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Agents in Reinforcement Learning

Robots
(embodied Al)

& deepseek
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Reinforcement Learning

® Reinforcement learning is a type of machine learning where agents learn optimal
behaviors through trial and error interactions with an environment.

/

Task: extinguish the fire

/Environment




Agent and Environment

® At each time step t, the agent:
m Executes action A;
m Receives observation O; (sensing)
m Receives scalar reward R;

® The environment:
m Receives action A;
m Emits observation O, 4
m Emits scalar reward Ry, 4

Agent (robot)
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Environment

(physics simulation, real world, or world models) KAIST




Markov Decision Process (MDP)

® MDP is a formal mathematical modeling of RL problem, defined by a 5-tuple.
m States (S): All information describing the agent's situation.
m Actions (A): Available choices the agent can make in each state.
m Rewards (R): Immediate (positive or negative) feedback for an action taken in a state.
m Transitions (T): Probabilities of moving between states after actions.
m Discount Factor (y): Reduces the value of future rewards compared to immediate ones.

__[ Agent
State s; 3 Reward Action
(fully observed) ¢ T as
:4 Fra r

: See l Environment
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Optimization objective of RL

® The goal of RL is to find an optimal “policy (agent) ©*” which produces the action
maximizing the discounted expected future rewards at each state.

n* = argmax, J ()

](T[) — Ea~n(s),s'~T(s,a) [Z?):O VtR(S’ a, S’)]

Arrows are induced optimal
actions at each state

(-1 rewards at each step, except
when reaching the goal state)
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Partially Observable Markov Decision Process (POMDP)

® POMDP is an extension of MDP, where an agent cannot fully observe the entire state of

the environment.
m States (S):
All environmental states.
m Observations (O):

Partial information the agent receives (e.g., RGB-D images).
m Actions (A)

e
m Rewards (R) l-—[ Agent } 1
= Transitions (T) Observation o; Reward 73
= Discount Factor (y) (partially observed) ’
L‘ Nt [ ]
il Environment

® To convert POMDP into MDP,

Action a;

estimate hidden states (i.e., belief states of HMM) from a history of observations.
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Taxonomy of RL algorithms

Model-based RL (Planning)

]
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MCTS (AlphaGo /
AlphaZero)
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Taxonomy of RL methods

® Model-free RL: agent learns optimal policies directly from interactions with the environment.
Simplicity, Flexibility to changes in the environment

€ Poor sample efficiency, Responding to unexperienced states, Lack of planning

® Model-based RL (Planning): utilizes an environment model where the agent lives

(the model can be given naturally, or it can be learned from data)
Sample efficient learning, Planning capability

€@ Risk of model accuracy and bias
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Characteristics of Reinforcement Learning

® \What makes RL different from other machine learning paradigms?

m No supervisor, only a reward signal
m Feedback is delayed, not instantaneous

m Time matters
* agent’s actions affect the subsequent data it will receive

* collected data is sequential = not i.i.d. (independent and identically distributed)
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Application of RL for Robot Arm Tasks (1)
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Learning-based Initialization of Trajectory Optimization
for Path-following Problems of Redundant Manipulators

Min-Sung Yoon, Min-Cheul Kang, Dae-Hyung Park, Sung-Eui Yoon
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Problem Statement of Path-following Problems

® Generate a joint trajectory precisely following a given 6-dimensional Cartesian path (i.e., target path) with
an end-effector.

]
M\ Target path: ‘Zigzag’
Target path: ‘Square’

Target path: ‘Hello’
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Relationship with IK Problem of Path-following Problems

—
Target pose Target path: a sequence of target poses

Z-axis

X-axis

Inverse kinematics (IK) problem: Path-following problem:
Target pose = Configuration Target path = Joint trajectory
x € R® q € R¢ X =1{x0,....,xy_1} &=1{qo, -, qn-1} 47

Objectives and constraints

* End-effector matching
* Collision avoidance

%} 14 °
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Redundant Manipulators

® Redundant manipulators have an infinite number of Inverse kinematics (IK) solutions given a single end-
effector pose.

Redundancy in joint space
- Redundant motion
- Null-space motion

[ Inverse kinematics (1K) solutions given a pose ]
(Fetch robot manipulator has 7 degree of freedom)

V 15
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Approaches for Path-following Problems

Sampling-based approaches

[Holladay et al. 2019, Praveena et al. 2019, Rakita et al. 2019, ...]

Optimization-based approaches

[Kang et al. 2020, Schulman et al. 2013, Zucker et al. 2013, ...]

 Variable: a whole joint trajectory, & = {qq, ..., qn-1}
* Obijective function:

U(&) — Fpose(é) +)~1‘Fobs(§) +)~2]:smooth(§)7

Target path

IK samplin
IK solutions PIng

= configurations _
Feasible edge

I

Infeasible edge

AN
\ )

L@ Quite fast convergence speed
[Discrete configuration graph] £ 1 Sensitive to the initial trajectory

@@ Asymptotically optimal
E(;I Slow convergence speed, high computational burden

e

Still susceptible to poor local minima
| with a practical time constraint ..
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Overview

The robot must follow the target path given a fixed end-effector orientation.

