CS688: Web-Scale Image Search Keypoint Localization

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/IR

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today
 - 1 for typical questions (that were answered in the class)
 - 2 for questions with thoughts or that surprised me
- Write questions at least 4 times before the midterm
 - Multiple questions in one time will be counted as one time
- Common questions are addressed at my draft
 - Some of questions will be discussed in the class
- If you want to know the answer of your question, ask me or TA on person

Homework for Every Class

- Go over recent papers on image search
 - High quality papers: Papers published at the top-tier conf. or close it can be presented; e.g., CVPR, ICCV, ECCV, ACM ICMR, ACM MM, ACM SIGGRAPH
 - Recent publication: papers published since 2015
 - Find and browse two papers, and submit your summary before every beginning of the Thur. class; submit two summaries
 - Online submission is possible
- Think about possible team members
- Too late if you think them later..

Computer Vision Field: CVPR, ICCV, ECCV

- Handle various computer vision problems
- Get various machine learning techniques from ICML, NIPS

Example: R-CNN [CVPR 14, oral]

R-CNN: Regions with CNN features

Three Modules

- Category-independent region proposals
- CNN that extracts a fixed-length feature vector from each region (Blackbox feature extractor)
- 3 Class-specific linear SVMs

Rich feature hierarchies for accurate object detection and semantic segmentation, Slide is from Mr. Lee

Example: Localization Networks

DenseCap, CVPR 16 (oral)

Figure 1. We address the Dense Captioning task (bottom right)

 Use bi-linear interpolation that is differentiable and can be used for backpropagation

SIGGRPH

- Focus more on useful applications
 - Wow factor is important

Example: Transfiguring Portraits [SIG. 16]

"curly hair"

"india"

"1930"

Overall System

Various feature extractions (vision tech.) Image process tech.

Input image & text

Search tech.

ACM Multimedia and ACM ICMR

- ICMR (Multimedia retrieval)
 - A recently created conf. since 2011
 - Many papers on image/video search and analysis
- IEEE multimedia
 - The top-tier conf. in multimedia
 - Many different topics related to image/video

Example: MindFinder, Finding Images by Sketching

- Sketch-based Image Retrieval via Shape Words. ICMR 2015
- Representation for Sketch-Based 3D Model Retrieval.
 IEEE Signal Processing Letters, 2014
- Indexing Billions of Images for Sketch-based Retrieval.
 ACM Multimedia 2013
- Efficient Image Contour Detection using Edge Prior. ICME 2013
- The Scale of Edges, in CVPR 2012

Class Objective (Ch. 2.2)

- Understand locally invariant features
 - Key point localization
 - Harris detector

Content-Based Image Retrieval (CBIR)

 Identify similar images given a userspecified image or other types of inputs

Extract image descriptors (e.g., SIFT)

Input

Output

Key Components of Image Search

- Image representations
- Indexing algorithms
- Matching methods
- Classification, Localization, etc.
 - Apply image search (or nearest neighbor search)
 - Data-driven approach

Image Representations

- SIFT, GIST, CNN, etc.
 - Invariant to different transformations

Quality of Images

- Search results depend highly on quality of query images
 - Suggest re-takes in mobile search
 - Select potential candidates from initial results with high precisions in the server side
 - Learning to judge image search results, ACM Multimedia

(b) The top-10 images returned on query "White House".

Quality varies depending on algorithms

Image Retrieval

 At pre-processing, build a database for efficient retrieval at runtime

Image Retrieval

 At pre-processing, build a database for efficient retrieval at runtime

Index schemes: vocabulary trees, hashing, and inverted files

Image Retrieval: Runtime Procedure

Image Retrieval: Runtime Procedure

Post-Processing

Motivation

- Global representations have major limitations
- · Instead, describe and match only local regions
- Increased robustness to
 - Occlusions

Articulation

Intra-category variations

Challenges: viewpoint variation

Challenges: illumination

Challenges: scale

Challenges: deformation

Challenges: occlusion

Magritte, 1957

Challenges: background clutter

Kilmeny Niland. 1995

Challenges: intra-class variation

Slide credit: Steve Seitz

Application: Image Matching

by Diva Sian

by swashford

Slide credit: Steve Seitz

Harder Case

by scgbt

Harder Still?

