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Previous Time

e Monte Carlo integration
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Why Monte Carlo?

e Radiace is hard to evaluate

Lix YY)

L(x— )

From kavita’s slides

e Sample many 'phs
e Integrate over all incoming directions

e Analytical integration is difficult
e Need numerical techniques

KAIST



Rendering Equation

1
|

: Y .
function to integrate over all
|

incoming directions over the
hemisphere around x

"

Value we want
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How to compute?
L(x—>0) =?

Check for L (x—0)

Now add L (x—0) =

& Kavita Bala, Computer Science, Cornell University



How to compute?

e Use Monte Carlo

e Generate random directions on hemisphere
Q, using pdf p(W)
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How to compute?

Generate random
directions 'V,

— evaluate brdf
— evaluate cosine term
— evaluate L(x<¥;)

& Kavita Bala, Computer Science, Cornell University



How to compute?

evaluate L(x<-V;)?

Radiance Is invariant along
straight paths

vp(x, ‘¥,;) = first visible point

L(x<-'¥;) = L(vp(x, ¥;) = ¥))

& Kavita Bala, Computer Science, Cornell University



How to compute? Recursion ...

Recursion ....

Each additional bounce

adds one more level of
iIndirect light

Handles ALL light transport

“Stochastic Ray Tracing”

& Kavita Bala, Computer Science, Cornell University



When to end recursion?

sssssssssssssssss

e Contributions of further light bounces
become less significant

e Max recursion
e Some threshold for radiance value

o If we just ignore them, estimators will be
biase

10 KAIST



Russian Roulette

Integral

Estimator

Variance

& Kavita Bala, Computer Science, Cornell University
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Russian Roulette

e Pick absorption probability, a = 1-P
e Recursion is terminated

e 1- a is commonly to be equal to the
reflectance of the material of the surface

e Darker surface absorbs more paths
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Algorithm so far

e Shoot primary rays through each pixel

e Shoot indirect rays, sampled over
hemisphere

e Terminate recursion using Russian Roulette

KAIST
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Pixel Anti-Aliasing

e Compute radiance only at the
center of pixel

e Produce jaggies

e Simple box filter
e The averaging method

o ¥4v€ want to evaluate using

KAIST
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Stochastic Ray Tracing

e Parameters
e Num. of starting ray per pixel

e Num. of random rays for each surface point
(branching factor)

e Path tracing
e Branching factor =1

KAIST



Path Tracing

1 ray / pixel 10 rays / pixel 100 rays / pixel

From kavita’s slides

¢ Pixel sampling + light source sampling
folded into one method
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Algorithm so far

e Shoot primary rays through each pixel

e Shoot indirect rays, sampled over
hemisphere

e Path tracing shoots only 1 indirect ray
e Terminate recursion using Russian Roulette

KAIST
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Algorithm

& Kavita Bala, Computer Science, Cornell University
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Performance

e Want better quality with smaller # of
samples

e Fewer samples/better performance
e Stratified sampling
e Quasi Monte Carlo: well-distributed samples

e Faster convergence
e Importance sampling

KAIST



Stratifled Sampling

Samples could be arbitrarily close

F 3

Split integral In subparts

Estimator

Variance:
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Stratiflied Sampling

9 shadow ravs 9 shadow rays
not stratified stratified

& Kavita Bala, Computer Science, Cornell University



Stratifled Sampling

36 shadow rays 36 shadow rays
not stratified stratified

& Kavita Bala, Computer Science, Cornell University
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High Dimensions

— N° samples

e Problem for higher dimensions

e Sample points can still be arbitrarily close
to each other

KAIST
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Higher Dimensions

e Stratified grid sampling

— N9 samples

e N-rooks sampling

— N samples

Z Kavita Bala, Computer Sciznce, Cornell University
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N-Rooks Sampling - 9 rays

not
stratified

stratified N-Rooks




N-Rooks Sampling - 36 rays

stratified

stratified N-Rooks




Quasi Monte Carlo

 Eliminates randomness to find well-
distributed samples

« Samples are determinisitic but "appear”
random

& Kavita Bala, Computer Science, Cornell University



Quasi-Monte Carlo (QMC)

* Notions of variance, expected value don't
apply

* Introduce the notion of discrepancy
— Discrepancy mimics variance

— E.g., subset of unit interval [0,X]
» Of N samples, n are in subset
» Discrepancy: |x-n/Nj|

— Mainly: “it looks random”

& Kavita Bala, Computer Science, Cornell University
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Example: van der Corput
Sequence

e One of simplest low-discrepancy sequences

e Radical inverse function, ®,(n)
e Givenn= » db™,

[ ¢b(l1) = 0-d1d2d3 L dn
o E.g., ®,(i): 111010, > 0.010111

e van der Corput sequence, X;=®,(i)

