실사 렌더링 Physically based Rendering

Sung-Eui Yoon (윤성의)

http://sglab.kaist.ac.kr/~sungeui

About the Instructor

- Joined KAIST at 2007
- Main research focus
 - Handling of massive geometric data for various computer graphics and geometric problems
- Research history for rendering
 - Did volume rendering at M.S.
 - Did large-scale, real-time, rasteriation based rendering at Ph.D.
 - Have been doing high-quality rendering at KAIST

KAIST

Overview

We will discuss various parts of computer graphics

Modelling Simulation & Rendering

Image

Computer vision inverts the process Image processing deals with images

Application of Rendering/Computer Graphics

- Games
- Movies and film special effects
- Product design and analysis
- Medical applications
- Scientific visualization

Games

2D game

Movies and Film Special Effects

Avatar

KAIST

KAIST

Product Design and Analysis

Computer-aided design (CAD)

Medical Applications

Visualizing data of CT, MRI, etc

Rapidia homenage

About the Course

- We will focus on:
 - Photo-Realistic Rendering
 - Study basic concepts of physically-based rendering

Photo-Realistic Rendering

Achieved by simulating light and material interactions

- Rendering equation
 - Mathematical formulation of light and material interactions

10 KAIST

KAIST

Global Illumination (GI)

- GI algorithms solve the rendering equation
 - Generate 2D image from 3D scene

Emission (light sources)
Geometry (objects)
BRDF (materials)

Classic Methods of Gl

- Ray tracing
 - Introdued by Whitted in 1980
- Radiosity
 - Introduced in 1984
- Monte Carlo rendering

Ray Tracing

Assume perfect specular or diffuse material

Radiosity

Assume diffuse inter-reflections

KAIST

14

Advanced Global Illumination

- Extend to handle more realistic materials than just perfect specular/diffuse
 - Classic ray tracing and classic radiosity are basic building blocks

from Pixar movie

KAIST

Scalable GI

- How can we handle complexity?
 - Many objects
 - Many triangles
 - Many lights
 - Complex BRDFs
 - Dynamic scenes, etc.
- Can we achieve interactive GI on commodity hardware?

16

Resource

- Reference
 - Physically based renderig, Matt Pharr et al.
 - Advanced Global Illumination, Philip Dutre et al. 2nd edition
 - Realistic Image Synthesis Using Photon Mapping, Henrik Jensen
 - Realistic Ray Tracing, 2nd edition, Peter Shirley et al.

Other Reference

- Technical papers
 - Graphics-related conference (SIGGRAPH, etc)
 - http://kesen.huang.googlepages.com/
- SIGGRAPH course notes and video encore
- Course homepages
- Google or Google scholar

18

Classic Rendering Pipeline

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/GCG/

Course Objectives

- Understand classic rendering pipeline
 - Just high-level concepts, not all the details
 - Brief introduction of common under. CG
- Know its pros and cons

The Classic Rendering Pipeline

- Adopted in OpenGL and DirectX
 - Most of games are based on this pipeline
- Object primitives defined by vertices fed in at the top
- Pixels come out in the display at the bottom

KAIST

The Classic Rendering Pipeline

Code Example

OpenGL Code:

glColor3d(0.0, 0.8, 1.0);

glBegin(GL_POLYGON);

 glVertex2d(-0.5, -0.5);
 glVertex2d(0.5, -0.5);
 glVertex2d(0.5, 0.5);
 glVertex2d(-0.5, 0.5);

glVertex2d(-0.5, 0.5);

Triangle Representation, Mesh

- Triangles can approximate any 2-dimensional shape (or 3D surface)
 - Polygons are a locally linear (planar) approximation
- Improve the quality of fit by increasing the number edges or faces

Illumination

- Illuminate potentially visible objects
- Final rendered color is determined by object's orientation, its material properties, and the light sources in the scene

OpenGL's Illumination Model

$$\boldsymbol{I}_{r} = \sum_{i=1}^{numLights} \big(k_{a}^{j} \boldsymbol{I}_{a}^{j} + k_{d}^{j} \boldsymbol{I}_{d}^{j} max((\hat{\boldsymbol{N}} \bullet \hat{\boldsymbol{L}}_{j}), 0) + k_{s}^{j} \boldsymbol{I}_{s}^{j} max((\hat{\boldsymbol{V}} \bullet \hat{\boldsymbol{R}})^{n_{s}}, 0) \big)$$

KAIST

Rasterization and Display

- Transform to screen space
- Rasterization converts objects pixels

Why we are using rasterization?

