
CS680: 
Monte Carlo Ray Tracing

Sung-Eui Yoon
(윤성의)

Course URL:
http://jupiter.kaist.ac.kr/~sungeui/SGA/



2

Previous Time
●Monte Carlo integration
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Why Monte Carlo?
●Radiace is hard to evaluate

● Sample many paths
● Integrate over all incoming directions

● Analytical integration is difficult
● Need numerical techniques

From kavita’s slides
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How to compute?
●Use Monte Carlo

●Generate random directions on hemisphere 
ΩX using pdf p(Ψ)
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When to end recursion?

● Contributions of further light bounces 
become less significant
● Max recursion
● Some threshold for radiance value

● If we just ignore them, estimators will be 
biased

From kavita’s slides
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Russian Roulette
● Pick absorption probability, α = 1-P

● Recursion is terminated

● 1- α is commonly to be equal to the 
reflectance of the material of the surface
● Darker surface absorbs more paths
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Algorithm so far
● Shoot primary rays through each pixel
● Shoot indirect rays, sampled over 

hemisphere
● Terminate recursion using Russian Roulette
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Pixel Anti-Aliasing
● Compute radiance only at the 

center of pixel
● Produce jaggies

● Simple box filter
● The averaging method

●We want to evaluate using 
MC
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Stochastic Ray Tracing
● Parameters

● Num. of starting ray per pixel
● Num. of random rays for each surface point 

(branching factor)

● Path tracing
● Branching factor = 1
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Path Tracing

● Pixel sampling + light source sampling 
folded into one method

From kavita’s slides
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Algorithm so far
● Shoot primary rays through each pixel
● Shoot indirect rays, sampled over 

hemisphere
● Path tracing shoots only 1 indirect ray

● Terminate recursion using Russian Roulette
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Algorithm
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Performance
●Want better quality with smaller # of 

samples
● Fewer samples/better performance
● Stratified sampling
● Quasi Monte Carlo: well-distributed samples

● Faster convergence
● Importance sampling
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High Dimensions

● Problem for higher dimensions
● Sample points can still be arbitrarily close 

to each other
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Higher Dimensions
● Stratified grid sampling

●N-rooks sampling



25



26



27



28



29

Example: van der Corput 
Sequence
●One of simplest low-discrepancy sequences

●Radical inverse function, Φb(n)
● Given n =               ,

● Φb(n) = 0.d1d2d3 … dn
● E.g., Φ2(i): 1110102  0.010111

● van der Corput sequence, xi=Φ2(i)
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Example: van der Corput 
Sequence
●One of simplest low-discrepancy sequences
● xi=Φ2(i)

i Base 2 Φ2(i)

1 1 .1  = 1/2

2 10 .01 = 1/4

3 11 .11 = 3/4

4 100 .001 = 1/8

5 101 .101 = 5/8
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Halton and Hammersley  
●Halton

● xi=(Φ2(i), Φ3(i), Φ5(i), …, Φprime(i))
●Hammersley

● xi=(1/N, Φ2(i), Φ3(i), Φ5(i), …, Φprime(i))
● Assume we know the number of samples, N
● Has slightly lower discrepancy

Halton Hammersley
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Why Use Quasi Monte Carlo?
●No randomness
●Much better than pure Monte Carlo method
● Converge as fast as stratified sampling
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Performance and Error
●Want better quality with smaller number of 

samples
● Fewer samples better performance
● Stratified sampling
● Quasi Monte Carlo: well-distributed samples

● Faster convergence
● Importance sampling: next-event estimation
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Importance Sampling  
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Importance Sampling  
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Comparison

●With and without considering direct 
illumination
● 16 samples / pixel

From kavita’s slides
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Anti-aliasing

From kavita’s slides
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Do not take visibility into account!
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Research on Many Lights
●Ward 91

● Sort lights based on their maximum 
contribution

● Pick bright lights based on a threshold
● Do not consider visibility

●Many other papers
● Look at our reading list
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y z x
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General GI Algorithm
●Design path generators

● Path generators determine efficiency of GI 
algorithm

● Black boxes
● Evaluate BRDF, ray intersection, visibility 

evaluations, etc
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Other Rendering Techniques
● Bidirectional path tracing

●Metropolis

● Biased techniques
● Irradiance caching
● Photon mapping



74



75



76



77



78



79



80



81

Other Rendering Techniques
●Metropolis

● Biased techniques
● Irradiance caching
● Photon mapping
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Metropolis
● Based on Metropolis sampling (1950’s)

● Introduced by Veach and Guibas to CG

●Deals with hard to find light paths
● Robust

●Hairy math, but it works
● Not that easy to implement
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Metropolis
●Generate paths

●Once a valid path is found, mutate it to 
generate new valid paths

● Advantages:
● Path re-use
● Local exploration: found hard-to-find light 

distribution, mutate to find other such paths
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Metropolis
● Advantages

● Robust
● Good for hard to find light paths

●Disadvantage
● Slow convergence for many important paths
● Tricky to implement and get right
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Unbiased vs. Consistent
●Unbiased

● No systematic error
● E[Iestimator] = I
● Better results with larger N

● Consistent
● Converges to correct results with more samples
● E[Iestimator] = I + ε, where limn ∞ ε = 0
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Biased Methods
●MC methods

● Too noisy and slow
● Nose is objectionable

● Biased methods: store information 
(caching)
● Irradiance caching
● Photon mapping
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Irradiance Caching
● Introduced by Greg Ward 1988
● Implemented in RADIANCE

● Public-domain software

● Exploits smoothness of irradiance
● Cache and interpolate irradiance estimates
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Irradiance Caching Approach
● Irradiance E(x) estimated using MC
● Cache irradiance when possible

● Store in octree for fast access
●When do we use this cache of irradiance 

values?



93



94

Irradiance Caching: Result

From Dutre et al.
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Photon Mapping
● 2 passes:

● Shoot “photons” (light-rays) and record any 
hit-points

● Shoot viewing rays and collect information 
from stored photons
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Flux for each 
photon



98

for diffuse 
materials
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Stored Photons
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Radiance Estimation
● Compute N nearest photons

● Compute the radiance for each photon to 
outgoing direction

● Consider BRDF
● Divided by area
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Efficiency
●Want k nearest photons

● Use kd-tree

●Using photon maps as it create noisy 
images
● Need extremely large amount of photons
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Perform 
direct 

illumination  
for visible 

surface 
using 

regular MC 
sampling
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Specular 
reflection 

and 
transmission 

are ray 
traced
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Result
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Summary
● Two basic building blocks
●Radiometry
●Rendering equation
●MC integration
●MC ray tracing

● Unbiased methods
● Biased methods
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