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Branches of Machine Learning



Agents in Reinforcement Learning
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Robots
(embodied AI)

DeepSeek-R1-Zero
: Boost a reasoning capability

trough RL

Language model
(software)



Reinforcement Learning 

 Reinforcement learning is a type of machine learning where agents learn optimal 
behaviors through trial and error interactions with an environment.
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Task: extinguish the fire



Agent and Environment

 At each time step 𝑡𝑡, the agent:
■ Executes action 𝐴𝐴𝑡𝑡
■ Receives observation 𝑂𝑂𝑡𝑡 (sensing)
■ Receives scalar reward 𝑅𝑅𝑡𝑡

 The environment:
■ Receives action 𝐴𝐴𝑡𝑡
■ Emits observation 𝑂𝑂𝑡𝑡+1
■ Emits scalar reward 𝑅𝑅𝑡𝑡+1
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Agent (robot)

Environment
(physics simulation, real world, or world models)



Markov Decision Process (MDP)

MDP is a formal mathematical modeling of RL problem, defined by a 5-tuple.
■ States (S): All information describing the agent's situation.
■ Actions (A): Available choices the agent can make in each state.
■ Rewards (R): Immediate (positive or negative) feedback for an action taken in a state.
■ Transitions (T): Probabilities of moving between states after actions.
■ Discount Factor (γ): Reduces the value of future rewards compared to immediate ones.
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State 𝑠𝑠𝑡𝑡
(fully observed)

Reward
𝑟𝑟𝑡𝑡

Action
𝑎𝑎𝑡𝑡



Optimization objective of RL

 The goal of RL is to find an optimal “policy (agent) 𝜋𝜋∗” which produces the action 
maximizing the discounted expected future rewards at each state.
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𝜋𝜋∗ = 𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝜋𝜋 𝐽𝐽 𝜋𝜋

𝐽𝐽 𝜋𝜋 = 𝐸𝐸𝑎𝑎~𝜋𝜋 𝑠𝑠 ,𝑠𝑠′~𝑇𝑇(𝑠𝑠,𝑎𝑎)[∑𝑡𝑡=0∞ 𝛾𝛾𝑡𝑡𝑅𝑅(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′)]

Arrows are induced optimal 
actions at each state
(-1 rewards at each step, except 
when reaching the goal state)



Partially Observable Markov Decision Process (POMDP)

 POMDP is an extension of MDP, where an agent cannot fully observe the entire state of 
the environment. 
■ States (S): 

 All environmental states.
■ Observations (O): 

 Partial information the agent receives (e.g., RGB-D images).
■ Actions (A)
■ Rewards (R)
■ Transitions (T)
■ Discount Factor (γ)

 To convert POMDP into MDP,
estimate hidden states (i.e., belief states of HMM) from a history of observations.
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Observation 𝑜𝑜𝑡𝑡
(partially observed)

Reward 𝑟𝑟𝑡𝑡 Action 𝑎𝑎𝑡𝑡



Taxonomy of RL algorithms
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Model-free RL

Model-based RL (Planning)



Taxonomy of RL methods

 Model-free RL: agent learns optimal policies directly from interactions with the environment.

■ Simplicity, Flexibility to changes in the environment

■ Poor sample efficiency, Responding to unexperienced states, Lack of planning

 Model-based RL (Planning): utilizes an environment model where the agent lives

(the model can be given naturally, or it can be learned from data)

■ Sample efficient learning, Planning capability

■ Risk of model accuracy and bias

10 Environment model examples



Characteristics of Reinforcement Learning

 What makes RL different from other machine learning paradigms?

■ No supervisor, only a reward signal

■ Feedback is delayed, not instantaneous

■ Time matters

 agent’s actions affect the subsequent data it will receive

 collected data is sequential  not i.i.d. (independent and identically distributed)
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Learning-based Initialization of Trajectory Optimization
for Path-following Problems of Redundant Manipulators

Min-Sung Yoon, Min-Cheul Kang, Dae-Hyung Park, Sung-Eui Yoon

Application of RL for Robot Arm Tasks (1)



Problem Statement of Path-following Problems

Generate a joint trajectory precisely following a given 6-dimensional Cartesian path (i.e., target path) with 
an end-effector.
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Target path: ‘Hello’ 
Target path: ‘Square’ 

Target path: ‘Zigzag’ 












