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Person Re-identification (Person Re-ID)

* Person re-ID aims to retrieve a person corresponding to a given query across
disjoint camera views or different time stamps.

* Applications: Surveillance system, Finding a missing person, etc.
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Fig. 1: The flow of de51gnmg a practical person Re-ID system, including five main steps: 1) Raw Data Collection, (2) Bounding
Box Generation, 3) Training Data Annotation, 4) Model Training and 5) Pedestrian Retricval.

SGVR Lab
KAIST Ye et al. Deep Learning for Person Re-identification: A Survey and Outlook. In TPAMI 2021.
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Person Re-identification (Person Re-ID)

Conference
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Fig. Percentage of person re-ID papers on top conferences ove
r the years. Numbers above the markers indicate the number of
re-1D papers.
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SGVR Lab Zheng et al. Person Re-identification: Past, Present and Future. In arXiv 2016.

MIST https://github.com/bismex/Awesome-person-re-identification.
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Datasets for Person Re-ID

e Evaluation metric
o mean Average Precision (mAP)
o Cumulative Matching Characteristics (CMC)

Image datasets
Dataset Time #ID #image #cam. Label Res. Eval
VIPeR 2007 632 1,264 2 hand fixed CMC
iLIDS 2009 119 476 2 hand vary CMC
GRID 2009 250 1,275 8 hand vary CMC
PRID2011 2011 200 1,134 2 hand fixed CMC
CUHKO1 2012 971 3,884 2 hand fixed CMC
CUHKO02 2013 1,816 7,264 10 hand fixed CMC
CUHKO03 2014 1,467 13,164 2 both  vary CMC
Market-1501 2015 1,501 32,668 6 both fixed C&M
DukeMTMC 2017 1,404 36,411 8 both fixed C&M
Airport 2017 9,651 39,902 6 auto fixed C&M
MSMT17 2018 4,101 126,441 15 auto vary C&M
Video datasets
Dataset time #ID  #track(#bbox) #cam. label Res. Eval
PRID-2011 2011 200 400 (40k) 2 hand fixed CMC
iLIDS-VID 2014 300 600 (44k) 2 hand vary CMC
MARS 2016 1261 20,715 (1M) 6 auto fixed C&M
Duke-Video 2018 1,812 4,832 (-) 8 auto fixed C&M
Duke-Tracklet | 2018 1,788 12,647 (-) 8 auto C&M
LPW 2018 2,731  7,694(590K) 4 auto  fixed C&M
SGVR Lab LS-VID 2019 3,772 14,943 (3M) 15 auto fixed C&M
MIST Ye et al. Deep Learning for Person Re-identification: A Survey and Outlook. In TPAMI 2021.
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Challenges in Person Re-ID

* Challenges by different camera views and time stamps.
o Variance of viewpoints, illumination, pose, etc.
o Occlusions.
o Low resolutions.

* Large intra-variation & Small inter-variation

query query 3

SGVR Lab True match False match
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Challenges in Person Re-ID

* Long-tail problem.
o In person re-ID, all datasets suffer from the insufficient training set.
o Insufficient training sets can yield overfitting and unstable convergences.
o MNIST 10 class/ 5000 per class, CIFAR 100 class/500 per class.
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SGVR Lab Ro et al. Backbone Can Not be Trained at Once: Rolling Back to Pre-trained Network for Person Re-ldentification. In AAAI 2019.
MIST Zheng et al. Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro. In ICCV 2017.
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General Protocol of Person Re-ID

* Person re-identification pipeline.

Feature
Extraction

SGVR Lab

KAIST

Feature
Extraction

Similarity
Search

Candidates of Matched Person
(Ranked List)

Re-ranking
(optional)




Feature Representation Learning for Person Re-ID

* Most studies focus on learning discriminative representation for person retrieval.

» Recently, deep neural networks (DNN) have provided powerful descriptors.
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Fig. 2: Four different feature learning strategies. a) Global Feature, learning a global representation for each person image
in § 2.1.1; b) Local Feature, learning part-aggregated local features in § 2.1.2; ¢) Auxiliary Feature, learning the feature
representation using auxiliary information, e.g., attributes [62], [63] in § 2.1.3 and d) Video Feature , learning the video
representation using multiple image frames and temporal information [64], [65] in § 2.1.4.