- Efficiency
- Reasonably quality

25

Fermi GPU Architecture

16 SM (streaming processors)

512 CUDA cores

Memory interfaces

KAIST

Where Rasterization Is

From Battlefield: Bad Company, EA Digital Illusions CE AB

From Eric Haines KAIST

But what about other visual cues?

- Lighting
 - Shadows
 - Shading: glossy, transparency
- Color bleeding, etc.
- Generality

Ray Tracing

Sung-Eui Yoon (윤성의)

http://sglab.kaist.ac.kr/~sungeui

Class Objectives

- Understand a basic ray tracing
- Implement its acceleration data structure and know how to use it

KAIST

Recursive Ray Casting

 Gained popularity in when Turner Whitted (1980) recognized that recursive ray casting could be used for global illumination effects

Ray Casting and Ray Tracing

- Trace rays from eye into scene
 - Backward ray tracing
- Ray casting used to compute visibility at the eye
- Perform ray tracing for arbitrary rays needed for shading
 - Reflections
 - Refraction and transparency
 - Shadows

Basic Algorithms

Rays are cast from the eye point through each pixel in the image

KAIST

Shadows

- Cast ray from the intersection point to each light source
 - Shadow rays

KAIST

Reflections

• If object specular, cast secondary reflected rays

From kavita's slides

Refractions

 If object tranparent, cast secondary refracted rays

From kavita's slides

An Improved Illumination Model [Whitted 80]

Phong illumination model

$$\boldsymbol{I}_r = \sum_{j=1}^{num Lights} \big(\boldsymbol{k}_a^{\,j} \boldsymbol{I}_a^{\,j} + \boldsymbol{k}_d^{\,j} \boldsymbol{I}_d^{\,j} \big(\hat{\boldsymbol{N}} \bullet \hat{\boldsymbol{L}}_j \big) + \boldsymbol{k}_s^{\,j} \boldsymbol{I}_s^{\,j} \big(\hat{\boldsymbol{V}} \bullet \hat{\boldsymbol{R}} \big)^{n_s} \big)$$

Whitted model

$$\boldsymbol{I}_{r} = \sum_{j=1}^{numLights} \left(\boldsymbol{k}_{a}^{j}\boldsymbol{I}_{a}^{j} + \boldsymbol{k}_{d}^{j}\boldsymbol{I}_{d}^{j}(\hat{\boldsymbol{N}} \bullet \hat{\boldsymbol{L}}_{j})\right) + \boldsymbol{k}_{s}\boldsymbol{S} + \boldsymbol{k}_{t}\boldsymbol{T}$$

- S and T are intensity of light from reflection and transmission rays
- Ks and Kt are specular and transmission coefficient

KAIST

Acceleration Methods for Ray Tracing

- Rendering time for a ray tracer depends on the number of ray intersection tests per pixel
 - The number of pixels X the number of primitives in the scene
- Early efforts focused on accelerating the rayobject intersection tests
 - Ray-triangle intersection tests
- More advanced methods required to make ray tracing practical
 - Bounding volume hierarchies
 - Spatial subdivision (e.g., kd-trees)

Ray Tree

Bounding Volumes

- Enclose complex objects within a simple-tointersect objects
 - If the ray does not intersect the simple object then its contents can be ignored
 - The likelihood that it will strike the object depends on how tightly the volume surrounds the object.
- Spheres are simple, but not tight
- Axis-aligned bounding boxes often better
 - Can use nested or hierarchical bounding volumes

Bounding Volumes

Sphere [Whitted80]

- Cheap to compute
- Cheap test
- Potentially very bad fit

- Very cheap to compute
- Cheap test
- Tighter than sphere

KAIST

Bounding Volumes

- Oriented Bounding Box
 - Fairly cheap to compute
 - Fairly Cheap test
 - Generally fairly tight
- Slabs / K-dops
 - More expensive to compute
 - Fairly cheap test
 - Can be tighter than OBB

KAIST

Hierarchical Bounding Volumes

- Organize bounding volumes as a tree
 - Choose a partitioning plane and distribute triangles into left and right nodes
- Each ray starts with the scene BV and traverses down through the hierarchy

KAIST

Spatial Subdivision

Idea: Divide space in to subregions

Grids and kd-trees are also commonly used

kd-trees Higher performance

16

14

Classic Ray Tracing

- Gathering approach
 - From lights, reflected, and refracted directions
- Pros of ray tracing
 - Simple and improved realism over the rendering pipeline

Cons:

