CS686: Robot Motion Planning and Applications

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/MPA

About the Instructor

- Main research theme
 - Work on large-scale problems related to motion planning, computer graphics, recognition, etc.
 - Paper and video: http://sglab.kaist.ac.kr/papers.htm
 - YouTube videos: http://www.youtube.com/user/sglabkaist

Research Theme: Scalable Ray Tracing, Image Search, Motion Planning

 Designing scalable techniques to efficiently handle massive models on commodity hardware or clouds

Photo-realistic rendering

Image search

Motion planning

Some Achievement

- Tutorials/Workshop in international conf.
 - Workshop on sound source localization at ICRA
 - Tutorial on collision detection at SIGGRAPH
- 차세대 과학자상(IT부문), 2019
 - 한림원, S-OIL

- Best paper in robotic planning, Int. Conf. on Advanced Robotics (ICAR), 2017
- Test-Of-Time 2006 Award at High Performance Graphics, 2015
- Distinguished paper award at Pacific Graphics 2009

Welcome to CS686

Instructor: Sung-eui Yoon

Email: sungeui@gmail.com

Office: 3432 at CS building

Class time: 4:00pm – 5:15pm on TTh

Class location: 3445 in the CS building

Office hours: Right after class

Course webpage:

http://sgvr.kaist.ac.kr/~sungeui/MPA

Online lecture until the mid-term exam!

TA

Heechan Shin

- Ph.D. student working on kinodynamic comfortable trajectory
- Use KLMS board for communication
- E3-1, 3446

Real World Robots

S

Sony Aibo

ASIMO

Da Vinci

Courtesy of Prof. Dinesh Manocha

Motion of Real Robots

DRC final winner at 2016

Humanoid Robot:

https://www.youtube.com/watch?v=BGOUSvaQcBs

Motion of Real Robots

Autonomous vehicle:

https://www.youtube.com/watch?v=zQTQNJ4QUvo

Motion of Real Robots

Robot-Assisted Radical Prostatectomy

Medical robot:

http://www.youtube.com/watch?v=XfH8phFm2VY

Open Platform Humanoid Project: DARwIn-OP

http://www.youtube.com/watch?v=0FFBZ6M0nKw

TurtleBot

http://www.youtube.com/watch?feature=player_detailpage&v=MOEjL8JDvd0

Motion of Virtual Worlds

Motion of Virtual Worlds

Crowd simulation (biped) with Al implant video 1 of 2

Computer generated simulations:

http://www.youtube.com/watch?v=5-UQmVjFdqs

Motion of Virtual Worlds

Computer generated simulations, games, virtual prototyping:

http://www.massivesoftware.com/

Smart Robots or Agents

- Autonomous agents that sense, plan, and act in real and/or virtual worlds
- Algorithms and systems for representing, capturing, planning, controlling, and rendering motions of physical objects

Applications:

- Manufacturing
- Mobile robots
- Computational biology
- Computer-assisted surgery
- Digital actors

Goal of Motion Planning

- Compute motion strategies, e.g.:
 - Geometric paths
 - Time-parameterized trajectories
 - Sequence of sensor-based motion commands
 - Aesthetic constraints
- Achieve high-level goals, e.g.:
 - Go to A without colliding with obstacles
 - Assemble product P
 - Build map of environment E
 - Find object O

Examples with Rigid Object

Is It Easy?

Example with Articulated Object

Some Extensions of Basic Problem

- Multiple robots
- Assembly planning
- Acquire information by sensing
 - Model building
 - Object finding/tracking
 - Inspection
- Nonholonomic constraints
- Dynamic constraints
- Stability constraints

- Optimal planning
- Uncertainty in model, control and sensing
- Exploiting task mechanics (sensorless motions, underactualted systems)
- Physical models and deformable objects
- Integration of planning and control
- Integration with higher-level planning

Examples of Applications

- Manufacturing:
 - Robot programming
 - Robot placement
 - Design of part feeders
- Design for manufacturing and servicing
- Design of pipe layouts and cable harnesses
- Autonomous mobile robots planetary exploration, surveillance, military scouting

- Graphic animation of "digital actors" for video games, movies, and webpages
- Virtual walkthrough
- Medical surgery planning
- Generation of plausible molecule motions, e.g., docking and folding motions
- Building code verification

Assembly Planning and Design of Manufacturing Systems

Application: Checking Building Code

Cable Harness/ Pipe design

Humanoid Robot

[Kuffner and Inoue, 2000] (U. Tokyo)

Digital Actors

A Bug's Life (Pixar/Disney)

Toy Story (Pixar/Disney)

Tomb Raider 3 (Eidos Interactive)

The Legend of Zelda (Nintendo)

Antz (Dreamworks)

Final Fantasy VIII (SquareOne)

Application: Computer-Assisted Surgical Planning

Study of the Motion of Bio-Molecules

- Protein folding
- · Ligand binding

DARPA Grand Challenge

Planning for a collision-free 132 mile path in a desert

DARPA Robotics Challenges, 2016

Focus on disaster or emergency-response scenarios

From wiki

Still many research going on now!

