CS686: RRT

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/MPA

Class Objectives

- Understand the RRT technique and its recent advancements
 - RRT*
 - Kinodynamic planning
- Last time
 - Probabilistic roadmap techniques
 - Sampling and re-sampling techniques

Question

- PRM assumes that we know the global map, but how can we handle the case where we have only a partial map due to the limited sensor range?
 - 지난시간에 배운 PRM 기법들은 글로벌 맵을 알고 있어야 문제 해결이 가능한데, 전체 맵의 일부분(센서 탐지거리 제약 등으로)만을 알고 있는 상황에서 PRM알고리즘을 적용하려면 어떤 방식으로 해야 하는지요?

Rapidly-exploring Random Trees (RRT) [LaValle 98]

- Present an efficient randomized path planning algorithm for single-query problems
 - Converges quickly
 - Probabilistically complete
 - Works well in high-dimensional C-space

Rapidly-Exploring Random Tree

A growing tree from an initial state

RRT Construction Algorithm

- Extend a new vertex in each iteration
 - Alternatively, one can simply connect

Overview – Planning with RRT

- Extend RRT until a nearest vertex is close enough to the goal state
 - Can handle nonholonomic constraints and high degrees of freedom
- Probabilistically complete, but does not converge to the optimal one

RRT Construction Algorithm

```
BUILD_RRT(q_{init})

1 \mathcal{T}.init(q_{init});

2 for k = 1 to K do

3 q_{rand} \leftarrow RANDOM\_CONFIG();

4 EXTEND(\mathcal{T}, q_{rand});

5 Return \mathcal{T}
```

```
EXTEND(\mathcal{T}, q)

1 q_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(q, \mathcal{T});

2 if \text{NEW\_CONFIG}(q, q_{near}, q_{new}) then

3 \mathcal{T}.\text{add\_vertex}(q_{new});

4 \mathcal{T}.\text{add\_edge}(q_{near}, q_{new});

5 if q_{new} = q then

6 Return Reached;

7 else

8 Return Advanced;

9 Return Trapped;
```


Voronoi Region

 An RRT is biased by large Voronoi regions to rapidly explore, before uniformly covering the space

Overview – With Dual RRT

- Extend RRTs from both initial and goal states
- Find path much more quickly

737 nodes are used

Overview – With RRT-Connect

- Aggressively connect the dual trees using a greedy heuristic
- Extend & connect trees alternatively

42 nodes are used

RRT*

RRT does not converge to the optimal solution

RRT*

RRT*

- Asymptotically optimal without a substantial computational overhead

Theorem [Karaman & Frazzoli, IJRR 2011]

(i) The RRT* algorithm is asymptotically optimal

$$\mathbb{P}\Big(\big\{\lim_{n\to\infty}Y_n^{\mathrm{RRT}^*}=c^*\big\}\Big)=1$$

(ii) RRT* algorithm has no substantial computational overhead when compared to the RRT:

$$\lim_{n \to \infty} \mathbb{E}\left[\frac{M_n^{\text{RRT}^*}}{M_n^{\text{RRT}}}\right] = \text{constant}$$

Y_n^{RRT*}: cost of the best path in the RRT*
 c*: cost of an optimal solution

- M_n^{RRT}: # of steps executed by RRT at iteration n

- M_n^{RRT*}: # of steps executed by RRT* at iteration n

Key Operation of RRT*

RRT

- Just connect a new node to its nearest neighbor node
- RRT*: refine the connection with rewiring operation
 - Given a ball, identify neighbor nodes to the new node
 - Refine the connection to have a lower cost

Generate a new sample

Identify nodes in a ball

Identify which parent gives the lowest cost

Identify which child gives the lowest cost

Video showing benefits with real robot

Kinodynamic Path Planning

ALSO GIVEN: $h_i(q, \dot{q}, \ddot{q}) \leq 0, h_i(q, \dot{q}, \ddot{q}) = 0, \dots$

FIND: τ that satisfies $f_i(q)$, $g_i(q,\dot{q})$, $h_i(q,\dot{q},\ddot{q})$

Consider kinematic + dynamic constraints

Gait and Trajectory Optimization for Legged Systems through Phase-based End-Effector Parameterization

