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Introduction
• These days, many mobile robots are around us

Mobile service robots 4



Introduction
• These days, many mobile robots are around us

• Autonomous navigation is one of the essential abilities for them

Autonomous navigation using LiDAR 5



Introduction
• What if the robot cannot get perfect sensor data because of

• Dynamic external disturbance

This might cause catastrophic actions in safety-critical tasks 
such as robot navigation in real-world
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• Goal: Propose robust navigation method dealing with imperfect sensor data

Research goal

Imperfect Sensor data

Modeling of imperfect sensor data 
& 

Joint learning with RL

Normal
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Background: Navigation

• Navigation (Global planning + Local planning)

Black Line: Global path
Red Line: Navigation (Local planning)
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Background: Actor-Critic

• Basic Concept of Reinforcement Learning

• Our goal is to find state/action maximizing Q value
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Background: Actor-Critic

• Actor-Critic in RL

• Actor: A player that decides on an action to take
• Critic: A coach that criticizes the action that the actor selected, 

providing feedback on how to adjust
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That’s not good!

Put (4,5)! 

Evaluate me!



• Actor-Critic in RL

• Actor: A player that decides on an action to take (Policy network)
• Critic: A coach that criticizes the action that the actor selected, 

providing feedback on how to adjust (Q-network)

Background: Actor-Critic
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Our approach: Overview

• Key points:
• Deep Reinforcement Learning
• Various network architectures
• Imperfect sensor data modeling
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Our approach: Overview

Actor Network

Critic NetworkEnvironment

Agent

• Key points:
• Deep Reinforcement Learning
• Various network architectures
• Imperfect sensor data modeling
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Deep Reinforcement Learning Framework



Our approach: Deep Reinforcement Learning

• Problem Setting

• Environment: Static/Dynamic objects & Imperfect sensor data

• Robot: Differential drive robot

• Action: Linear & Angular velocity

• Reward:

𝑅𝑅 = 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑅𝑅𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑅𝑅𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
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Our approach: Deep Reinforcement Learning

• 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �+5
0

• 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �−5
0

• 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒 = 1.2 ∗ (‖pt-1-pgoal ‖ - ‖pt-pgoal ‖)

• 𝑅𝑅𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = −0.04 ∗ ‖𝑌𝑌𝑌𝑌𝑌𝑌 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎‖

𝑅𝑅 = 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑅𝑅𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑅𝑅𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

17

𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Distance to the goal how closer than previous step

Degrees to face the goal

• Reward shaping:



Our approach: Overview

Actor Network

Critic NetworkEnvironment

Agent

• Key points:
• Deep Reinforcement Learning
• Various network architectures
• Imperfect sensor data modeling
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Our approach: Various network architectures
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Input Network

Single frame 
sensor data

MLP

1D CONV

MLP + LSTM 

Stacked frame
sensor data

2D CONV

2D Conv + LSTM

Network



Our approach: Overview

Actor Network

Critic NetworkEnvironment

Agent

• Key points:
• Deep Reinforcement Learning
• Various network architectures
• Imperfect sensor data modeling
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Our approach: Overview

Actor Network

Critic NetworkEnvironment

Agent

• Key points:
• Deep Reinforcement Learning
• Various network architectures
• Imperfect sensor data modeling
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Imperfect
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Sensor Data
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Our approach: Imperfect sensor data modeling

• Sensor data visualization
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Sensor observation

Normal case

-100˚ 100˚

1 dim






• Modeling imperfect sensor data

Target case
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Our approach: Imperfect sensor data modeling

Sensor observation

Normal case

-100˚ 100˚

1 dim



Our approach: Imperfect sensor data modeling

Imperfect
sensor data model

Model

Randomly select some portions then turn them to zero

• Modeling imperfect sensor data
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Our approach: Imperfect sensor data modeling

Imperfect
sensor data model

Model

• Modeling imperfect sensor data

Randomly select some portions then turn them to zero
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Our approach: Imperfect sensor data modeling

Normal

Laser scan data

Damaged

• Modeling imperfect sensor data

26









Table of contents

• Introduction & Research goal

• Background

• Our approach

• Experimental Result

• Conclusion

• Role assignment

27



Experimental Result

• Simulation experiment

• Real-world experiment
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Experimental Result: Simulation environment setting

• Gazebo: Physics simulator
• Pedestrian Simulation

29Gazebo Pedsim

Moving object
Static object



Experimental Result: Learning process 

30Rviz visualization Gazebo visualization 

: Goal position






Experimental Result: evaluation results
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Model Success rate
Input Network Scene 1* Scene 2*

Single frame 
sensor data

MLP 3/10 2/10

1D CONV 3/10 2/10

FC + LSTM 2/10 2/10

Stacked frame
sensor data

2D CONV 4/10 3/10

2D Conv + LSTM 2/10 1/10

• Scene 1*: only static objects 
• Scene 2*: static and dynamic objects

• Evaluation in the case that some parts of the sensor are damaged
• Networks are trained with only clean simulation sensor data



Experimental Result: evaluation results
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• Scene 1*: only static objects 
• Scene 2*: static and dynamic objects

• Evaluation in the case that some parts of the sensor are damaged
• Networks are trained with the imperfect sensor data by our modeling

Model Success rate
Input Network Scene 1* Scene 2*

Single frame 
sensor data

MLP 5/10 4/10

1D CONV 5/10 4/10

FC + LSTM 6/10 5/10

Stacked frame
sensor data

2D CONV 7/10 7/10

2D Conv + LSTM 4/10 4/10



Experimental Result
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• Model using single frame vs Model using Stacked frames

Model using stacked framesModel using single frame

: Goal position



Ablation Study: Imperfect sensor data modeling
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• Navigation under the imperfect sensor data

Trained FC model 
without our method

Trained FC model 
with our method

Damaged parts Damaged parts

: Goal position



Experimental Result: Real-world experiment

• Robot: Fetch (Differential drive)

• Sensor: 25m-range, 220 degree
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Experimental Result: Real-world experiment
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Simulation sensor data

Real world sensor data

Simulation Real-world
Noise-less Very noisy















Experimental Result: Navigation on Real robot

• Configuration of experiment environment

Start position

Goal position

Static object

Moving object



Experimental Result: Navigation on Real robot

• Model trained without our method ?



Experimental Result: Navigation on Real robot

• Model trained with our method Static object



Experimental Result: Navigation on Real robot

• Model trained with our method Static object



Experimental Result: Navigation on Real robot

• Model trained with our method
Moving object
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Conclusion
Contribution
• A more robust navigation was possible by learning RL agent with the 
modeling of imperfect sensor data.
• To verify the effect, not only simulation, but also experiments in real robots 
were performed.

Limitation
• In modeling various imperfect situations, the value of zero is filled in some 
portions.
• For better performance, the model requires a lot of hyper-parameter tuning.
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Conclusion

Future work
• Implementation issues in LSTM brought some lower performance. 
However, it will show more performance if this resolves.
• More elaborated techniques such as predicting the part of damaged 
sensor will give more chance to avoid collisions.
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Role assignment
Hyeongyeol Sebin Minsung

Build training environment O v v

Build network architecture v O v

Build structure of RL training v v O

Training RL agent O O O

Real-robot experiment O O O

Testing & Collecting results O O O

Preparing Final Presentation O O O
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O: lead
V: support
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Thank you for listening!

Feel free to ask any questions
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