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Class Objectives
● Bag-of-visual-Word (BoW) model

● Pooling operation
● Understand approximate nearest neighbor 

search
● Inverted index
● Inverted multi-index
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Inspired by text search
Represent an image 
with a histogram of 
words
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1. Feature Detection and 
Representations
● Assume many local 

features as an 
aggregation model
● Global feature is 

not used
● Densely sampled or 

sampled only at 
key points
● Detect patches an 

extract features 
from them

Ack.: Josef Sivic and Li Fei-Fei
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K-Means Clustering
● An unsupervised learning
● Minimize the within-cluster sum of squares
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Codewords Dictionary Formation
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Issues of Visual Vocabulary
● Related to quantization

● Too many words: quantization artifacts
● Too small words: not representative

● K-means also takes long computation times

● Alternatives
● Faster performance: 

vocabulary tree, Nister et al.
● Low quantization artifacts:

soft quantization, Philbin et al.
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TF-IDF

● Adopted from text search
● A kind of weighting and normalization process

● Assume a document to be represented by 
● Weighted by TF (Term frequency) * log (IDF 

(Inverse Document Frequency))

● nid : # of occurrences of word i in document d
● nd : total # of words in the document d
● ni : # of occurrences of term i in the whole database
● N: # of documents in the whole database
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Similarity and Distance 
Functions
● Dot product measuring the angle between 

two vectors
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Similarity Learning: Siamese CNN

Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P. and Moreno-Noguer, F., 2015. Discriminative learning of 
deep convolutional feature point descriptors. In Proceedings of the IEEE International Conference on Computer 

Vision (pp. 118-126).

● Learn a feature representation mapping the 
sample patches with the L2 distance
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•Allows us to learn ranking between samples
•Known as a ranking loss

Siamese CNN Variants: Triplet 
Network or Loss

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overhead 
imagery. In European Conference on Computer Vision (pp. 494-509).

D(f(A), f(B)) < D(f(A), f(C))+

-
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Utilize BoW for CNN Image 
Retrieval
● Construct 3D models from BoW based 

image retrieval
● Unsupervised fine tuning with hard examples

● Given a query, identify its positive (same 
cluster or city) and its negative image 
given a query



Negative images

Positive images
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PA2
● Understand and implement a basic image 

retrieval system
● Use the original UKBenchmark
● Measure its accuracy

Query First Second Third 
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VLAD (Vector of Locally 
Aggregated Descriptors)
● BoW

● Count the number of SIFTs assigned to each 
cluster

● VLAD
● Compute the difference between a SIFT and its 

cluster center
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VLAD

● VLAD descriptors w/ 16 clusters
● Show better accuracy 

than BoW

Ack. Aggregating local descriptors ..
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Normalization for VLAD
● Results in better accuracy

L2 normalization, 
i.e., 𝒗𝒗

𝒗𝒗 𝟐𝟐

Square rooting 
for burstiness

Variance

L2 normalization 
within each VLAD 

block
Ack. All about VLAD
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NetVLAD: CNN architecture for 
weakly supervised place recognition

● Identify its location given an query image
● Application of place recognition

From the author talk
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Mimic the classical approach
● Make it end-to-end trainable

● Training is important
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Trainable VLAD
● Hard assignment to soft assignment using 

the soft-max
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Problems of BoW Model
● No spatial relationship 

between words

● How can we perform 
segmentation and 
localization?

Ack.: Fei-Fei Li
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Database

Query image

Post-Processing or Reranking

Shortlist (e.g., 100 images)

..

..
Re-ranking
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Post-Processing
● Geometric verification

● RANSAC

● Query expansion

Matching w/o spatial matching 
(Ack: Edward Johns et al.)

query

input DB
results
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Geometric Verification using 
RANSAC for Affine Transform
Repeat N times:

a
f

z

e

e
z

a
f

z

e

e
z

Affine 
Transform

- Randomly choose 3 
matching pairs

- Estimate 
transformation

- Predict remaining 
points and count 
“inliers”

Ack.: Derek Hoiem (UIUC)
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Pattern matching
● Drones surveying city

● Identify a particular car
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Image Retrieval with Spatially 
Constrained Similarity Measure