17

- · Simple light model, material, and light propagation
- Not a complete solution
- Hard to accelerate with special-purpose H/W

KAIST

History

- Problems with classic ray tracing
 - Not realistic
 - View-dependent
- Radiosity (1984)
 - Global illumination in diffuse scenes
- Monte Carlo ray tracing (1986)
 - Global illumination for any environment

18 KAIST

Class Objectives were:

- Understand a basic ray tracing
- Implement its acceleration data structure and know how to use it

PA₁

Get to know pbrt

Radiosity

Sung-Eui Yoon (윤성의)

http://sglab.kaist.ac.kr/~sungeui

Class Objective

- Understand radiosity
 - Radiosity equation
 - Solving the equation

KAIST

Radiosity

- Physically based method for diffuse environments
 - Support diffuse interactions, color bleeding, indirect lighting and penumbra
 - Account for very high percentage of total energy transfer
 - Finite element method

Key Idea #1: Diffuse Only

From kavita's slides

- Radiance independent of direction
 - Surface looks the same from any viewpoint
 - No specular reflection

Diffuse Surfaces

- Diffuse emitter
 - $L(x \rightarrow \Theta) =$ constant over Θ

- Diffuse reflector
 - Constant reflectivity

From kavita's slides

Key Idea #2: Constant Polygons

- Radiosity is an approximation
 - Due to discretization of scene into patches

From kavita's slides

Subdivide scene into small polygons

25

KAIST

26

Constant Radiance Approximation

- Radiance is constant over a surface element
 - L(x) = constant over x

Radiosity Equation

Emitted radiosity = self-emitted radiosity + received & reflected radiosity

$$Radiosity_i = Radiosity_{self,i} + \sum_{j=1}^{N} a_{j \rightarrow i} Radiosity_j$$

KAIST

Radiosity Equation

Radiosity equation for each polygon i

$$Radiosity_1 = Radiosity_{self,1} + \sum_{j=1}^{N} a_{j \rightarrow 1} Radiosity_j$$

$$Radiosity_2 = Radiosity_{self,2} + \sum_{j=1}^{N} a_{j\rightarrow 2} Radiosity_j$$

. . .

$$Radiosity_N = Radiosity_{self,N} + \sum_{j=1}^{N} a_{j \rightarrow N} Radiosity_j$$

• N equations; N unknown variables

@ Kavita Bala, Computer Science, Cornell University

Radiosity Algorithm

30

- Maps well to rasterization pipeline
 - Subdivide the scene in small polygons
 - Compute a constant illumination value for each polygon
 - Choose a viewpoint and display the visible polygon

From Donald Fong's slides

KAIST

Radiosity Result

Compute Form Factors

$$F(j \to i) = \frac{1}{A_j} \int_{A_i A_j} \frac{\cos \theta_x \cdot \cos \theta_y}{\pi \cdot r_{xy}^2} \cdot V(x, y) \cdot dA_y \cdot dA_x$$

KAIST

Radiosity Equation

· Radiosity for each polygon i

$$\forall i: B_i = B_{e,i} + \rho_i \sum_{j=1}^N B_j F(i \to j)$$

- · Linear system
 - B_i : radiosity of patch i (unknown)
 - B_{e,i} : emission of patch i (known)
 - ρ_i : reflectivity of patch i (known)
 - F(i→j): form-factor (coefficients of matrix)

© Kavita Bala, Computer Science, Cornell University

Linear System of Radiosity Equations

$$\begin{bmatrix} 1-\rho_1F_{1\rightarrow1} & -\rho_1F_{1\rightarrow2} & \dots & -\rho_1F_{1\rightarrow n} \\ -\rho_2F_{2\rightarrow1} & 1-\rho_2F_{2\rightarrow2} & \dots & -\rho_2F_{2\rightarrow n} \\ \dots & \dots & \dots & \dots \\ -\rho_nF_{n\rightarrow1} & -\rho_nF_{n\rightarrow2} & \dots & 1-\rho_nF_{n\rightarrow n} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ \dots \\ B_n \end{bmatrix} = \begin{bmatrix} B_{e,1} \\ B_{e,2} \\ \dots \\ B_{e,n} \end{bmatrix}$$

$$known$$

$$known$$

$$known$$

$$unknown$$

© Kavita Bala, Computer Science, Cornell University

ST

How to Solve Linear System

- Matrix inversion
 - Takes O(n³)
- Gather methods
 - Jacobi iteration
 - Gauss-Seidel
- Shooting
 - Southwell iteration