KAIST



Example: van der Corput
Sequence

e One of simplest low-discrepancy sequences
* X;=D,(i)

i Base 2 D, (i)
1 1 1 =1/2
2 10 01=1/4
3 11 11 =3/4
4 100 .001 = 1/8
5 101 .101 = 5/8
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Halton and Hammersley

e Halton
o X;=(D,(i), ®5(i), P5(i), .o Pprime(i))
e Hammersley
o X;=(1/N, ®,(i), ®;(i), P5(i), ...; Pprime(i))
e Assume we know the nhumber of samples, N
e Has slightly lower discrepancy

e

Halton = . o il St o Hammersley
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Why Use Quasi Monte Carlo?

e No randomness
e Much better than pure Monte Carlo method
e Converge as fast as stratified sampling
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Performance and Error

e Want better quality with smaller number of
samples

e Fewer samples - better performance
e Stratified sampling
e Quasi Monte Carlo: well-distributed samples

e Faster convergence
e Importance sampling: next-event estimation

33 KAIST



Path Tracing

Sample hemisphere

o NTRE

1 sample/pixel 16 samples/pixel 256 samples/pixel

* Importance Sampling: compute direct
llumination separately!

& Kavita Bala, Computer Science, Cornell University



Direct lllumination

« Paths of length 1 only, between receiver
and light source

® Kavita Bala, Computer Science, Cornell University



Importance Sampling

v
Radiance from light sources + radiance from other surfaces

© Kavita Bala, Computer Science, Cornell University



Importance Sampling

* S0 ... sample direct and indirect with
separate MC integration

& Kavita Bala, Computer Science, Comell University
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Comparison

e With and without considering direct
illumination

e 16 samples / pixel

KAIST



Rays per pixel

l >l nple/ 4 samples/
pixel pixel

16 samples/ 256 samples/
pixel pixel

® Kavita Bala, Computer Science, Cornell University



Direct lllumination

hemisphere integration area integration

& Kavita Bala, Computer Science, Cornell University



Estimator for direct lighting

* Pick a point on the light's surface with pdf

* For N samples, direct light at point x is:

& Kavita Bala, Computer Science, Cornell University



Generating direct paths

* Pick surface points y; on light source
» Evaluate direct illumination integral

& Kavita Bala, Computer Science, Cormnell University



PDF for sampling light

e Uniform

* Pick a point uniformly over light's area
— Can stratify samples

¢ Estimator:

® Kavita Bala, Computer Sciegnce, Cornell University



More points
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Even more points ...

36 shadow rays 100 shadow rays
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Different pdfs

 Uniform

» Solid angle sampling
— Removes cosine and distance from integrand
— Better when significant foreshortening

& Kavita Bala, Computer Science, Cornell University



Parameters

* How to distribute paths within light source?
— Uniform
— Solid angle
— What about light distribution?

* How many paths (“shadow-rays”)?
— Total?

— Per light source? (~intensity, importance, ...)

& Kavita Bala, Computer Science, Comell University



Scenes with many lights

* Many lights in scenes: M lights

lights

* How to handle many lights?

 Formulation 1: M integrals, one per light

— Same solution technique as earlier for each
light

© Kavita Bala, Computer Science, Cornell University



Antialiasing: pixel
* Anti-aliasing: K M'N

lights

& Kavita Bala, Computer Science, Cornell University



Formulation over all lights

When M is large, each direct lighting
sample is very expensive

We would like to importance sample the
lights

Instead of M integrals

Formulation over 1 integration domain

& Kavita Bala, Computer Science, Cornell University



Why?

Do not need a minimum of M rays/sample
Can use only one ray/sample

Still need N samples, but 1 ray/sample

Ray is distributed over the whole
iIntegration domain

— Can importance sample the lights

2 Kavita Bala, Computer Science, Comell University
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Anti-aliasing
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How to sample the lights?
» A discrete pdf p,(k;) picks the light k

* A surface point is then picked with pdf
P(Yilki)

« Estimator with N samples:

& Kavita Bala, Computer Scignce, Cormell University



Strategies for picking light

— Uniform

— Area

— Power

Do not take visibility into account!

