CS686: Robot Motion Planning and Applications

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/MPA

About the Instructor

Joined KAIST at 2007

- Enjoying a lot reading, writing, listening, talking, thinking, and motivating students to create something useful for our society
- Main research focus
 - Handling of massive data for various computer graphics and geometric problems

Welcome to CS686

Instructor:	Sung-eui Yoon
Email:	sungeui@gmail.com
Office:	3432 at CS building

Class time: 4:00pm – 5:15pm on TTh Class location: 3445 in the CS building Office hours: Right after class Course webpage: <u>http://sglab.kaist.ac.kr/~sungeui/MPA</u>

TA

김동혁(Dong-hyuk Kim): 2nd year PhD student

donghyuk.kim@kaist.ac.kr

E3-1, 3440

Real World Robots

Da Vinci

Courtesy of Prof. Dinesh Manocha

Motion of Real Robots

Albert HUBO Introduction - korea scienceworld

Humanoid Robot: http://www.youtube.com/watch?v=ZkYQWBXpk_0

Motion of Real Robots

Autonomous robot vision 1

Autonomous robot http://www.youtube.com/watch?v=3SQiow-X3ko

Motion of Real Robots

Robot-Assisted Radical Prostatectomy

Medical robot: http://www.youtube.com/watch?v=XfH8phFm2VY

Open Platform Humanoid Project: DARwIn-OP

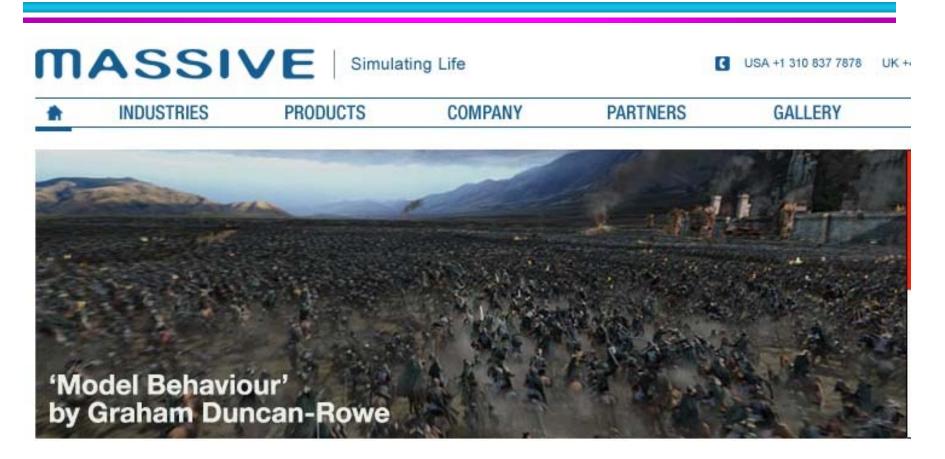
http://www.youtube.com/watch?v=0FFBZ6M0nKw

TurtleBot

http://www.youtube.com/watch?feature=pl ayer_detailpage&v=MOEjL8JDvd0

Motion of Virtual Worlds

Motion of Virtual Worlds


Crowd simulation (biped) with AI implant video 1 of 2

Computer generated simulations: <u>http://www.youtube.com/watch?v=5-UQmVjFdqs</u>

Motion of Virtual Worlds

Computer generated simulations, games, virtual prototyping: http://www.massivesoftware.com/