Linear Greedy xangetal. 2020]

Gen. time: 0.06 s Gen. time: 2.56 s

Trajectory optimizer (TO)

E—(;l Fail... \/Discontinuous El;l Fail... \/Discontinuous

Opt. time: 50.0 s (max)

Opt. time: 50.0 s (max)
17

RL-ITG (ours)

Gen. time: 0.16 s

Opt. time: 0.25 s
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Solution: Learning-based Initial Trajectory Generator

ﬂ arget path X (Task space € SE(3)) (Configuration space € R%)
/\\\\ [ ]

Initial trajectory §;, ;.

\ Xi+1 Yi+K
. Local tareet . Trajector
Path-following ocd arlge poOSES Sinit ° .j . .y
E— ptimization
problem % (TO)
) %+ Robot states

_;&J]

l:‘:‘. 'i
s

==
R RO~
| | X < 2 :/,
" 3-D occupancy map /

Learning-based Initial Trajectory Generator (ITG)

\_
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Solution: RL-based Initial Trajectory Generator (RL-ITG)

® Training Pipeline
Randomly generated path-following problems

L Start configurations q, Target path X Occupancy grid map
Trajectory optimizer ] Example-guided RL
[Kang et al. 2020] ..' [Peng et al. 2018]
with Greedy initialization -— . .
) RL: Reinforcement Learning
Sub-optimal

trajectory data §@emo
19
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Solution: RL-based Initial Trajectory Generator (RL-ITG)

U(E) Objective function

4

A

Greedy initialization

-
=g
AN

Trajectory optimizer

Example-guided RL
[Peng et al. 2018]

* Too large
e Less pri abput task-space constraints in the joint space..
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Solution: Initial Trajectories ¢;.,;; generated by RL-ITG

® Benchmark: ‘Square’ ‘S’ ‘Random w/ obstacle’

‘Hello’

End-effector trace

Target path

V
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Results: Real-world Experiment

X6
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+ Total execution time: 00:46.76 .\ 01:43.16 (min:sec)

about 220% faster than Greedy
* Average pose error: 2.85 x 103 4.28 x 103
with RL-ITG (ours) with Greedy

v Benchmark name: ‘Random #64’ | Trajectory optimizer: TORM [Kang et al. 2020]
S>R<} > KI.\IST




Results: Real-world Experiment

X2

robotics ) |
i /.

 Total execution time: 00:15.23 01:28.01 (min:sec)

* Trajectory jerkiness: 576.729 [\about 350% smoother than Greedy 2023.25  ("*Vsec)
with RL-ITG (ours) with Greedy

about 187% faster than Greedy

N Benchmark name: ‘S’ | Trajectory optimizer: TORM [Kang et al. 2020]
S>R<} )3 _KI.\IST




Take-Home Message

* Hybrid frameworks integrating learning and planning is an important
strategy that works in a complementary manner.
- Improves accuracy and efficiency by combining the two approaches.

N\
Learning-based methods oo Optimization-based methods
Tls > may struggle with high-
- may not guarantee optimality dimensional and non-convex

problems

- but find optimal solutions
around starting point by
iterative refinement.

- but offer a good starting point
for optimization quickly.
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Application of RL for Robot Arm Tasks (2)
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Towards Safe Remote Manipulation: User Command Adjustment based
on Risk Prediction for Dynamic Obstacles

Min-Cheul Kang, Min-Sung Yoon, Sung-Eui Yoon
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Remote manipulation

® Performs sophisticated or hazardous tasks on behalf of humans

® Expands to irregular environments around us

Surgical robot for sophistication Convenience store

V. https://www.intuitive.com/ 26
%} https://tx-inc.com ) KAIST




Motivation

® A robot accident can be a significant threat.
® A user observes a restricted environment through a camera.

— A user may not be aware of obstacles.

Example of a robot accident Restricted environment information

V 27
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Problem

® Avoiding dynamic obstacles depends on a user's judgment.

® \We need a method to avoid the risk of dynamic obstacles.
m The method should minimize the delay of remote manipulation.

Safe
command

o
Non-risky situation Risky situation

s .
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Ax,: user command Ax,: adjusted command

Ax: obstacle avoidance command x,: end-effector pose for Ax,
SyStem flow p: predicted risk for dynamic obstacles

Adjusted command
Ax, = (1 — p)Ax, + pAx,

Risk Prediction Network
(RPN)

Occupancy grid

Obstacle Avoidance
Command Network (OACN)

Joint positions
SIG 29 KAIST




Experimental setup

®\We constructed a system for performing a remote manipulation task.