® Kavita Bala, Computer Science, Comell University
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Research on Many Lights

e Ward 91

e Sort lights based on their maximum
contribution

e Pick bright lights based on a threshold
e Do not consider visibility

e Many other papers
e Look at our reading list

KAIST



Direct paths

» Different path generators produce different
estimators and different error characteristics

» Direct illumination general algorithm:

compute radiance (point, direction)
est rad = 0;
for (i=0: i<n: i++)
P = generate path:
est rad += energy transfer(p) / probabilitv(p):
est rad = est rad/ n;
return(est rad):

= Kavita Bala, Computer Science, Cornell University



Stochastic Ray Tracing

« Sample area of light source for direct term

« Sample hemisphere with random rays for
iIndirect term

« Optimizations:
— Stratified sampling

— Importance sampling

— Combine multiple probability density functions
Into a single PDF

& Kavita Bala, Computer Science, Cornell University



Indirect lllumination

« Paths of length > 1
« Many different path generators possible

» Efficiency depends on:

— BRDFs along the path
— Visibility function

& Kavita Bala, Computer Science, Cornell University



Indirect paths - surface sampling

« Simple generator (path length = 2):
— select point on light source
— select random point on surfaces

— per path:
» 2 visibility checks

& Kavita Bala, Computer Science, Cornell University



Indirect paths - surface sampling

 Indirect illumination (path length 2):
Yy 222X

« 2 visibility values cause noise
— which might be O

& Kavita Bala, Computer Science, Cornell University



Indirect paths - source shooting

» Shoot ray from light source, find hit location
« Connect hit point to receiver

— per path:
* 1 ray intersection
= 1 visibility check

& Kavita Bala, Computer Science, Cornell University



Indirect paths - receiver gathering

« Shoot ray from receiver point, find hit location
* Connect hit point to random point on light source

— per path:
* 1 ray intersection
= 1 visibility check

& Kavita Bala, Computer Science, Cornell University



Indirect paths

Surface sampling Source shootmg Recerver gathering
- 2 visibility terms: - 1 visibality term - 1 visibility term
can be 0 - 1 ray intersection - 1 ray intersection

& Kavita Bala, Computer Science, Cornell University



More variants ...

« Shoot ray from receiver point, find hit
location

« Shoot ray from hit point, check if on light
source
— per path:
= 2 ray intersections
= L. might be zero

& Kavita Bala, Computer Science, Cornell University



Indirect paths

« Same principles apply to paths of length > 2
— generate multiple surface points

— generate multiple bounces from light sources
and connect to receiver

— generate multiple bounces from receiver and
connect to light sources

» Estimator and noise characteristics change
with path generator

& Kavita Bala, Computer Science, Cormell University



Stochastic Ray Tracing

« Sample area of light source for direct term

« Sample hemisphere with random rays for
iIndirect term

» Optimizations:
— Stratifled sampling
— Importance sampling

— Combine multiple probability density functions
Into a single PDF

& Kavita Bala, Computer Science, Cornell University



Sampling strategies

« Uniform sampling over the hemisphere

& Kavita Bala, Computer Science, Cornell University



Sampling strategies

« Sampling according to the cosine factor

& Kavita Bala, Computer Science, Cornell University



Sampling strategies

« Sampling according to the BRDF

& Kavita Bala, Computer Science, Cornell University



Sampling strategies

« Sampling according to the BRDF times
the cosine

& Kavita Bala, Computer Science, Cornell University



Comparison

With importance sampling Without importance sampling
(brdf on sphere)

& Kavita Bala, Computer Science, Cornell University
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General Gl Algorithm

e Design path generators

e Path generators determine efficiency of GI
algorithm

e Black boxes

e Evaluate BRDF, ray intersection, visibility
evaluations, etc

KAIST
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Other Rendering Techniques

¢ Bidirectional path tracing
e Metropolis

e Biased techniques
e Irradiance caching
e Photon mapping

KAIST



Stochastic ray tracing: limitations

« Generate a path from the eye to the light
source

& Kavita Bala, Computer Science, Cornell University



When does it not work?

« Scenes In which indirect lighting dominates

& Kavita Bala, Computer Science, Cornell University



Bidirectional Path Tracing

« SO ... we can generate paths starting from
the light sourcesl

« Shoot ray to
camera to see
what pixels get
contributions

& Kavita Bala, Computer Science, Cornell University



Bidirectional Path Tracing

« Or paths generated from both camera and
source at the same time ...

« Connect
endpoints to
compute final
contribution

& Kavita Bala, Computer Science, Cornell University



Complex path generators

« Bidirectional ray tracing
— shoot a path from light source

— shoot a path from receiver
— connect end points

& Kavita Bala, Computer Science, Cornell University



Why? BRDF - Reciprocity

« Direction In which path is generated, Is not
important: Reciprocity

\\i."

= = '-\""\-\. - - -
a\ / g &
-

R

» Algorithms:
— trace rays from the eye to the light source
— trace rays from light source to eye
— any combination of the above

& Kavita Bala, Computer Science, Cormell University



Bidirectional ray tracing

« Parameters
— eye path length = 0: shooting from source
— light path length = 0: gathering at receiver

* When useful?