Smart Robots or Agents

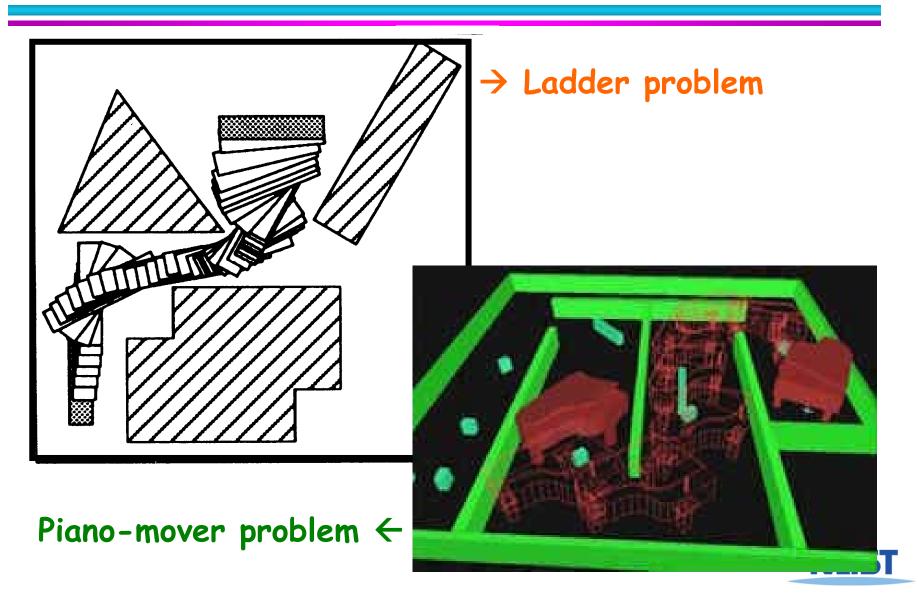
- Autonomous agents that sense, plan, and act in real and/or virtual worlds
- Algorithms and systems for representing, capturing, planning, controlling, and rendering motions of physical objects

• Applications:

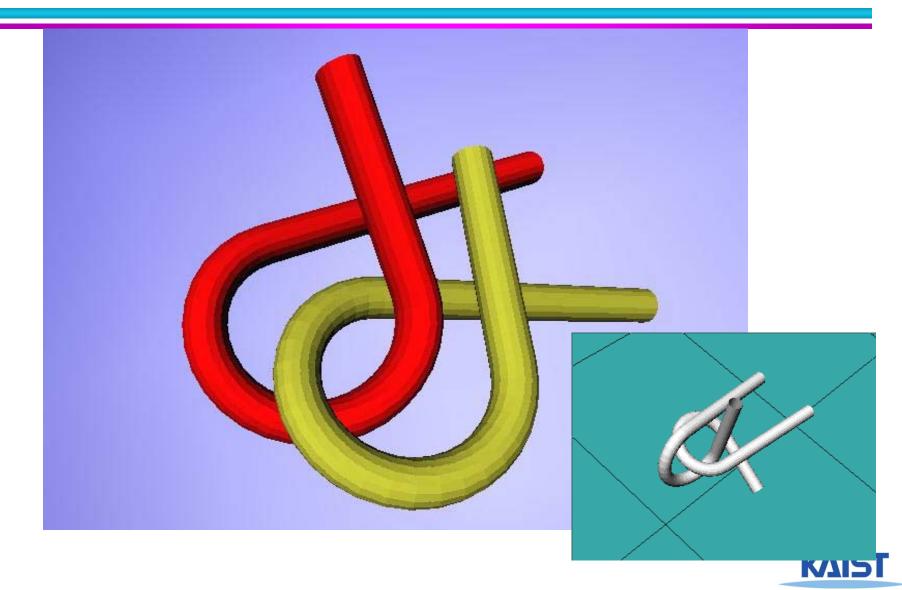
- Manufacturing
- Mobile robots
- Computational biology
- Computer-assisted surgery
- Digital actors

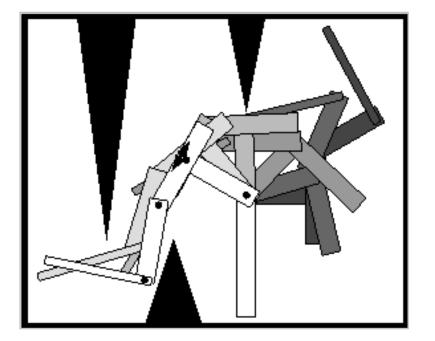
Goal of Motion Planning

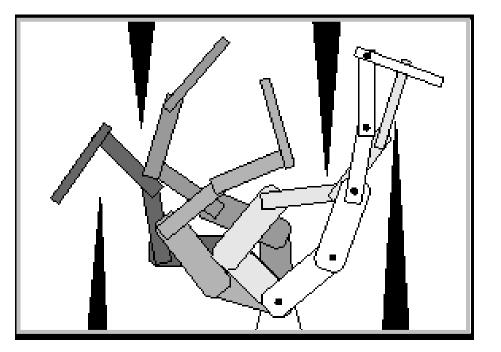
- Compute motion strategies, e.g.:
 - Geometric paths
 - Time-parameterized trajectories
 - Sequence of sensor-based motion commands
 - Aesthetic constraints
- Achieve high-level goals, e.g.:
 - Go to A without colliding with obstacles
 - Assemble product P
 - Build map of environment E
 - Find object O