State Space Formulation

Kinodynamic planning → 2n-dimensional state space

C denote the C-space

X denote the state space

$$x = (q, \dot{q}), \text{ for } q \in C, x \in X$$

$$x = [q_1 \ q_2 \ \dots \ q_n \ \frac{dq_1}{dt} \ \frac{dq_2}{dt} \ \dots \ \frac{dq_n}{dt}]$$

Constraints in State Space

 $h_i(q, \dot{q}, \ddot{q}) = 0$ becomes $G_i(x, \dot{x}) = 0$, for i = 1, ..., m and m < 2n

Constraints can be written in:

$$\dot{x} = f(x, u)$$

 $u \in U$, U: Set of allowable controls or inputs

Rapidly-Exploring Random Tree

Extend a new vertex in each iteration

Results – 200MHz, 128MB

- 3D translating
- X=6 DOF
- 16,300 nodes
- 4.1min

- 3D TR+RO
- X=12 DOF
- 23,800 nodes
- 8.4min

RRT at work: Successful Parking Maneuver

Some Works of Our Group

- Narrow passages
 - Identify narrow passage with a simple onedimensional line test, and selectively explore such regions
 - Selective retraction-based RRT planner for various environments, Lee et al., T-RO 14
 - http://sglab.kaist.ac.kr/SRRRT/T-RO.html

Retration-based RRT [Zhang & Manocha 08]

Retraction-based RRT technique handling narrow passages

image from [Zhang & Manocha 08]

General characteristic:
 Generates more samples near the boundary of obstacles

RRRT: Pros and Cons

with narrow passages

without narrow passages

images from [Zhang & Manocha 08]

RRRT: Pros and Cons

with narrow passages

without narrow passages
images from [Zhang & Manocha 08]

Bridge line-test [Lee et al., T-RO 14]

- To identify narrow passage regions
- Bridge line-test
 - 1. Generate a random line
 - 2. Check whether the line meets any obstacle

Results

Video

Related Works of Our Group

- Handling narrow passages
- Handling uncertainty and dynamic objects
 - Anytime RRBT for handling uncertainty and dynamic objects, IROS 16

Handling Sensor Errors

- Uncertainty caused by:
 - Various sensors
 - Low-level controllers

Sensor noise

Controller noise

Rapidly-exploring Random Belief Tree

[Bry et al., ICRA 11]

- Use Kalman filter to propagate Gaussian states
- Improve solutions toward optimal

Multiple belief nodes in the same vertex

Preserve optimal path

Main Contribution: Anytime Extension [Yang et al.,IROS 16]

(c) After 3 seconds

(d) After 5 seconds

Bigger circle means higher uncertainty

The robot computes better path while executing the path

Main Contribution: Anytime Extension

Velocity Obstacle: Local Geometric Analysis

- Used for collision avoidance among multiple robots
- When v for Robot is in the VO, we will have collision

$$VO_{R|O} = \{v | \exists t > 0 : t(v - v_O) \in Disc(P_O - P_R, r_R + r_O)\}$$

Uncertainty-aware Velocity Obstacle as Local Geometry Analysis

Conservative collision checking

(a) Velocity obstacle

(b) Uncertainty-aware velocity obstacle

[&]quot;The hybrid reciprocal velocity obstacle" **TRO11** J Snape, J van den Berg, SJ Guy "Reciprocal velocity obstacles for real-time multi-agent navigation" J van den Berg "Generalized Velocity Obstacles" **IROS09**, D Wilkie, J Van den Berg

Intersection scene – with UVO

Class Objectives were:

- Understand the RRT technique and its recent advancements
 - RRT* for optimal path planning
 - Kinodynamic planning
 - Some related techniques to RRT

Summary

Next Time...

Basic concepts of reinforcement learning

Homework for Every Class

- Submit summaries of 2 ICRA/IROS/RSS/CoRL/TRO/IJRR papers
- Go over the next lecture slides
- Come up with three question before the midterm exam