Iterative Approaches

- Jacobi iteration
 - Start with initial guess for energy distribution (light sources)
 - Update radiosity of all patches based on the previous guess

$$B_{i} = B_{e,i} + \rho_{i} \sum_{j=1}^{N} B_{j} F(i \rightarrow j)$$
new value old values

- Repeat until converged
- Guass-Seidel iteration
 - New values used immediately

Hybrid and Multipass Methods

- Ray tracing
 - Good for specular and refractive indirect illumination
 - View-dependent
- Radiosity
 - Good for diffuse
 - Allows interactive rendering
 - Does not scale well for massive models
- Hybrid methods
 - Combine both of them in a way

01

Class Objectives were:

- Understand radiosity
 - Radiosity equation
 - Solving the equation

Instant Radiosity

- Use the concept of Radiosity
- Map its functions to those of classic rendering pipeline
 - Utilize fast GPU
- Additional concepts
 - Virtual point lights
 - Shadow maps
- Micro-Rendering for Scalable, Parallel Final Gathering (Video)
 - Tobias Ritschel, Thomas Engelhardt, Thorsten Grosch, Hans-Peter Seidel, Jan Kautz, Carsten Dachsbacher

KAIST

 ACM Trans. Graph. 28(5) (Proc. SIGGRAPH Asia 2009), 2009.

Radiometry and Rendering Equation

Sung-Eui Yoon (윤성의)

http://sglab.kaist.ac.kr/~sungeui

Class Objectives

- Know terms of:
 - Hemispherical coordinates and integration
 - Various radiometric quantities (e.g., radiance)
 - Basic material function, BRDF
 - Understand the rendering equation

KAIST

Motivation

Light and Material Interactions

Physics of light

- Radiometry
- Material properties

Rendering equation

Models of Light

- Quantum optics
 - Fundamental model of the light
 - Explain the dual wave-particle nature of light
- Wave model
 - Simplified quantum optics
 - Explains diffraction, interference, and polarization

- Geometric optics
 - Most commonly used model in CG
 - Size of objects >> wavelength of light
 - Light is emitted, reflected, and transmitted

KAIST

Hemispheres

- Hemisphere
 - Two-dimensional surfaces
- Direction
 - Point on (unit) sphere

 $\theta \in [0, \frac{\pi}{2}]$ $\varphi \in [0, 2\pi]$

From kavita's slides

KAIST

Solid Angles

Full sphere = 4pi steradians

Hemispherical Coordinates

- Direction, (-)
 - Point on (unit) sphere

 $dA = (r\sin\theta d\varphi)(rd\theta)$

Erom kovito'o olidoo

Hemispherical Coordinates

Differential solid angle

$$d\omega = \frac{dA}{r^2} = \sin\theta d\theta d\varphi$$

KAIST

Irradiance

 Incident radiant power per unit area (dP/dA)

Area density of power

- Symbol: E, unit: W/ m²
 - Area power density existing a surface is called radiance exitance (M) or radiosity (B)
- For example
 - A light source emitting 100 W of area 0.1 m²
 - Its radiant exitance is 1000 W/ m²

Radiance

11

- Radiant power at x in direction θ
 - $L(x \to \Theta)$: 5D function
 - Per unit area
 - Per unit solid angle

Important quantity for rendering

Radiance: Projected Area

$$L(x \to \Theta) = \frac{d^2 P}{dA^{\perp} d\omega_{\Theta}}$$
$$= \frac{d^2 P}{d\omega_{\Theta} dA \cos \theta}$$

Why per unit projected surface area

Sensitivity to Radiance

Responses of sensors (camera, human eye) is proportional to radiance

 Pixel values in image proportional to radiance received from that direction

Properties of Radiance

Invariant along a straight line (in vacuum)

From kavita's slides

KAIST

KAIST

Invariance of Radiance

Figure 2.3. Invariance of radiance.