Basic Motion Planning Problem

• Statement:


- Compute a collision-free path for an object (the robot) among obstacles subject to CONSTRAINTS
- Inputs:
 - Geometry of robot and obstacles
 - Kinematics of robot (degrees of freedom)
 - Initial and goal robot configurations (placements)
- Outputs:
 - Continuous sequence of collision-free robot configurations connecting the initial and goal configurations


Examples with Rigid Object



Is It Easy?

Example with Articulated Object

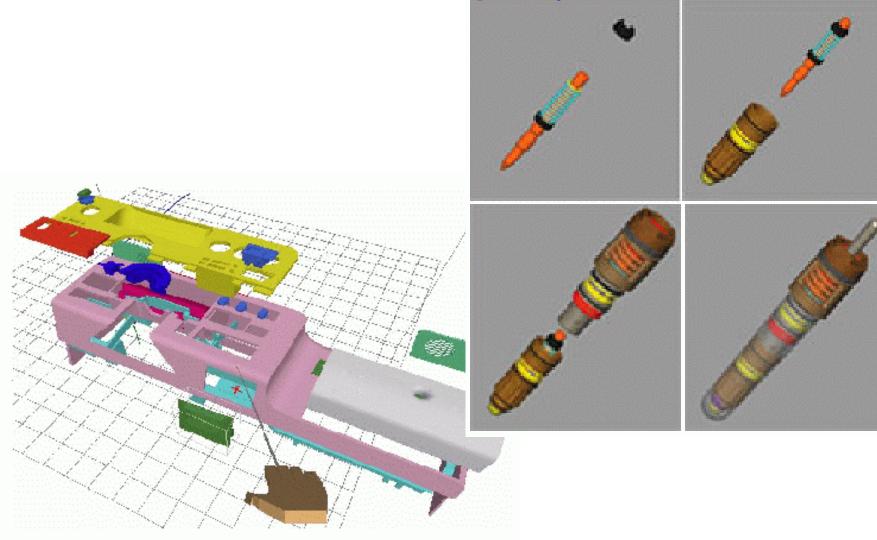
Some Extensions of Basic Problem

- Multiple robots
- Assembly planning
- Acquire information by sensing
 - Model building
 - Object finding/tracking
 - Inspection
- Nonholonomic constraints
- Dynamic constraints
- Stability constraints

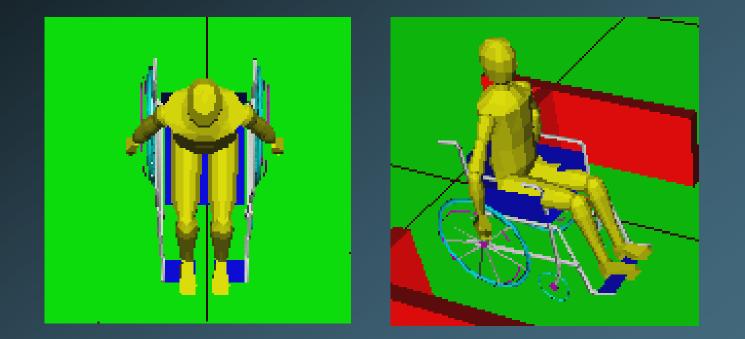
- Optimal planning
- Uncertainty in model, control and sensing
- Exploiting task mechanics (sensorless motions, underactualted systems)
- Physical models and deformable objects
- Integration of planning and control
- Integration with higher-level planning

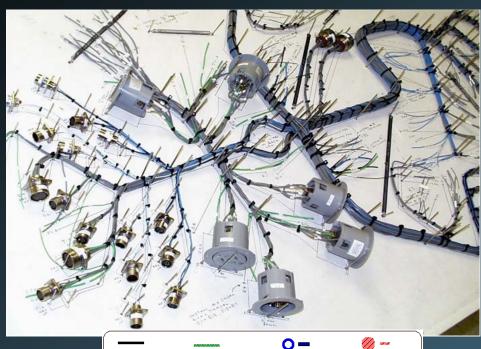
KAIST

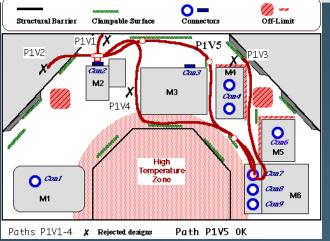
Examples of Applications


• Manufacturing:

