Robust Robot Navigation Against Imperfect Sensor Data

Final Project Presentation

Team 1

Hyeongyeol Ryu,Minsung Yoon,Sebin Lee202033972020340820203474

Table of contents

- Introduction & Research goal
- Background
- Our approach
- Experimental Result
- Conclusion
- Role assignment

Table of contents

- Introduction & Research goal
- Background
- Our approach
- Experimental Result
- Conclusion
- Role assignment

Introduction

• These days, many mobile robots are around us

Mobile service robots

Introduction

- These days, many mobile robots are around us
 - Autonomous navigation is one of the essential abilities for them

Autonomous navigation using LiDAR

Introduction

- What if the robot cannot get perfect sensor data because of
 - Dynamic external disturbance

This might cause catastrophic actions in safety-critical tasks such as robot navigation in real-world

Research goal

• Goal: Propose robust navigation method dealing with imperfect sensor data

Modeling of imperfect sensor data & Joint learning with RL

Table of contents

- Introduction & Research goal
- Background
- Our approach
- Experimental Result
- Conclusion
- Role assignment

Background: Navigation

• Navigation (Global planning + Local planning)

Black Line: Global path Red Line: Navigation (Local planning)

Background: Actor-Critic

• Basic Concept of Reinforcement Learning

• Our goal is to find state/action maximizing Q value

$$Q^{\pi}(s_t, a_t) = \underline{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | s_t, a_t]$$

Q value for that state given that action

Expected discounted cumulative reward ...

given that state and that action

Background: Actor-Critic

• Actor-Critic in RL

- Actor: A player that decides on an action to take
- **Critic**: A coach that criticizes the action that the actor selected, providing feedback on how to adjust

- Actor: A player that decides on an action to take (Policy network)
- **Critic**: A coach that criticizes the action that the actor selected, providing feedback on how to adjust (Q-network)

Table of contents

- Introduction & Research goal
- Background
- Our approach
- Experimental Result
- Conclusion
- Role assignment

Our approach: Overview

- Key points:
 - Deep Reinforcement Learning
 - Various network architectures
 - Imperfect sensor data modeling

Our approach: Overview

- Key points:
 - Deep Reinforcement Learning
 - Various network architectures
 - Imperfect sensor data modeling

Deep Reinforcement Learning Framework

Our approach: Deep Reinforcement Learning

Problem Setting

- Environment: Static/Dynamic objects & Imperfect sensor data
- Robot: Differential drive robot
- Action: Linear & Angular velocity
- Reward:

$$R = R_{Arrival} + R_{Collision} + R_{Distance} + R_{Heading}$$

Our approach: Deep Reinforcement Learning

• **Reward shaping:** $R = R_{Arrival} + R_{Collision} + R_{Distance} + R_{Heading}$

• $R_{Arrival} = \begin{cases} +5 & \text{if the robot arrives at the goal} \\ 0 & \text{else} \end{cases}$

•
$$R_{Collision} = \begin{cases} -5 & \text{if the collision happens} \\ 0 & \text{else} \end{cases}$$

- $R_{Distance} = 1.2 * (||p^{t-1}-p_{goal}|| ||p^t-p_{goal}||)$ Distance to the goal how closer than previous step
- $R_{Heading} = -0.04 * ||Yaw Relative angle|| Degrees to face the goal$

Our approach: Overview

- Key points:
 - Deep Reinforcement Learning
 - Various network architectures
 - Imperfect sensor data modeling

Our approach: Various network architectures

Critic Actor Input Network Q(s,a) $A_1 A_2 A_3$ MLP Single frame **1D CONV** sensor data Network MLP + LSTM 2D CONV **Stacked frame** sensor data 2D Conv + LSTM $\mathbf{s}_1 \mathbf{s}_2 \mathbf{s}_3 \mathbf{a}_1 \mathbf{a}_2$ s₁ s₂ s₃ DDPG

Our approach: Overview

- Key points:
 - Deep Reinforcement Learning
 - Various network architectures
 - Imperfect sensor data modeling

Our approach: Overview

- Key points:
 - Deep Reinforcement Learning
 - Various network architectures
 - Imperfect sensor data modeling

• Sensor data visualization

• Modeling imperfect sensor data

• Modeling imperfect sensor data

Randomly select some portions then turn them to zero

• Modeling imperfect sensor data

Randomly select some portions then turn them to zero

• Modeling imperfect sensor data

Table of contents

- Introduction & Research goal
- Background
- Our approach
- Experimental Result
- Conclusion
- Role assignment

Experimental Result

- Simulation experiment
- Real-world experiment

Experimental Result: Simulation environment setting

- Gazebo: Physics simulator
- Pedestrian Simulation

Experimental Result: Learning process

Experimental Result: evaluation results

- Evaluation in the case that some parts of the sensor are damaged
- Networks are **trained** with only **clean** simulation sensor data