Light and Material Interactions

- Physics of light
- Radiometry
- Material properties

Rendering equation

13

Materials

Bidirectional Reflectance Distribution Function (BRDF)

$$f_r(x, \Psi \to \Theta) = \frac{dL(x \to \Theta)}{dE(x \leftarrow \Psi)} = \frac{dL(x \to \Theta)}{L(x \leftarrow \Psi)\cos(N_x, \Psi)d\omega_{\Psi}}$$

© Kavita Bala, Computer Science, Cornell University

18

KAIST

Light and Material Interactions

- Physics of light

- Radiometry
- Material properties

Rendering equation

Light Transport

- Goal
 - Describe steady-state radiance distribution in the scene
- Assumptions
 - Geometric optics
 - Achieves steady state instantaneously

Rendering Equation

- Describes energy transport in the scene
- Input
 - Light sources
 - Surface geometry
 - Reflectance characteristics of surfaces
- Output

21

Value of radiances at all surface points in all directions

Rendering Equation

$$L(x \to \Theta) = L_e(x \to \Theta) + L_r(x \to \Theta)$$

© Kavita Bala, Computer Science, Cornell University

KAIST

K

KAIST

Rendering Equation

$$\begin{array}{rcl} L(x \to \Theta) & = & L_e(x \to \Theta) & + \\ & \int\limits_{hemisphere} L(x \leftarrow \Psi) \ f_r(x, \Psi \leftrightarrow \Theta) \cos(\mathbb{N}_{\mathbf{x}}, \Psi) d\omega_{\Psi} \end{array}$$

• Applicable for each wavelength

© Kavita Bala, Computer Science, Cornell University

Rendering Equation

Monte Carol Integration

Sung-Eui Yoon (윤성의)

http://sglab.kaist.ac.kr/~sungeui

Class Objectives

- Sampling approach for solving the rendering equation
 - Monte Carlo integration
 - Estimator and its variance

KAIST

Radiance Evaluation

- Fundamental problem in GI algorithm
 - Evaluate radiance at a given surface point in a given direction
 - Invariance defines radiance everywhere else

© Kavita Bala, Computer Science, Cornell University

Radiance Evaluation

... find paths between sources and surfaces to be shaded

© Kavita Bala, Computer Science, Cornell University

Why Monte Carlo?

Radiace is hard to evaluate

$$\underline{L(x \to \Theta)} = \underline{L_{\varepsilon}(x \to \Theta)} + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot \underline{L(x \leftarrow \Psi)} \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}$$

$$\underline{L(x \leftarrow \Psi)}$$

$$\underline{L(x \to \Theta)}$$
 From kavita's slides

- Sample many paths
 - Integrate over all incoming directions
- Analytical integration is difficult
 - Need numerical techniques

KAIST

Monte Carlo Integration

- Numerical tool to evaluate integrals
 - Use sampling
- Stochastic errors
- Unbiased
 - On average, we get the right answer

KAIST

Numerical Integration

• A one-dimensional integral:

$$I = \int_{a}^{b} f(x) dx$$

Deterministic Integration

Quadrature rules:

$$I = \int_{a}^{b} f(x)dx$$
$$\approx \sum_{i=1}^{N} w_{i} f(x_{i})$$

Monte Carlo Integration

Primary estimator:

$$I = \int_{a}^{b} f(x) dx$$

$$I_{prim} = f(\overline{x})$$

@ Kavita Bala, Computer Science, Cornell University

Monte Carlo Integration

Primary estimator:

$$I = \int_{a}^{b} f(x) dx$$

$$I_{prim} = f(x_s)(b-a)$$

$$E(I_{prim}) = \int_{a}^{b} f(x)(b-a)p(x)dx = \int_{a}^{b} f(x)(b-a)\frac{1}{(b-a)}dx = I$$

Unbiased estimator!

© Kavita Bala, Computer Science, Cornell University

Monte Carlo Integration

Primary estimator:

$$I = \int_{a}^{b} f(x) dx$$

$$I_{prim} = f(\overline{x})$$

$$E(I_{prim}) = \int_{0}^{1} f(x)p(x)dx = \int_{0}^{1} f(x)1dx = I$$

Unbiased estimator!

@ Kavita Bala, Computer Science, Cornell University

Monte Carlo Integration: Error

Variance of the estimator → a measure of the stochastic error

$$\sigma_{prim}^2 = \int_a^b \left[\frac{f(x)}{p(x)} - I \right]^2 p(x) dx$$

- Consider p(x) for estimate
- •We will study it as importance sampling later

@ Kavita Bala, Computer Science, Cornell University

More samples

Secondary estimator

Generate N random samples x,

Estimator:

$$\langle I \rangle = I_{\text{sec}} = \frac{1}{N} \sum_{i=1}^{N} f(\overline{x}_i)$$

Variance
$$\sigma_{\rm sec}^2 = \sigma_{\it prim}^2 \, / \, N$$

Monte Carlo Integration

Expected value of estimator

$$\begin{split} E[\langle I \rangle] &= E[\frac{1}{N} \sum_{i}^{N} \frac{f(x_{i})}{p(x_{i})}] = \frac{1}{N} \int (\sum_{i}^{N} \frac{f(x_{i})}{p(x_{i})}) p(x) dx \\ &= \frac{1}{N} \sum_{i}^{N} \int (\frac{f(x)}{p(x)}) p(x) dx \\ &= \frac{N}{N} \int f(x) dx = I \end{split}$$

