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Class Obiectives

e Data-driven RL
e Offline RL algorithms
e Online finetuning from offline initializations
e Making all this work with big scalable models (unclear yet)
e Covered in draft of my book

Data-driven RL
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From Modern data-driven Al (Estimation) to
Goals: Rethinking Foundation Models
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Emergent Behavior in RL vs. Human-Like
Imitation in Data-Driven Models

Impressive because no person had Impressive because it looks like
thought of it! something a person might draw!

01:33:54
01:38:39

“Move 37" in Lee Sedol AlphaGo match: reinforcement
learning “discovers” a move that surprises everyone
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So, where are we now?

Data-Driven Al Reinforcement Learning

Sk
+ learns about the real world from data + optimizes a goal with emergent behavior
- doesn’t try to do better than the data - doesn’t make use of real-world data
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The ReciEe?

data-driven
offline RL pretraining

fast, safe RL
finetuning _
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What can we accomplish when combining data

and oEtimization?

Data-driven RL algorithms

Robotic foundation models and RL

RL with generative models

SGVR Lab

7 KAIST



What do we need to figure out?

Data-driven RL

h'.h s ;ﬁ

* Online, lifelong learning process * Offline pretraining + online finetuning
« Starts from scratch * Always start from data
* Largely trial and error driven * Largely representation learning driven
* Central problems: * Central problems:

* Exploration * Distributional shift

* Sample efficiency * Scalability and stability

* Optimization performance * Representation learning with big models

SGVR Lab
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To break this down..

Data-driven RL
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* Offline pretraining + online finetuning
* Always start from data
* Largely representation learning driven
* Central problems:
* Distributional shift
» Scalability and stability
» Representation learning with big models

1. Offline RL algorithms

2. Online finetuning from
offline initializations

3. Making all this work
with big, scalable models

We understand
this pretty well

We understand
this a little

We hardly
understand this
at all
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What do we eerct offline RL to do?
D mo
M | A -® || @ - c “Macro-scale” stitching

'
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But this is just the clearest example!

“Micro-scale” stitching: —O@Q(}G
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Off-EoIicx RL: a guick Erimer

-
RL objective: max Z Es, a,~x|r(st,at)]
m

t=1

-
action: a Q-function: Q™ (s;,a;) = Z Es,, a, ~x[r(se,ay)|se, ay]
a ~ 7(als) t/=t |

w(als) =1 if a = arg max Q" (s,a)

Q*(s,a) =r(s,a) + max Q*(s',a)

state: s enforce this equation at all states!
reward: r(s,a) L I ol \T)\2
minimize ) _;(Q(si,a;) — [r(si, a;) + maxy Q(s;, a;)])

SGVR Lab

11 KAIST



Some ErinciEIes for offline RL
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Q(5.2) ¢ 7(5,8) + Buvror,. [Q(S, )]
I

y(s,a)

expect good accuracy when mg(als) = mpew(als)
even worse: Mpew = argMaXy Ear(als)[Q(S,a)]

Adversarial Noise

“panda* “gibbon”

"Stabilizing Off-Policy Q-Learning via
Bootstrapping Error Reduction”
1> NeurlPS 2019

what is the objective?
Hgl'l E(s,a)~ms(s,a) [(Q(S a) — y(s, a))Q]

_ / _ target value
behavior policy

how often does that happen?

HallChertal-v2: AverageReturn HaliChevtah-v2: log Q)

|||||

L] i T v
BOK 02K 04k 06K 08k 10K 0K 2K 04k LGk 5K 10K
TrainSteps TrasnSteps

how well it thinks
it does (Q-values)

how well it does
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Some ErinciEIes for offline RL

» Many different methods, similar principles seem to be effective:

use value-based methods (i.e., Q-learning or Q-function actor-critic) somehow fix the distributional shift problem

Dy (m(als)||ms(als)) < e

b . ; / _

pessimism (e.g., CQL) policy constraints (e.g., BRAC) avoid OOD actions in updates
(e.g., AWAC, IQL)

SGVR Lab
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Conservative Q-learnin

- HalfCheetah-v2: AverageReturn ) HaliChectab-v2: log(Q) ‘
-:‘“ = = | (NN} — _'_'_‘_,_] O
1 15 __',..-"'a
||-:I|” K 02K 0K O6K OSK 100 h F
TrainSicts X_
how well it does how well it thinks

it does (Q-values)

Qﬂ = arg 1‘1511 max aEg.p a~r(als)|@(S,a)] — aEsanp|Q(s, )] ]—- term to push down big Q-values
w

regular objective { +E(s,a,61)0 [(Q(s, a) — (r(s,a) + Ex[Q(s, a’)]))z]

"Conservative Q-Learning for Offline Reinforcement Learning." SGVR Lab
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What about online finetuning?