[Xiaohui Shen, Zhe Lin, Jon Brandt, Shai Avidan and Ying Wu, CVPR 
2012]
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Learning to Find Good 
Correspondences, CVPR 18
● Given two input features (e.g., SIFTs), 

return a prob. of being inliers for each 
feature
● Adopt the classification approach
● Additionally perform the regression for pose 

estimation
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Query Expansion [Chum et al. 
07]

Original query Top 4 images
Expanded results that were 
not identified by the original 
query
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Different Outputs of Image 
Search
● Generate image sequences from 

paragraphs

Kim et al., Ranking and Retrieval of Image Sequences from Multiple Paragraph Queries 
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Inverted File or Index for Efficient 
Search

Near cluster 
search

feature space

Shortlist

Inverted File

…

Re-ranking

● For each word, list images containing the 
word

Ack.: Dr. Heo



Inverted Index

• Generate a codebook by  
quantization
– e.g. k-means clustering

• Build an inverted index
– Quantize each descriptor    

into the closest word
– Organize desc. IDs in terms 

of words 
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𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 … 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤1

𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤2

𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑘𝑘

…

inverted index

Construction time:

Figure from Lempitsky’s slides

Ack.: Zhe Lin



Inverted Index

• Given a query,

– Find its K closest words

– Retrieve all the data in the K 
lists corresponding to the  
words     

• Large K

– Low quantization distortion

– Expensive to find kNN words
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Query time:

Ack.: Zhe Lin



The inverted index

Visual codebook

"Visual word"

Sivic & Zisserman ICCV 2003
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Approximate Nearest Neighbor 
(ANN) Search
● For large K

● Takes time to find clusters given the query
● Use those ANN techniques for efficiently 

finding near clusters

● ANN search techniques
● kd-trees: hierarchical approaches for low-

dimensional problems
● Hashing for high dimensional problems; will be 

discussed later with binary code embedding
● Quantization (k-means cluster and product 

quantization)
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kd-tree Example

● Many good implementations (e.g., vl-feat)



Querying the inverted index

• Have to consider 
several words for best 
accuracy

• Want to use as big 
codebook as possible 

• Want to spend as little 
time as possible for 
matching to codebooks

conflict

Query:

Ack.: Lempitsky



Inverted Multi-Index

• Product quantization 
for indexing

• Main advantage:

– For the same K, much 
finer subdivision

– Very efficient in finding  
kNN codewords
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[Babenko and Lempitsky, CVPR 2012]

Ack.: Lempitsky



Product quantization

1. Split vector into correlated subvectors
2. use separate small codebook for each chunk

For a budget of 4 bytes per descriptor:

1. Use a single codebook with 1 billion codewords or             many minutes     128GB 

2. Use 4 different codebooks with 256 codewords each        < 1 millisecond    32KB

Quantization vs. Product quantization:

Ack.: Lempitsky



Performance comparison on 1 B SIFT descriptors

100x

Time increase: 1.4 msec -> 2.2 msec on a single core
(with BLAS instructions)

K = 214

Ack.: Lempitsky



Performance on 80 million GISTs

Index vs Multi-index:

Tests on 80 million GISTs (384 dimensions) of Tiny Images 
[Torralba et al. PAMI'08]

Ack.: Lempitsky



Retrieval examples
Exact NN
Uncompressed GIST

Multi-D-ADC
16 bytes

Exact NN
Uncompressed GIST

Multi-D-ADC
16 bytes

Exact NN
Uncompressed GIST

Multi-D-ADC
16 bytes

Exact NN
Uncompressed GIST

Multi-D-ADC
16 bytes

Ack.: Lempitsky
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Scalability
● Issues with billions of images?

● Searching speed  inverted index
● Accuracy  larger codebooks, spatial 

verification, expansion, features
● Memory  compact representations
● Easy to use?
● Applications?
● A new aspect?
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Class Objectives were:
● Bag-of-visual-Word (BoW) model
● Understand approximate nearest neighbor 

search
● Inverted index
● Inverted multi-index
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Next Time…
● Learning techniques
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Homework for Every Class
● Go over the next lecture slides
● Come up with one question on what we have 

discussed today
● 1 for typical questions (that were answered in the class)
● 2 for questions with thoughts or that surprised me

● Write questions at least 4 times
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