Target path: a sequence of target poses

Path-following problem:
Target path  Joint trajectory

𝑿𝑿 = {𝒙𝒙𝟎𝟎, … ,𝒙𝒙𝑵𝑵−𝟏𝟏} 𝝃𝝃 = {𝒒𝒒𝟎𝟎, … ,𝒒𝒒𝑵𝑵−𝟏𝟏}

Inverse kinematics (IK) problem:
Target pose  Configuration

𝒒𝒒 ∈ ℝ𝒅𝒅𝒙𝒙 ∈ ℝ𝟔𝟔

• End-effector matching
• Collision avoidance
• … 

Objectives and constraints

Target pose

x-axis

z-axis

y-axis

Relationship with IK Problem of Path-following Problems
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Redundant Manipulators

Redundant manipulators have an infinite number of Inverse kinematics (IK) solutions given a single end-
effector pose.
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Redundancy in joint space
 Redundant motion
 Null-space motion

[ Inverse kinematics (IK) solutions given a pose ]
(Fetch robot manipulator has 7 degree of freedom)



Approaches for Path-following Problems
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Target path

𝑥𝑥𝑡𝑡−1

𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡+1

[Discrete configuration graph]

Sampling-based approaches

IK solutions
= configurations

Feasible edge

Infeasible edge

[Holladay et al. 2019, Praveena et al. 2019, Rakita et al. 2019, …]

Still susceptible to poor local minima 
with a practical time constraint ..

IK sampling 

- Asymptotically optimal
- Slow convergence speed, high computational burden

- Quite fast convergence speed
- Sensitive to the initial trajectory

Optimization-based approaches

• Variable: a whole joint trajectory, 𝜉𝜉 = 𝑞𝑞0, … , 𝑞𝑞𝑁𝑁−1
• Objective function:

[Kang et al. 2020, Schulman et al. 2013, Zucker et al. 2013, …]



Overview
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Linear Greedy RL-ITG (ours)[Kang et al. 2020]

TO

Gen. time: 0.06 s Gen. time: 2.56 s Gen. time: 0.16 s

Opt. time: 50.0 s (max) Opt. time: 50.0 s (max) Opt. time: 0.25 s

The robot must follow the target path given a fixed end-effector orientation.

Fail… Fail… Solved!

Trajectory optimizer (TO)

TO TO
Discontinuous 

motion
Discontinuous 

motion



Solution: Learning-based Initial Trajectory Generator
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Path-following 
problem

Trajectory 
optimization 

(TO)

𝜉𝜉𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 

Learning-based Initial Trajectory Generator (ITG)



Solution: RL-based Initial Trajectory Generator (RL-ITG)

 Training Pipeline
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Sub-optimal
trajectory data 𝜉𝜉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Randomly generated path-following problems

Trajectory optimizer
[Kang et al. 2020]

with Greedy initialization

Example-guided RL
[Peng et al. 2018]

RL: Reinforcement Learning



Solution: RL-based Initial Trajectory Generator (RL-ITG)
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?

8

Trajectory optimizer
[Kang et al. 2020]

Exploration

Explored a better local minimum

Sub-optimal trajectory region

Objective function

Example-guided RL
[Peng et al. 2018]

Greedy initialization

• Too large space..
• Less prior knowledge about task-space constraints in the joint space..



Solution: Initial Trajectories 𝜉𝜉𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 generated by RL-ITG

21

Benchmark:

‘Hello’ ‘Rotation’ ‘Zigzag’

Target path

End-effector trace

Avoid potential collisions utilizing redundant motion

‘Random w/o obstacle’

‘Square’ ‘S’ ‘Random w/ obstacle’



Results: Real-world Experiment
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x6x6

with Greedywith RL-ITG (ours)
Benchmark name: ‘Random #64’ | Trajectory optimizer: TORM [Kang et al. 2020]

( min: sec )01:43.16about 220% faster than Greedy
• Average pose error: 2.85 x 10-3 4.28 x 10-3

• Total execution time: 00:46.76



Results: Real-world Experiment
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x2x2

about 350% smoother than Greedy

• Total execution time: 00:15.23
( ⁄𝑟𝑟𝑎𝑎𝑑𝑑 sec 3 )

Benchmark name: ‘S’ | Trajectory optimizer: TORM [Kang et al. 2020]

about 187% faster than Greedy ( min: sec )

with Greedywith RL-ITG (ours)

01:28.01
2023.25• Trajectory jerkiness: 576.729



Take-Home Message
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• Hybrid frameworks integrating learning and planning is an important 
strategy that works in a complementary manner.
 Improves accuracy and efficiency by combining the two approaches.

 may not guarantee optimality

 but offer a good starting point 
for optimization quickly.