- Robot programming
- Robot placement
- Design of part feeders
- Design for manufacturing and servicing
- Design of pipe layouts and cable harnesses
- Autonomous mobile robots planetary exploration, surveillance, military scouting

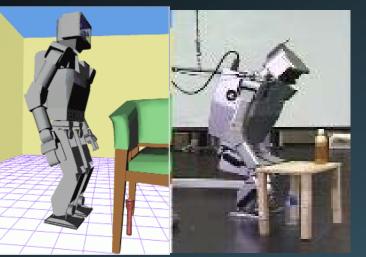

- Graphic animation of "digital actors" for video games, movies, and webpages
- Virtual walkthrough
- Medical surgery planning
- Generation of plausible molecule motions, e.g., docking and folding motions
- Building code verification


Assembly Planning and Design of Manufacturing Systems

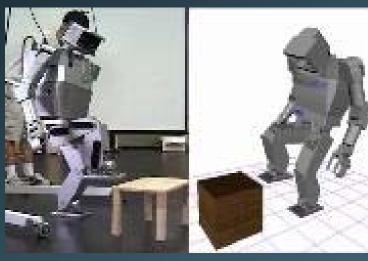


Application: Checking Building Code

Cable Harness/ Pipe design







[Kuffner and Inoue, 2000] (U. Tokyo)

Digital Actors

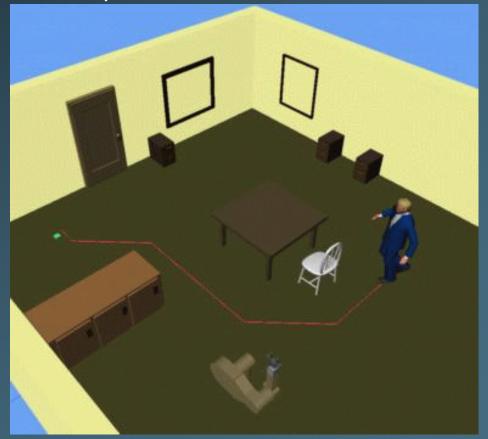
A Bug's Life (Pixar/Disney)

Toy Story (Pixar/Disney)

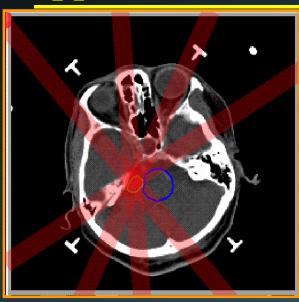
Antz (Dreamworks)

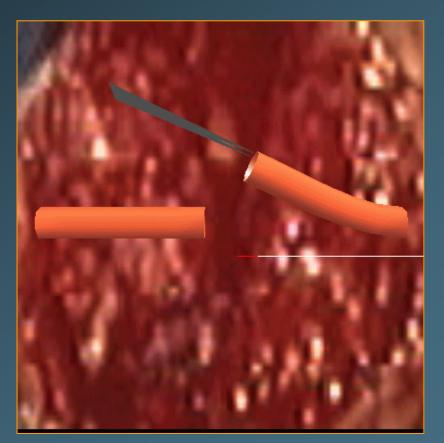
Tomb Raider 3 (Eidos Interactive)


The Legend of Zelda (Nintendo)

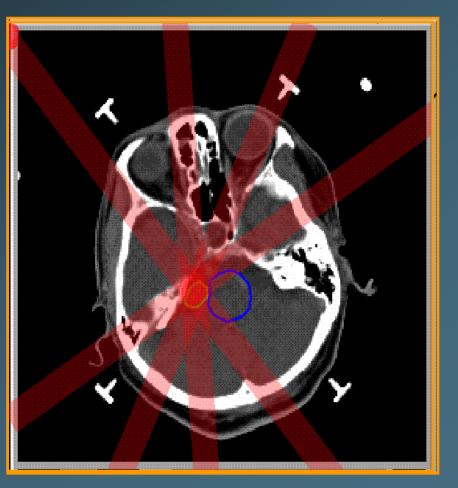

Final Fantasy VIII (SquareOne)