- on 'average' get right result: unbiased
- Standard deviation σ is a measure of the stochastic error $\sigma^2 = \frac{1}{N} \int \left[\frac{f(x)}{p(x)} - I \right]^2 p(x) dx$

@ Kavita Bala, Computer Science, Cornell University

MC Integration - Example

- Integral
- Uniform sampling
- Samples :

$$x_1 = .86$$

$$x_1 = .86$$
 = 2.74

$$x_2 = .41$$

$$<$$
I $> = 1.44$

$$x_3 = .02$$

$$<$$
I $> = 0.96$

$$x_4 = .38$$

$$\langle T \rangle = 0.75$$

@ Kavita Bala, Computer Science, Cornell University

MC Integration - Example

Integral

$$I = \int_{0}^{1} 5x^{4} dx = 1$$

Variance

MC Integration: 2D

• Primary estimator:

$$\bar{I}_{prim} = \frac{f(\bar{x}, \bar{y})}{p(\bar{x}, \bar{y})}$$

© Kavita Bala, Computer Science, Cornell University

Monte Carlo Integration - 2D

- MC Integration works well for higher dimensions
- Unlike quadrature

$$\int_{c}^{d} f(x, y) dx dy$$

$$\langle I \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i, y_i)}{p(x_i, y_i)}$$

MC Integration: 2D

· Secondary estimator:

$$I_{\text{sec}} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(\overline{x}_i, \overline{y}_i)}{p(\overline{x}_i, \overline{y}_i)}$$

@ Kavita Bala, Computer Science, Cornell University

Advantages of MC

- Convergence rate of $O(\frac{1}{\sqrt{N}})$
- Simple
 - Sampling
 - Point evaluation
- General
 - Works for high dimensions
 - Deals with discontinuities, crazy functions, etc.

Importance Sampling

 Take more samples in important regions, where the function is large

KAIST

Class Objectives were:

- Sampling approach for solving the rendering equation
 - Monte Carlo integration
 - Estimator and its variance

22 KAIST

Monte Carlo Ray Tracing: Part I

Sung-Eui Yoon (윤성의)

http://sglab.kaist.ac.kr/~sungeui

Class Objectives

- Understand a basic structure of Monte Carlo ray tracing
 - Russian roulette for its termination
 - Path tracing

KAIST

Rendering Equation

$$L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_x) \cdot d\omega_\Psi$$
 function to integrate over all incoming directions over the hemisphere around x
$$Value \text{ we want}$$

$$= L_e + \int_{\Omega_x} \cdot f_r \cdot \cos(\Psi, n_x) \cdot d\omega_\Psi$$

@ Kavita Bala, Computer Science, Cornell University

How to compute?

$$L(x\rightarrow\Theta) = ?$$

Check for $L_e(x \rightarrow \Theta)$

Now add $L_r(x \rightarrow \Theta) =$

$$\int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}$$

@ Kavita Bala, Computer Science, Cornell University

How to compute?

- Use Monte Carlo
- Generate random directions on hemisphere Ω_x using pdf p(Ψ)

$$L(x \to \Theta) = \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}$$

$$\left\langle L(x \to \Theta) \right\rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r(\Psi_i \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi_i) \cdot \cos(\Psi_i, n_x)}{p(\Psi_i)}$$

@ Kavita Bala, Computer Science, Cornell University

How to compute?

Generate random directions Ψ_i

$$\langle L \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r(\ldots) \cdot L(x \leftarrow \Psi_i) \cdot \cos(\ldots)}{p(\Psi_i)}$$

- evaluate brdf
- evaluate cosine term
- evaluate L(x←Ψ_i)

© Kavita Bala, Computer Science, Cornell University

How to compute?

- evaluate L(x←Ψ_i)?
- Radiance is invariant along straight paths
- $vp(x, \Psi_i)$ = first visible point

• $L(x \leftarrow \Psi_i) = L(vp(x, \Psi_i) \rightarrow \Psi_i)$

© Kavita Bala, Computer Science, Cornell University

How to compute? Recursion ...

- Recursion
- Each additional bounce adds one more level of indirect light
- Handles ALL light transport
- "Stochastic Ray Tracing"

© Kavita Bala, Computer Science, Cornell University

When to end recursion?