— Light sources difficult to reach
— Specific brdf evaluations (e.g., caustics)

& Kavita Bala, Computer Science, Cornell University
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Other Rendering Techniques

e Metropolis

e Biased techniques
e Irradiance caching
e Photon mapping

KAIST
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Metropolis

e Based on Metropolis sampling (1950’'s)
e Introduced by Veach and Guibas to CG

e Deals with hard to find light paths
e Robust

e Hairy math, but it works
e Not that easy to implement

KAIST
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Metropolis

e Generate paths

e Once a valid path is found, mutate it to
generate new valid paths

e Advantages:
e Path re-use

e Local exploration: found hard-to-find light
distribution, mutate to find other such paths

KAIST



Metropolis

& Kavita Bala, Computer Science, Cornell University



Metropolis

valid path

& Kavita Bala, Computer Science, Cornell University



Metropolis

small
perturbations

& Kavita Bala, Computer Science, Cornell University



Metropolis

Accept
mutations
based on
energy
transport

& Kavita Bala, Computer Science, Cornell University
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Metropolis

e Advantages
e Robust
e Good for hard to find light paths

e Disadvantage
e Slow convergence for many important paths
e Tricky to implement and get right

KAIST
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Unbilased vs. Consistent

e Unbiased
e No systematic error

¢ E[Iestimator] =1
e Better results with larger N

e Consistent
e Converges to correct results with more samples
o E[l.imator] =1 + € wherelim_,,€=0

KAIST
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Biased Methods

e MC methods

e Too noisy and slow
e Nose is objectionable

e Biased methods: store information
(caching)

e Irradiance caching
e Photon mapping

KAIST
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Irradiance Caching

e Introduced by Greg Ward 1988

e Implemented in RADIANCE
e Public-domain software

e Exploits smoothness of irradiance
e Cache and interpolate irradiance estimates

KAIST
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Irradiance Caching Approach

e Irradiance E(x) estimated using MC
e Cache irradiance when possible
e Store in octree for fast access

e When do we use this cache of irradiance
values?

KAIST



Smoothness Measure

 When new sample requested
— Query octree for samples near location
_ 0
— Check ¢ at x, x; Is a nearby sample , o

— Weight samples inversely proportional to g

— Otherwise, compute new sample

2 Kavita Bala, Computer Science, Cornell University
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Irradiance Caching: Result

From Dutre et al.
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Photon Mapping

e 2 passes:
e Shoot "photons” (light-rays) and record any
hit-points
e Shoot viewing rays and collect information
from stored photons

KAIST



Pass 1: shoot photons

» Light path
generated using
MC techniques and
Russian Roulette

« Store:
— position
— incoming direction
— color

& Kavita Bala, Computer Science, Cornell University



Pass 1: shoot photons

* Light path
generated using
MC technigques and
Russian Roulette

Flux for each

« Store: shoton

— position
— incoming direction
— color

& Kavita Bala, Computer Science, Cornell University



Pass 1: shoot photons

* Light path
generated using
MC techniques and
Russian Roulette

. . for diffuse
Store: materials

— position
— Incoming direction
— color

& Kavita Bala, Computer Science, Cornell University
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Stored Photons

KAIST




Pass 2: viewing ray

» Search for N
closest photons
(+check normal)

 Assume these
photons hit the
point we're
Interested In

 Compute average
radiance

& Kavita Bala, Computer Science, Cornell University




Radiance Estimation

e Compute N nearest photons
e Compute the radiance for each photon to
outgoing direction
e Consider BRDF
e Divided by area

01 '4 KAIST



Efficiency

e Want k nearest photons
e Use kd-tree

e Using photon maps as it create noisy
Images

e Need extremely large amount of photons

102 KAIST



Pass 2: Direct lllumination

Perform
direct
HHlumination
for visible
surface
using
regular MC
sampling




Pass 2: Specular reflections

Specular
reflection
and
transmission
are ray
traced




Pass 2: Caustics

* Direct use of
‘caustic” maps

* The “caustic’ map
IS similar to a
photon map but
treats LS*D path

* Density of photons
In caustic map
usually high
enough to use as is

& Kavita Bala, Computer Science, Cornell University




Pass 2:Indirect Diffuse

» Search for N
closest photons

* Assume these
photons hit the
point

« Compute average
radiance by
Importance
sampling of
hemisphere

& Kavita Bala, Computer Science, Cornell University




Result

107 KAIST




Summary

e Two basic building blocks
e Radiometry

e Rendering equation

e MC integration

e MC ray tracing
e Unbiased methods
e Biased methods
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