Learning-based methods Optimization-based methods
 may struggle with high-

dimensional and non-convex 
problems

 but find optimal solutions 
around starting point by 
iterative refinement.



Towards Safe Remote Manipulation: User Command Adjustment based 
on Risk Prediction for Dynamic Obstacles

Min-Cheul Kang, Min-Sung Yoon, Sung-Eui Yoon

Application of RL for Robot Arm Tasks (2)



Remote manipulation

 Performs sophisticated or hazardous tasks on behalf of humans

 Expands to irregular environments around us

26https://www.intuitive.com/
https://tx-inc.com

Surgical robot for sophistication Convenience store



Motivation

 A robot accident can be a significant threat.

 A user observes a restricted environment through a camera.

 A user may not be aware of obstacles.
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https://www.youtube.com/watch?v=mJ6I9thm-8s

Example of a robot accident Restricted environment information



Problem

 Avoiding dynamic obstacles depends on a user's judgment.

We need a method to avoid the risk of dynamic obstacles.
■ The method should minimize the delay of remote manipulation.

28

Dynamic 
obstacles

User command

Non-risky situation

Static obstacles

Risky situation

Stop Safe 
command
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∆𝑥𝑥𝑢𝑢: user command
∆𝑥𝑥𝜋𝜋: obstacle avoidance command
�𝜌𝜌: predicted risk for dynamic obstacles

User command

Occupancy grid

Joint positions

IK solver

Risk Prediction Network
(RPN)

Obstacle Avoidance 
Command Network (OACN)

Adjusted command
∆𝑥𝑥𝑎𝑎 = 1 − �𝜌𝜌 ∆𝑥𝑥𝑢𝑢 + �𝜌𝜌∆𝑥𝑥𝜋𝜋++

1 − �𝜌𝜌

�𝜌𝜌
∆𝑥𝑥𝜋𝜋

∆𝑥𝑥𝑢𝑢

∆𝑥𝑥𝑎𝑎

𝑥𝑥𝑎𝑎
= 𝑥𝑥𝑐𝑐𝑢𝑢𝑟𝑟 + ∆𝑥𝑥𝑎𝑎

∆𝑥𝑥𝑎𝑎 𝑥𝑥𝑐𝑐𝑢𝑢𝑟𝑟

∆𝑥𝑥a: adjusted command
𝑥𝑥a: end-effector pose for ∆𝑥𝑥aSystem flow



Experimental setup

We constructed a system for performing a remote manipulation task.
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Real environment

User’s remote environment

User’s monitor screen

User command

Adjusted
command

Predicted risk



Real robot experiment
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Real robot experiment
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Enhancing Navigation Efficiency of Quadruped Robots
via Leveraging Personal Transportation Platforms

Min-Sung Yoon, Sung-Eui Yoon

Application of RL for Quadruped robots

Learning-based Adaptive Control of Quadruped Robots for Active 
Stabilization on Moving Platforms

Min-Sung Yoon, Heechan Shin, Jeil Jeong, Sung-Eui Yoon



Recent Progress of Quadruped Robots
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Traversing Challenging Terrains Agile Locomotion

(Choi, Suyoung, et al. 2023)

(Xuxin Cheng, et al. 2024)

Running (up to 6.5 m/s)(Shin, Young-Ha , et al. 2023)

(Tairan He , et al. 2024)



Battery Limitation of Legged Robots
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Motivation: Human Mobility Augmentation
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Beyond Footsteps: Transporter-Riding Skills
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 Legged animals, like dogs, instinctively use transporters to improve mobility and reduce 
energy use.



We aim to ensure that quadruped robots adeptly utilize transportation platforms, also 
known as transporters, for efficient long-range navigation.

Research Goal

39



We introduce RL-ATR (Reinforcement Learning-based Active Transporter Riding method).
■ Built a simulation with transporter dynamics for reinforcement learning.
■ Trained a transporter riding policy.
■ Added state estimators for stability in non-inertial frames (moving platforms).

Main Contribution

40



Experimental Result
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Legged Loco.

Wheel-legged Loco. Transporter Riding (type1)

Transporter Riding (type2)



Experimental Result
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Distribution of Cost of Transport (CoT) values measured during the path tracking tasks



 Covered basics of RL and its applications to robot arms and quadrupeds.
 RL enables diverse real-world tasks, showing broad applicability.
 Reward engineering is often needed to guide desired behavior.
 Despite these challenges, RL offers unique and powerful capabilities.

Summary

43



Thanks

Any Questions?
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