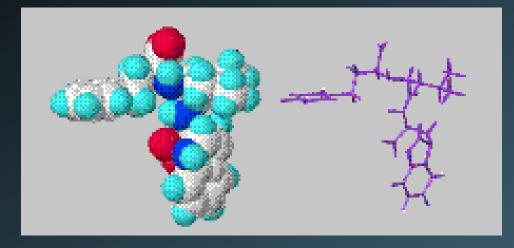
Motion Planning for Digital Actors

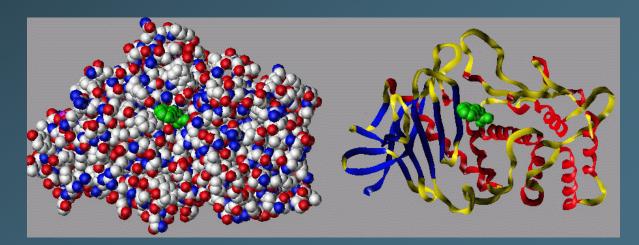

Manipulation

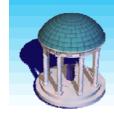

Sensory-based locomotion

Application: Computer-Assisted Surgical Planning




Radiosurgical Planning


Cyberknife



Study of the Motion of Bio-Molecules

Protein folding Ligand binding

DARPA Grand Challenge

Planning for a collision-free 132 mile path in a desert

DARPA Robotics Challenges, 2015

 Focus on disaster or emergency-response scenarios

From wiki

Google Self-Driving Vehicles

Car is the next IT platform

	WeeklyBiz -	[Weekly BIZ] 실리콘밸리는 '자동차 밸리'… 세계 1~8위 車 회사 모두 몰렸다			
		평로앨토쎌몬트(캘리포니아)=비훤석 기자 ws- ∨			
	기사	100자평 (0)		* 8 8 *	크게 🗌 💶 작가
	일력 : 2013.08.31 03	1:05			
	왜 실리콘밸리를 자동차는 갈수록		소프트웨어 기술 확보	! 필요	
	러브콜 받는 한	국 모바일 부품 업체			
	스마트폰과 연종	칠 시키는 작업 중 실	력 뛰어난 한국 업체S	와 연구 돌입	
인 판매	종고차아울렛 전, 중고차아울렛 w.jcoullet.co.kr ×			VOLKSWAGEN	
	3				2
	었다	다. ①스탠퍼드대가 있는 펠로 주드시티에 있는 전기차 업체	엘토에 위치한 GM 연구소 @	동차회사 연구소들이 속속 모여)별몬트의 폴크스비겐 연구소 @ 리콘밸리를 납북으로 관통하는 위선 기자	(B)

Prerequisites

- Programing skills
- Basic understanding of probability and geometric concepts
 - E.g., events, expected values, etc.
- Some prior exposure to robotics problems/applications/HWs
- If you did not take any prior course on robotics, this course is inappropriate for you
 - If you are not sure, please consult the instructor at the end of the course

Topics

- Underlying geometric concepts of motion planning
 - Configuration space
- Motion planning algorithms:
 - Complete motion planning
 - Randomized approaches
- Kinodynamic constraints
- Character motion in virtual environments
- Multi-agent and crowd simulation

The course is about motion planning algorithms, not control of real robots!

Course Overview

1/2 of lectures and 1/2 of student presentations

• This is a research-oriented course

• What you will do:

- Choose papers that are interesting to you
- Present those papers
- Propose ideas that can improve the state-ofthe-art techniques; implementation is not required, but is recommended
- Quiz and mid-term
- and, have fun!