NASA Mars Rover images

Application: Image Stitching

Slide credit: Darya Frolova, Denis Simakov

Application: Image Stitching

- Procedure:
 - Detect feature points in both images

Slide credit: Darya Frolova, Denis Simakov

Application: Image Stitching

- Procedure:
 - Detect feature points in both images
 - Find corresponding pairs

Application: Image Stitching

· Procedure:

- Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align the images

Slide credit: Darya Frolova, Denis Simakov

Common Requirements

- Problem 1:
 - Detect the same point independently in both images

No chance to match!

This lecture

We need a repeatable detector!

Common Requirements

- Problem 1:
 - Detect the same point independently in both images
- Problem 2:
 - For each point correctly recognize the corresponding one

Next lecture

We need a reliable and distinctive descriptor!

Invariance: Geometric Transformations

Slide credit: Bastian Leibe

Levels of Geometric Invariance

Invariance: Photometric Transformations

Requirements

- Region extraction needs to be repeatable and accurate
 - Invariant to translation, rotation, scale changes
 - Robust or covariant to out-of-plane (≈affine) transformations
 - Robust to lighting variations, noise, blur, quantization
- Locality: Features are local, therefore robust to occlusion and clutter.
- Quantity: We need a sufficient number of regions to cover the object.
- Distinctivenes: The regions should contain "interesting" structure.
- Efficiency: Close to real-time performance.

Two Different Directions

- Classical approaches
 - Manually designed in image processing and computer vision fields
- Deep learning approaches
 - Learned approaches, but are inspired by many prior (manually crafted) approaches
- In this class
 - We first talk about the classical approaches, followed by deep learning approaches

Slide credit: Bastian Leibe

Many Existing Detectors Available

```
    Hessian & Harris [Beaudet '78], [Harris '88]
```

- Laplacian, DoG [Lindeberg '98], [Lowe '99]
- Harris-/Hessian-Laplace [Mikolajczyk & Schmid '01]
- Harris-/Hessian-Affine [Mikolajczyk & Schmid '04]
- EBR and IBR [Tuytelaars & Van Gool '04]
- MSER [Matas '02]
- Salient Regions [Kadir & Brady '01]
- Others...
- Those detectors have become a basic building block for many recent applications in Computer Vision.

Slide credit: Bastian Leibe

Keypoint Localization

- Goals:
 - Repeatable detection
 - Precise localization
 - Interesting content
 - ⇒ Look for two-dimensional signal changes

Slide credit: Svetlana Lazebnik

Finding Corners

- Key property:
 - In the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and distinctive

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u>

Proceedings of the 4th Alvey Vision Conference, 1988.

Slide credit: Alyosha Efros

Corners as Distinctive Interest Points

- Design criteria
 - We should easily recognize the point by looking through a small window (locality)
 - Shifting the window in any direction should give a large change in intensity (good localization)

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Harris Detector Formulation

Change of intensity for the shift [u,v]:

What Does This Matrix Reveal?

First, let's consider an axis-aligned corner:

$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

- This means:
 - Dominant gradient directions align with x or y axis
 - If either \(\lambda \) is close to 0, then this is not a corner, so look for locations where both are large.
- What if we have a corner that is not aligned with the image axes?

Slide credit: Kristen Grauman

Interpreting the Eigenvalues

Classification of image points using eigenvalues of M:

- computer corner responses R

- Take only the local maxima of R, where R>threshold

- Resulting Harris points

Harris Detector – Responses [Harris88]

Harris Detector – Responses [Harris88]

Harris Detector – Responses [Harris88]

Results are well suited for finding stereo correspondences

Slide credit: Kristen Grauman

Harris Detector: Properties

Rotation invariance?

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation

Harris Detector: Properties

- Rotation invariance
- Scale invariance?

Slide credit: Kristen Grauman

Harris Detector: Properties

- Rotation invariance
- Scale invariance?

Not invariant to image scale!

Class Objective were:

- Understand locally invariant features
 - Key point localization
 - Harris detector: manually designed detector >
 automatically learned detector using deep
 learning

Next Time...

Scale invariant region selection

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today
- Go over recent papers on image search, and submit their summary

Homework for Every Class

- Go over recent papers on image search
 - High quality papers: Papers published at the top-tier conf. or close it can be presented; e.g., CVPR, ICCV, ICMR, ECCV, MM, SIGGRAPH
 - Recent publication : papers published since 2015
 - Find and browse two papers, and submit your summary before every beginning of the Thur. class
- Think about possible team members
- Too late if you think them later...