- Contributions of further light bounces become less significant
 - Max recursion
 - Some threshold for radiance value
- If we just ignore them, estimators will be biased

KAIST

Russian Roulette

Integral

$$I = \int_{0}^{1} f(x)dx = \int_{0}^{1} \frac{f(x)}{P} P dx = \int_{0}^{P} \frac{f(y/P)}{P} dx$$

Estimator

$$\left\langle I_{roulette} \right\rangle = egin{cases} rac{f\left(x_i
ight)}{P} & ext{if } x_i \leq P, \ 0 & ext{if } x_i > P. \end{cases}$$

Variance
$$\sigma_{roulette} > \sigma$$

@ Kavita Bala, Computer Science, Cornell University

Russian Roulette

- Pick absorption probability, $\alpha = 1-P$
 - Recursion is terminated
- 1- a is commonly to be equal to the reflectance of the material of the surface
 - Darker surface absorbs more paths

Algorithm so far

- Shoot primary rays through each pixel
- Shoot indirect rays, sampled over hemisphere
- Terminate recursion using Russian Roulette

Pixel Anti-Aliasing

- Compute radiance only at the center of pixel
 - Produce jaggies
- Simple box filter
 - The averaging method

We want to evaluate using MC

Stochastic Ray Tracing

- Parameters
 - Num. of starting ray per pixel
 - Num. of random rays for each surface point (branching factor)
- Path tracing
 - Branching factor = 1

KAIST 14 KAIST

Path Tracing

1 ray / pixel

10 rays / pixel

100 rays / pixel From kavita's slides

KAIST

 Pixel sampling + light source sampling folded into one method

Algorithm so far

- Shoot primary rays through each pixel
- Shoot indirect rays, sampled over hemisphere
 - Path tracing shoots only 1 indirect ray
- Terminate recursion using Russian Roulette

Performance

- Want better quality with smaller # of samples
 - Fewer samples/better performance
 - Quasi Monte Carlo: well-distributed samples
 - Adaptive sampling

PA2

Uniform sampling (64 samples per pixel)

Adaptive sampling

Reference

17 KAIST 18

Class Objectives were:

- Understand a basic structure of Monte Carlo ray tracing
 - Russian roulette for its termination
 - Path tracing

MC Ray Tracing: Part II, Acceleration and Biased Tech.

> Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/GCG

Class Objectives:

- Extensions to the basic MC path tracer
 - Bidirectional path tracer
 - Metropolis sampling
- Biased techniques
 - Irradiance caching
 - Photon mapping

21 KAIST

Other Rendering Techniques

- Bidirectional path tracing
- Metropolis
- Biased techniques
 - Irradiance caching
 - Photon mapping

General GI Algorithm

- Design path generators
- Path generators determine efficiency of GI algorithm
- Black boxes

22

Evaluate BRDF, ray intersection, visibility evaluations, etc

Stochastic ray tracing: limitations

KAIST

Generate a path from the eye to the light source

© Kavita Bala, Computer Science, Cornell University

When does it not work?

Scenes in which indirect lighting dominates

© Kavita Bala, Computer Science, Cornell University

Bidirectional Path Tracing

 Or paths generated from both camera and source at the same time ...!

 Connect endpoints to compute final contribution

Bidirectional Path Tracing

 So ... we can generate paths starting from the light sources!

 Shoot ray to camera to see what pixels get contributions

© Kavita Bala, Computer Science, Cornell University

Unbiased vs. Consistent

Unbiased

- No systematic error
- $E[I_{estimator}] = I$
- Better results with larger N

Consistent

- Converges to correct results with more samples
- $E[I_{estimator}] = I + \varepsilon$, where $\lim_{n\to\infty} \varepsilon = 0$

Biased Methods

MC methods

29

- Too noisy and slow
- Nose is objectionable
- Biased methods: store information (caching)
 - Irradiance caching
 - Photon mapping

KAIST KAIST

from stored photons

Photon Mapping

• 2 passes:

30

hit-points

Pass 1: shoot photons

- Light path generated using MC techniques and Russian Roulette
- · Store:
 - position
 - incoming direction
 - color

@ Kavita Bala, Computer Science, Cornell University

Pass 1: shoot photons

Shoot "photons" (light-rays) and record any

Shoot viewing rays and collect information

- · Light path generated using MC techniques and Russian Roulette
- Flux for each Store: photon
 - position
 - incoming direction
 - color