Presentations and Final Project

• For each paper:

- Consider its main idea given its context
- Look at pros and cons of each method
- Think about how we can efficiently handle more realistic and complex scene
- Propose ideas to address those problems
 - Show convincing reasons why your ideas can improve those problems
 - Implementation is optional
 - Team of two (or three) is recommended

Course Awards

- Best speaker and best project
- For the best presenter/project, a small research related device will be supported

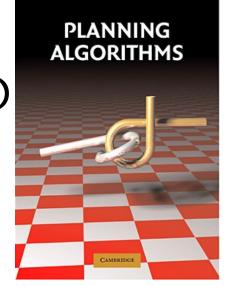
Course Overview

Grade policy

- Class presentations: 30%
- Quiz, assignment, and mid-term: 30%
- Final project: 40%
- Instructor (50%) and students (50%) will evaluate presentations and projects

Late policy

- No score
- Submit your work before the deadline!
- Class attendance rule
 - Late two times → count as one absence
 - Every two absences → lower your grade (e.g., A- → B+)


Resource

- Textbook
 - Planning Algorithms, Steven M. LaValle, 2006 (<u>http://msl.cs.uiuc.edu/planning/</u>)
- Technical papers
 - IEEE International Conf. on Robotics and Automation (ICRA)
 - IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS)
 - Robotics Science and Systems (RSS)
 - Bi-annual

• Work. on Algorithmic Foundations of Robotics (WAFR)

Int. Symp. on Robotics Research (ISRR)

Steven M. LaValle

Other Reference

Graphics-related conference (SIGGRAPH, etc)

http://kesen.huang.googlepages.com/

- Google or Google scholar
- UDACITY course:
 - Artificial Intelligence for Robotics

Ranking of Robotics-Related Conf. (among last 10 years)

- Based on last 10 years records among 2.3K conf.
- Name (rank): publications, citations
- ICCV (10): 1K, 23K
- CVPR (18): 3.5K, 42K
- IROS (59): 0.5K, 6.5K
- ICRA (75): 7K, 30K
- I3D (91): 0.2K, 3K
- RSS (missed): 0.1K, 1.2K (recent conf.)
- ISRR (missed): 0.1K, 1.2K

Ranking of Robotics-Related Journals

- Based on last 10 years records among 0.9K journals
- Name (rank): publications, citations
- TOG (1): 1.2K, 38K
- PAMI (5): 1.9K, 40K
- IJCV (7): 0.9K, 19K
- IJRR (65): 0.8K, 7K (IF '09: 1.993)
- TVCG(72): 1.2K, 8.6K
- CGF (83): 1.4K, 9.2K
- Trob (87): 1.1K, 7.6K (IF '09: 2.035)
- Autonomous Robot (missed): 2K, 13K
 (whole years) (IF '09: 1.2)

Honor Code and Classroom Etiquette

- Collaboration encouraged, but assignments must be your own work
 - Cite any other's work if you use their codes
- Classroom etiquette
 - Help you and your peer to focus on the class
 - Turn off cell phones
 - Arrive to the class on time
 - Avoid private conversations
 - Be attentive in class

Schedule

• Please refer the course homepage:

http://sglab.kaist.ac.kr/~sungeui/MPA

Official Language in Class

English

- I'll give lectures in English
- I may explain again in Korean if materials are unclear to you
- You are also required to use English, unless special cases

Homework

• Browse 2 ICRA/IROS/RSS/WAFR/TRO/IJRR papers

- Prepare two summaries and submit at the beginning of every Tue. class, or
- Submit it online before the Tue. Class

• Example of a summary (just a paragraph)

Title: XXX XXXX XXXX Conf./Journal Name: ICRA, 2015 Summary: this paper is about accelerating the performance of collision detection. To achieve its goal, they design a new technique for reordering nodes, since by doing so, they can improve the coherence and thus improve the overall performance.

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today and submit at the end of the class
 - 1 for typical questions
 - 2 for questions with thoughts or that surprised me
- Write a question more than 4 times on Sep./Oct.
 - Online submission is available at the course webpage

My Responses to Those Questions

- Identify common questions and address them at the Q&A file
- Some of questions will be discussed in the class
- If you want to know the answer of your question, ask me or TA on person
 - Feel free to ask questions in the class
- We are focusing on having good questions!
 - All of us are already well trained for answering questions

Homework

Read Chapter 1 of our textbook

• Optional:

 Motion planning: A journey of robots, molecules, digital Actors, and other artifacts.
 J.C. Latombe. Int. J. Robotics Research, 18(11):1119-1128, 1999

Next Time...

- Configuration spaces
- Motion planning framework
- Classic motion planning approaches

About You

Name

• Your (non hanmail.net) email address

- What is your major?
- Previous experience on motion planning and robotics

