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•A(action space): 
• Set of permissible velocity vectors, a(s) = v

Action Space (M = <S, A, P, R,   >)



State Transition Model(M = <S, A, P, 
R,   >)
•P(state transition model)
• A probabilistic state transition 
model

• Determined by the agents’ 
kinematics 

• Unknown to us



Reward Function (M = <S, A, P, R,    
>)
•R: reward function
• Award the agent for reaching its goal
• Penalize the agent for getting too close or 
colliding with other agent



Discount Factor(M = <S, A, P, R,    
>)
•  Discount factor



Value Function
• The value of a state
• Value depends on
•     close to 1
• We care about our long term reward

•     close to 0
• We care only about our immediate reward



Optimal Policy
• The best trajectory at given state



Value Function and Optimal Policy
From David Silver’s slides



Value Function and Optimal Policy
•Every state s has value V(s)
•Store it in a lookup table
• In a grid world : 16 values 
• In motion planning : Infinite values (b/c it’s 
continuous state space)

• Solution:
• Approximate value via neural network
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Value Function and Optimal Policy
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Collision Avoidance Deep 
Reinforcement Learning
1.Train Value network using ORCA
• Why pre-train? 
- Initializing the neural network is crucial to convergence
- We want the network to output something reasonable

• Generate 500 trajectories as a training set
• Each trajectory contains 40 state-value pairs (total of 20,000 

pairs)
• Back-propagate to minimize our loss function: 



Collision Avoidance Deep 
Reinforcement Learning
1.Train Value network using ORCA

2.Train again with Deep reinforcement Learning



Collision Avoidance Deep 
Reinforcement Learning
1.Train again with Deep reinforcement Learning



Collision Avoidance Deep 
Reinforcement Learning
1.Train again with Deep reinforcement Learning



Collision Avoidance Deep 
Reinforcement Learning
1.Train again with Deep reinforcement Learning



Collision Avoidance Deep 
Reinforcement Learning
1.Train again with Deep reinforcement Learning



Collision Avoidance Deep 
Reinforcement Learning
1.Train again with Deep reinforcement Learning



Collision Avoidance Deep 
Reinforcement Learning
1.Train again with Deep reinforcement Learning



Collision Avoidance Deep 
Reinforcement Learning
1.Train again with Deep reinforcement Learning



Collision Avoidance Deep 
Reinforcement Learning
1.Train again with Deep reinforcement Learning



Collision Avoidance Deep 
Reinforcement Learning
1.Train again with Deep reinforcement Learning



Collision Avoidance Deep 
Reinforcement Learning
1.Train again with Deep reinforcement Learning



Collision Avoidance Deep 
Reinforcement Learning
1.Train again with Deep reinforcement Learning



Collision Avoidance Deep 
Reinforcement Learning
1.Train again with Deep reinforcement Learning



Collision Avoidance Deep 
Reinforcement Learning
1.Train again with Deep reinforcement Learning



Collision Avoidance Deep 
Reinforcement Learning
1.Train again with Deep reinforcement Learning



Collision Avoidance Deep 
Reinforcement Learning
1.Train again with Deep reinforcement Learning



Collision Avoidance Deep 
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Backpropagatio
n



Collision Avoidance Deep 
Reinforcement Learning
1.Train again with Deep reinforcement Learning
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Q&A



Quiz
 Values are update after each episode (T/F)

 Value function needs to be trained with ORCA (T/F)

 ORCA path does not need to be optimal (T/F)
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