@ Kavita Bala, Computer Science, Cornell University

Pass 1: shoot photons

- Light path generated using MC techniques and Russian Roulette
- Store: for diffuse materials
 - position
 - incoming direction
 - color
 - _

@ Kavita Bala, Computer Science, Cornell University

Stored Photons

Generate a few hundreds of thousands of photons

KAIST

Pass 2: viewing ray

- Search for N closest photons (+check normal)
- Assume these photons hit the point we're interested in
- Compute average radiance

© Kavita Bala, Computer Science, Cornell University

Radiance Estimation

- Compute N nearest photons
 - Consider a few hundreds of photons
 - Compute the radiance for each photon to outgoing direction
 - Consider BRDF and
 - Divided by area

Efficiency

37

- Want k nearest photons
 - Use kd-tree
- Using photon maps as it create noisy images
 - Need extremely large amount of photons

KAIST

Pass 2: Direct Illumination

Perform direct illumination for visible surface using regular MC sampling

Pass 2: Specular reflections

Specular reflection and transmission are ray traced

Pass 2: Caustics

- · Direct use of "caustic" maps
- The "caustic" map is similar to a photon map but treats LS*D path
- Density of photons in caustic map usually high enough to use as is

Pass 2:Indirect Diffuse

- Search for N closest photons
- Assume these photons hit the point
- Compute average radiance by importance sampling of hemisphere

Result

350K photons for the caustic map

42

KAIST

Class Objectives were:

- Extensions to the basic MC path tracer
 - Bidirectional path tracer
- Biased techniques
 - Photon mapping

Summary

- Two basic building blocks
- Radiometry
- Rendering equation
- MC integration
- MC ray tracing
 - Unbiased methods
 - Biased methods

Summary

Scalable Graphics Algorithms

Sung-eui Yoon

Associate Professor KAIST

http://sglab.kaist.ac.kr

Acknowledgements

Collaborators

 My students, M. Gopi, Miguel Otaduy, George Drettakis, SeungYoung Lee, YuWing Tai, John Kim, Dinesh Manocha, Peter Lindstrom, Yong Joon Lee, Pierre-Yves Laffont, Jeong Mo Hong, Sun Xin, Nathan Carr, Zhe Lin

Funding sources

- Korea Research Foundation
- Ministry of Knowledge Economy
- Samsung, Microsoft Research Asia, Adobe, Boeing

KAIST

Massive Geometric Data

Due to advances of modeling, simulation, and data capture techniques

Large-scale virtual world, 83 M tri.

Possible Solutions?

- Hardware improvement will address the data avalanche?
 - Moore's law: the number of transistor is roughly double every 18 months

Current Architecture Trends

Data access time becomes the major computational bottleneck! KAIST

Data Growth

- An observation
 - If we got higher performance, we attempt to produce bigger data to derive more useful information and handle such bigger data
- Amount of data is doubling every 18 ~ 24 months
 - "How Much Information," 2003, Lyman, Peter and Hal R.

KAIST

Main Research Theme

- Designing scalable graphics and geometric algorithms to efficiently handle massive models on commodity hardware
- Multi-resolution methods
- Cache-coherent algorithms
- Culling techniques
- Data compression
- Parallel computation,
- •Reducing data dimensions, etc
- Rendering
- •Collision detection and path planning
- Image retrieval

Proximity queries

Rendering in 2002

SGI Reality
Monster
(consisting of 40
processing units)

Running on SGI Reality Monster

KAIST

Rendering Today

 Applied various algorithms that we designed for rendering and collision detection

Scalable Rendering & Collision Detection

Scalable Graphics Lab
KAIST

KAIST

Cache-Oblivious Ray Reordering [Moon et al., ToG 2010]

KAIST

Adaptive Rendering based on Weighted Local Regression [Moon et al. ToG 14]

- Denoise Monte Carlo ray tracing results, and generate more rays on regions with higher reconstruction error
 - Uses a novel image-space reconstruction method
 - Derives a robust error estimation process
 - Uses it to drive our sampling process

T-ReX: Interactive Global Illumination of Massive Models on Heterogeneous Computing Resources

- Use compact, decoupled representations for CPUs and GPUs [Kim et al., TVCG 14]
 - Use HCCMesh, random-accessible compressed mesh and BVHs, at CPU
 - Use a compact volumetric rep. at GPU
 CPU
 GPU

<u>video</u>

Codes are available

- http://sglab.kaist.ac.kr/software.htm
- T-Rex is available
- Adaptive sampling and reconstruction will be available
 - Will be discussed tomorrow at 신진연구자 세션

KAIST