Predicted risk
0.963000

S | User’s monitor screen
ﬁ%

, .
S>X<} User’s remote environment 20 KAIST




Real robot experiment

Moving to ple the water bottle
——p User command 3 Adjusted command
Risk: 0.001300 *
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Real robot experiment

Moving to transfer the water bottle

=) User command -4 Adjusted command
Risk: 0.002500 e
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Application of RL for Quadruped robots

Enhancing Navigation Efficiency of Quadruped Robots |~ A Al
via Leveraging Personal Transportation Platforms RS, s

Min-Sung Yoon, Sung-Eui Yoon

Learning-based Adaptive Control of Quadruped Robots for Active
Stabilization on Moving Platforms

IROS '24
ABU DHABI

Min-Sung Yoon, Heechan Shin, Jeil Jeong, Sung-Eui Yoon

Korea Ad d Institute of
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Recent Progress of Quadruped Robots

| 0.5Tm(2x Robot Height)

(Xuxin Cheng, et al. 2024)

(Choi, Suyoung, et al. 2023)

Traversing Challenging Terrains
34

Agile Locomotion
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Battery Limitation of Legged Robots

Unitree B2’s Battery Spec. Unitree Go1’s Battery Spec.
e Battery Life: 4 ~ 6 hours e Battery Life: ~ 2.5 hours
Battery Capacity: 45Ah (2250 Wh) -  Battery Capacity, 6Ah (133.2Wh)
Standard Voltage: 50.4V -  Standard Voltage: 22.2V

Actual running time is way more below...

s>‘é<; 35 KAIST




Motivation: Human Mobility Augmentation

® Humans Use Transporters to Move Farther and Faster.

o
i ﬂ_ Transporter Riding l .. (

B

[
Goal Location

' Running J

Energy consumption
' of each modality

, -
~
» J
S

-—-—
=~
Y S -

Segways Hoverboards
Skateboards

V, 36
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Beyond Footsteps: Transporter-Riding Skills

® Legged animals, like dogs, instinctively use transporters to improve mobility and reduce
energy use.

38 KAIST




Research Goal

® \We aim to ensure that quadruped robots adeptly utilize transportation platforms, also
known as transporters, for efficient long-range navigation.

Transporter Riding
Demonstration

TP~ <
Y/ altr

-'

| -" ! _-.-__.__-.

-k
:‘-\
o

3 B @ Driving Path

A

Transporter A

Time =0 ~1s —

39
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Main Contribution

® We introduce RL-ATR (Reinforcement Learning-based Active Transporter Riding method).
m Built a simulation with transporter dynamics for reinforcement learning.

m Trained a transporter riding policy.
m Added state estimators for stability in non-inertial frames (moving platforms).

I

|
(I) Transporter o
Simulation Environments

Proprioceptive Observation === o

: _ : States, Rewards (3)PPO Algorithm
Policy iy ' 4+
- Body linear acceleration - Joint positions & velocities X Gmdmm ”(Eq 14
- Body angular velocity - Previous action Encode, . =

~

é States - Body roll & pitch angles - Velocity commands ene
£ » | . . . 4 ﬂ‘l‘ain] zint
E i Privileged Information x =1
o > | N int Regulation &
2 ! | Intrinsic Parameters = x'"'@—— R ion Loss
2 " ! . I egression Losses Actor b,
g ! - Payload mass - Shifted CoMs Dtring;e est. (Eq. 15) ackhope
I = 1 - Platform mass - Friction Coef. int
" = =1 . . €5 —
Rewards = S I - PD controller stiffnesses & dampings Deolor —
\ 4 ’ S w I - Self-Balancing stiffnesses & dampings [Deployment] 3
. 0 2 | - . . t
(2)  Grid Adaptive S | 1 | Extrinsic States X7 i\ X"
—_— I
Command Schedullng g = - Foot contacts - Body linear velocity Resression loss a=Aq
2 e, 20 PrlCuw : - Transporter linear and angular velocities Extri Insic ggy. gres: (Eqg. ‘llb ]I Action
- 1 - Relative deviations ext (50 Hz)
Cv,w .|v | % €4 —— z
. . . BE= g s
‘ ) Proprioceptive History —— o070 X
— | o =[0; 1,0, 2,....0,_z] s 3. .
N o — | ' « (4) Active Transporter Riding Policy 7T¢
( K : episode index) —
40
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Experimental Result

Wheel-legged Loco.

Legged Loco. ' porter Riding (type2)




Experimental Result

Distribution of Cost of Transport (CoT) values measured during the path tracking tasks

100m sine path (5m amp, 50m wave)

I | |
[ Legged Locomotion (Mean: 0.3050)
Bl Wheel-Legged Locomotion (Mean: 0.1577)
251 B Type-1 Transporter Riding (Mean: 0.0376)
[ Type-2 Transporter Riding (Mean: 0.0428)
1 I
20 - | |
| |
2 | |
-a 15 ]
3 I ]
Q I I
I I
10 - I [
I I
| I
5 I
. s
0.0 0.1 0.2 0.3 0.4 0.5

Cost of Transport (CoT)
42

KAIST




Summary

® Covered basics of RL and its applications to robot arms and quadrupeds.
® RL enables diverse real-world tasks, showing broad applicability.
® Reward engineering is often needed to guide desired behavior.

® Despite these challenges, RL offers unique and powerful capabilities.
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