-~

Q™ = arg ngn max aFs.p a~r(als)(Q(s;:2)] — aEsanp[Q(s, a)]

T an~D [(Q(S’ a) — (r(s,a) + Ex [Q(s’,a’)])):z]

this period wasted recovering
offline performance
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online training starts here (at 50k steps)
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Fast Sample-Efficient Online Fine-Tuning

A

Oracle

‘J Calibrated [ours]
[ ] Prior Algorithm 1
Prior Algorithm 2

Policy Unlearning in Online Fine-Tuning

Return

Offline Pre-training- Online Fine-Tuning

Success Rate
o o o o -
b N o %0 o
1 1 | 1 1

o
o
]

0.0 0.5 1.0
Environment Steps x 10°
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Simele solution: Calibration

Key idea: need to put the offline-trained value function on the right scale

(we refer to this as calibration)

Calibration: learned values upper bound the values of some real policy

Conservatism: learned values lower bound the values of the learned policy

How do we ensure that our Q-function is calibrated?

before: now:
m(gin mfx aEst,awrr(a|s) [Q(S: a)] mﬂén mﬁ?x aEst,awrr(a|s) [ma‘X{Q(SS a)ﬁ V.M(S)}]
o how to get thi ?/
V™ (s) &~ Y 2" T'r(se,ap) dadad it
t'=t
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The method: Cal-QL

Calibration: learned values upper bound the values of some real policy

Conservatism: learned values lower bound the values of the learned policy

ensures “conservatism” ensures “calibration”
Q" = arg min max aEg D a~r(als)(max{Q(s,a), V™7 (s)}| — aFsa~p[Q(s,a)]

Q
ennren [(268) (o) B

Cal-QL: Calibrated Offline RL Pre-Training for Efficient
Online Fine-Tuning, NeurlPS 23 i(%?ﬁ'lk')



How about working with big models?

DT (200M) MT Impala-DON®
DT {a0M) Scaled QL (OQurs, 80M)

X‘ BC ===« Behavior Policy
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The reEresentation Iearning mxste[x

* Seems to be annoyingly hard to make this work with large transformer models
* Seems to require larger models with more capacity than we might expect (from, e.g., imitation learning)

Something about RL (i.e., TD learning) seems “harder” than supervised learning

Breakout action resampled from data distribution

(73]
(=

s ‘/instability

gzo‘ — Q(s,a) + r(s,a) + q-Eaf,“,{“)[Q(s’.a’)]

§‘°' — Q(s,a) « r(s,a) +vQ(s',a’)

) 05 = action is always exactly the action in the dataset

- TD learning updates value functions based on the

L3 ‘ searos.ay difference between the predicted value and a

240 ’ ’ . T

e new, partially observed value—hence, “temporal
Gradient Updates (x 62.5k) difference.”

"DR3: Value-Based Deep Reinforcement Learning Requires Explicit ]

Regularization* NeurlPS 2021 =T
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B =
* Offline RLis an essential component of data-driven RL S v £ —of -
* We must handle the distributional shift between the offline data R . 3T @ |
distribution and the new policy o X o
1.00 4 [
* Online RL finetuning from offline initializations presents new s 0.75 2 10-
challenges & 3 0]
* We must be able to finetune via online RL without losing the 5 - g
benefits of the offline initialization T <
(LIN) A | ' ’ —40) - . . ;
| 0 100000 200000 0 100000 200000
Training Steps Training Steps
* Doing this with large models presents yet more challenges ot et %
* Harder to make RL algorithms as scalable as supervised learning § i o ; %g !
algorithms :
M’f‘l’i\:‘:‘:ﬂ H f
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Next Time

e Robotics foundation models

22
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Homework

e Come up with one question on what we have discussed today
e Write a question two times before the mid-term exam

e Browse two papers
e Submit their summaries online before the Mon. Class
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