Google Self-Driving Vehicles

Prerequisites

- Programing skills
- Basic understanding of probability and geometric concepts
 - E.g., events, expected values, etc.
- Some prior exposure to robotics problems/applications/HWs
- If you did not take any prior course related to robotics, this course may be inappropriate for you
 - If you are not sure, please consult the instructor at the end of the course

Topics

- Underlying geometric concepts of motion planning
 - Configuration space
- Classical motion planning algorithms:
 - Complete motion planning
 - Randomized approaches
- Sampling based and optimization based approaches
- Briefly on learning based approaches

The course is about motion planning algorithms, not control of real robots!

Course Overview

- 1/2 of lectures and 1/2 of student presentations
 - This is a research-oriented course
- What you will do:
 - Choose papers that are interesting to you
 - Present those papers
 - Propose ideas that can improve the state-ofthe-art techniques; implementation is not required, but is recommended
 - Quiz and mid-term
 - and, have fun!

Course Awards

- Best speaker and best project
 - Lunch or dinner for awardees with me and TAs
- A high grade will be given to members of the best project

Course Overview

- Grade policy
 - Class presentations: 30%
 - Quiz, assignment, and mid-term: 30%
 - Final project: 40%
 - Instructor (50%) and students (50%) will evaluate presentations and projects
- Late policy
 - No score; submit your work before the deadline!
- Class attendance rule
 - Late two times → count as one absence
 - Every two absences → lower your grade (e.g., A-→ B+)

Resource

Textbook

- Planning Algorithms, Steven M. LaValle, 2006 (http://msl.cs.uiuc.edu/planning/)
- My own draft (not well established yet)
- Technical papers
 - IEEE International Conf. on Robotics and Automation (ICRA)
 - IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS)
 - Robotics Science and Systems (RSS)
 - Conf. on Robot Learning (CoRL)

Other Reference

- Vision-related conference (CVPR, ICCV)
 - http://openaccess.thecvf.com/menu.py
- Graphics-related conference (SIGGRAPH, etc.)
 - http://kesen.huang.googlepages.com/
- Google or Google scholar
- UDACITY course:
 - Artificial Intelligence for Robotics

Honor Code and Classroom Etiquette

- Collaboration encouraged, but assignments must be your own work
 - Cite any other's work if you use their codes
- Classroom etiquette
 - Help you and your peer to focus on the class
 - Turn off cell phones
 - Arrive to the class on time
 - Avoid private conversations
 - Be attentive in class

Schedule

- Please refer the course homepage:
 - http://sgvr.kaist.ac.kr/~sungeui/MPA

Official Language in Class

English

- I'll give lectures in English
- I may explain again in Korean if materials are unclear to you
- You are no required to use English, but are recommended
- To non-native Korean speakers
 - Many Korean students prefer to use Korean for deeper discussions
 - In these cases, we will use Korean, but I will summarize main points in English

My Wish for You

- Follow up lecture materials and do various class activities/HWs
- Hopefully, they will:
 - Lead to your next publication, or
 - Lead to your next start-up

Homework

- Browse 2 top-tier conf./journal papers
 - Prepare two summaries, and submit it online before the Tue. class
 - See the submission site at the course homepage
 - https://forms.gle/2jdXkgYu5snyAb3s8
- Example of a summary (just a paragraph)

Title: XXX XXXX XXXX

Conf./Journal Name: ICRA, 2020

Summary: this paper is about accelerating the performance of collision detection. To achieve its goal, they design a new technique for reordering nodes, since by doing so, they can improve the coherence and thus improve the overall performance.

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today and submit at the end of the class
 - 1 for typical questions
 - 2 for questions with thoughts or that surprised me
- Write a question two times before the midterm exam
 - Online submission is available at the course webpage
 - https://forms.gle/R2ZcS9pZ9me9RzmKA

My Responses to Those Questions

- Identify common questions and address them at the Q&A file
- Some of questions will be discussed in the class
- If you want to know the answer of your question, ask me or TA on person
 - Feel free to ask questions in the class
- We are focusing on having good questions!
 - All of us are already well trained for answering questions

Homework

Read Chapter 1 of our textbook

Next Time...

- Configuration spaces
- Motion planning framework
- Classic motion planning approaches

About You

- Name
- What is your major?
- Previous experience on motion planning and robotics
- Credit (registering the course) or audit?
- Online submission: https://forms.gle/4gom57GexHrTRvwq9

