivenes : The regions should contain “interesting”
structure.

» Efficiency: Close to real-time performance.

Slide credit; Bastian Leibe



Two Different Directions

e Classical approaches

e Manually designed in image processing and
computer vision fields

e Deep learning approaches

e Learned approaches, but are inspired by many
prior (manually crafted) approaches

e In this class

e We first talk about the classical approaches,
followed by deep learning approaches

44 KAIST



Many Existing Detectors Available

* Hessian & Harris [Beaudet ‘78], [Harris ‘88]

* Laplacian, DoG [Lindeberg ‘98], [Lowe ‘9]

* Harris-/Hessian-Laplace [Mikolajczyk & Schmid ‘01]
* Harris-/Hessian-Affine [Mikolajczyk & Schmid ‘04]

* EBRandIBR [Tuytelaars & Van Gool ‘04]

« MSER [Matas ‘02]

* Salient Regions [Kadir & Brady ‘01]

* Others...

* Those detectors have become a basic building block for
many recent applications in Computer Vision.

Slide credit; Bastian Leibe



Keypoint Localization

* Goals:

— Repeatable detection
— Precise localization
— Interesting content

—= Look for two-dimensional signal changes

Slide credit: Bastian Leibe



Finding Corners

* Key property:
— In the region around a corner, image gradient has two
or more dominant directions

* Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference, 1988.

Slide credit: Svetlana Lazebnik



Corners as Distinctive Interest Points

* Design criteria

— We should easily recognize the point by looking through a
small window (locality)

— Shifting the window in any direction should give a large
change in intensity (good localization)

“flat” region: “edge”: “corner”:
no change in all no change along significant change

directions the edie direction in all directions

Slide credit: Alyosha Efros



Harris Detector Formulation

* Change of intensity for the shift [u,Vv]:

E(Hj 1;) — Z 1_4.!(:‘:5 J*) [I(I + U, y + 1;’) — ](x, J,:)]l
X.¥

Shifted
intensity

Window
function

Window function w(x.y) =

1 in window, 0 outside

Intensity

Gaussian

Slide credit; Rick Szeliski



What Does This Matrix Reveal?

* First, let’s consider an axis-aligned corner:

M_'ij SII,| [4 0
> 11, Y| |0 4,

* This means:

— Dominant gradient directions align with x or y axis

— If either 4 is close to 0, then this is not a corner, so look for
locations where both are large.

* What if we have a corner that is not aligned with the
image axes?

Slide credit: David Jacobs



Interpreting the Eigenvalues

* (Classification of image points using eigenvalues of M:

A

Ay and A, are small;

E is almost constant in
all directions

Slide credit: Kristen Grauman




Harris Detector: Workflow

AOYELUIS SIUa(] “eA0)0l4 eAleq wol) paydepe aplis




Fei-Fei Li

Harris Detector: Workflow
- computer corner responses R

! g a = 2 "
‘Ir.- . ., - 5 Ny = \
| \ -

Slide adapted from Darya Frolova, Denis Simakov



Harris Detector: Workflow
- Take only the local maxima of R, where R>threshold

Slide adapted from Darya Frolova, Denis Simakov




Harris Detector: Workflow
- Resulting Harris points

Slide adapted from Darya Frolova, Denis Simakov



Harris Detector — Responses ariss

Effect: A very precise
corner detector.

Slide credit: Krystian Mikolajczyk



Harr|s Detector — Responses [Harris8g]

i ._-I .. :.." "‘. : ¥ BN 4 Al - ‘.-’ Sa
Fei-Fei Li

Slide credit: Krystian Mikolajczyk



Harris Detector — Responses (s

* Results are well suited for finding stereo correspondences

Slide credit: Kristen Grauman



Harris Detector: Properties

* Rotation invariance?

b )

A

== S

Ellipse rotates but its shape (i.e.
eigenvalues) remains the same

Corner response R is invariant to image rotation

Slide credit: Kristen Grauman



Harris Detector: Properties

e Rotation invariance

* Scale invariance?



Harris Detector: Properties

e Rotation invariance

* Scale invariance?

FoEm 400

Corner All points will be
classified as edges!

Not invariant to image scale!

Slide credit: Kristen Grauman



Class Objective were:

e Understand locally invariant features
e Key point localization

e Harris detector: manually designed detector 2
automatically learned detector using deep
learning

62 KAIST
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Next Time..

e Scale invariant region selection

KAIST



Homework for Every Class

e Go over the next lecture slides

e Come up with one guestion on what we have
discussed today

e GO over recent papers on image search, and submit
their summary

64 KAIST
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Homework for Every Class

e GO over recent papers on image search

e High quality papers: Papers published at the
top-tier conf. or close it can be presented; e.qg.,
CVPR, ICCV, ICMR, ECCV, MM, SIGGRAPH

e Recent publication : papers published since
2015

e FIind and browse two papers, and submit your
summary before every beginning of the Thur.
class

e Think about possible team members
e Too late If you think them later..
KAIST
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