Model		Success rate	
Input	Network	Scene 1*	Scene 2*
Single frame sensor data	MLP	3/10	2/10
	1D CONV	3/10	2/10
	FC + LSTM	2/10	2/10
Stacked frame sensor data	2D CONV	4/10	3/10
	2D Conv + LSTM	2/10	1/10

• Scene 1*: only static objects

• Scene 2*: static and dynamic objects

Experimental Result: evaluation results

- Evaluation in the case that some parts of the sensor are damaged
- Networks are trained with the *imperfect* sensor data *by our modeling*

Model		Success rate	
Input	Network	Scene 1*	Scene 2*
Single frame sensor data	MLP	5/10	4/10
	1D CONV	5/10	4/10
	FC + LSTM	6/10	5/10
Stacked frame sensor data	2D CONV	7/10	7/10
	2D Conv + LSTM	4/10	4/10

• Scene 1*: only static objects

• Scene 2*: static and dynamic objects

Experimental Result

• Model using single frame vs Model using Stacked frames

Model using single frame

Model using **stacked** frames

Ablation Study: Imperfect sensor data modeling

• Navigation under the imperfect sensor data

Trained FC model without our method

Trained FC model with our method

Experimental Result: Real-world experiment

- Robot: Fetch (Differential drive)
- Sensor: 25m-range, 220 degree

Experimental Result: Real-world experiment

• Configuration of experiment environment

Moving object

Start position

• Model trained **without** our method

• Model trained with our method

Static object

• Model trained **with** our method

• Model trained with our method

Moving object

Table of contents

- Introduction & Research goal
- Background
- Our approach
- Experimental Result
- Conclusion
- Role assignment

Conclusion

Contribution

- A more **robust** navigation was possible by learning RL agent with **the modeling of imperfect sensor data**.
- To verify the effect, not only simulation, but also experiments in **real robots** were performed.

Limitation

- In modeling various imperfect situations, the value of **zero** is filled in some portions.
- For better performance, the model requires a lot of hyper-parameter tuning.

Conclusion

Future work

• Implementation issues in LSTM brought some lower performance. However, it will show more performance if this resolves.

• More elaborated techniques such as predicting the part of damaged sensor will give more chance to avoid collisions.

Table of contents

- Introduction & Research goal
- Background
- Our approach
- Experimental Result
- Conclusion
- Role assignment

Role assignment

	Hyeongyeol	Sebin	Minsung
Build training environment	0	V	v
Build network architecture	v	Ο	V
Build structure of RL training	v	v	Ο
Training RL agent	0	Ο	0
Real-robot experiment	0	Ο	Ο
Testing & Collecting results	Ο	Ο	Ο
Preparing Final Presentation	0	0	0

O: lead V: support

Reference

• Papers

[1] J. Choi, K. Park, M. Kim and S. Seok, "Deep Reinforcement Learning of Navigation in a Complex and Crowded Environment with a Limited Field of View," 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 5993-6000, doi: 10.1109/ICRA.2019.8793979.

[2] T. Fan, P. Long, W. Liu, J. Pan, R. Yang and D. Manocha, "Learning Resilient Behaviors for Navigation Under Uncertainty," 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020, pp. 5299-5305, doi: 10.1109/ICRA40945.2020.9196785.

[3] A. Faust et al., "PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-Based Planning," 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, 2018, pp. 5113-5120, doi: 10.1109/ICRA.2018.8461096.

[4] J. Jin, N. M. Nguyen, N. Sakib, D. Graves, H. Yao and M. Jagersand, "Mapless Navigation among Dynamics with Social-safety-awareness: a reinforcement learning approach from 2D laser scans," 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020, pp. 6979-6985, doi: 10.1109/ICRA40945.2020.9197148.

[5] F. Leiva and J. Ruiz-del-Solar, "Robust RL-Based Map-Less Local Planning: Using 2D Point Clouds as Observations," in IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5787-5794, Oct. 2020, doi: 10.1109/LRA.2020.3010732.

[6] C. Chen, Y. Liu, S. Kreiss and A. Alahi, "Crowd-Robot Interaction: Crowd-Aware Robot Navigation With Attention-Based Deep Reinforcement Learning," 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 6015-6022, doi: 10.1109/ICRA.2019.8794134.

[7] Jin, Jun, et al. "Mapless Navigation among Dynamics with Social-safety-awareness: a reinforcement learning approach from 2D laser scans." 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020.

[8] Gao, Wei, et al. "Intention-net: Integrating planning and deep learning for goal-directed autonomous navigation." arXiv preprint arXiv:1710.05627 (2017).

[9] Everett, Michael, Yu Fan Chen, and Jonathan P. How. "Motion planning among dynamic, decision-making agents with deep reinforcement learning." 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.

Media Contents

[1] Professionelle mobile Service-Roboter - MetraLabs

[2] HoLLiE Mobile Service Robot Can Bend to Reach the Floor – roboticgizmos

[3] https://www.artificialinventive.com/blog/

[4] https://developer.softbankrobotics.com/blog/crowdbot-safe-navigation-robots-dense-crowds

Thank you for listening!

Feel free to ask any questions