SGVR Lab
MIST Ye et al. Deep Learning for Person Re-identification: A Survey and Outlook. In TPAMI 2021.
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Supervised Person Re-identification

Recent techniques for supervised approaches
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Problem Setting

* Goal: Learn discriminative features for person retrieval with given labels.
* Protocol: Training on target domain w/ labels - Testing on target domain.

* Challenges: Large intra-variation & Small inter-variation.

Occlusions and misalignments.

SGVR Lab

KAIST
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Widely-used Loss Functions

* Identification loss < classification problem.

 Verification loss €& binary classification problem.

* Triplet loss €& metric learning problem.

SGVR Lab

KAIST
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Ye et al. Deep Learning for Person Re-identification: A Survey and Outlook. In TPAMI 2021.
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Standard Approaches

* Recent approaches utilize both identification and triplet loss.

* ResNet-50 is the standard architecture in recent studies.

Triplet loss
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features
ResNet50 FC layers
(last stride=2)
PxK images
SGVR Lab
KAIST Luo et al. A Strong Baseline and Batch Normalization Neck for Deep Person Re-identification. In Transactions on Multimedia 2020.
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Part-based Approaches

e Key idea: Learn part(local) features to search a person via part-wise matchings.

* Divide a feature map uniformly and extract part features for training.
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Part-based Convolutional Baseline (ECCV 18) Pyramidal Model (CVPR 19)

SGVR Lab Sun et al. Beyond Part Models: Person Retrieval with Refined Part Pooling (and a strong convolutional baseline). In ECCV 2018.
Zheng et al. Pyramidal Person Re-IDentification via Multi-Loss Dynamic Training. In CVPR 2019.
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Attention-based Approaches

* Key idea: Learn features robust to occlusions and misalignments via an attention.

* Focus discriminative parts using a attention mechanism.
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SGVR Lab Self-Critical Attention Lea rning (|CCV 19) Chen et al. Self-Critical Attention Learning for Person Re-ldentification. In ICCV 2019.
KAIST Li et al. Harmonious Attention Network for Person Re-Identification. In CVPR 2018.
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Approaches using Auxiliary Information

» Key idea: Learn discriminative features with additional clues.

» Attribute labels, camera labels, pose estimator, human parsing, ...
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SGVR Lab Tay et al. AANet: Attribute Attention Network for Person Re-ldentification. In CVPR 2019.
MIST Miao et al. Pose-Guided Feature Alignment for Occluded Person Re-ldentification. In ICCV 2019.
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Feature Disentanglement-based Approaches

» Key idea: Disentangle features into ID-relevant and ID-irrelevant features.
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SGVR Lab Zheng et al. Joint Discriminative and Generative Learning for Person Re-identification. In CVPR 2019.
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Data Augmentation for Person Re-ID

* Key idea: Augment input images for being robust to occlusions, camera bias, ...

* Use input image distortion, style transfer, GAN,

Camera 1 Camera 3 Camera 6

person re-ID
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SGVR Lab Zhong et al. Camera Style Adaptation for Person Re-identification. In CVPR 2018.
I(AIST Ca mSter (CVPR 18) Zhong et al. Random Erasing Data Augmentation. In AAAI 2020.
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Unsupervised Person Re-identification

Recent techniques for unsupervised approaches
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General Protocol of Person Re-ID

* Person re-identification pipeline.

Feature
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General Protocol of Person Re-ID

* Deep convolutional neural network (DCNN) brings impressive improvements in p

erson re-ID fields.
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Problems in DCNN

* Require many training data with labels.

* Challenges in identity annotation.
o illumination changes.
o Low resolution.
o Occlusions.
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Camera view Person Detection
SGVR Lab
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Problems in DCNN

* The real-world scenario of person re-ID is an open set problem.

* New people (= new class) will appear from the camera views.

Someone is detected! Sorry. We don’t know.
Who is he/she? It’s the first time we see him/her.

A~

o

Surveillance system

1

Person re-ID system
SGVR Lab

KAIST



Problem Setting

* Goal: Learn discriminative features for person retrieval without ID labels.
* Protocol: Training on target domain w/o labels = Testing on target domain.

* Challenges: Poor pseudo-supervision from unlabeled data.

SGVR Lab

KAIST
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Pseudo Label-based Approaches

* Most recent studies utilize pseudo-labels to train a re-ID model.
o K-nearest neighbor search.
o Clustering.

* Clustering-based approaches dominate unsupervised task.
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SGVR Lab
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Pseudo Label-based Approaches

* In early studies of this field focus on how to obtain pseudo-labels.

* Nowadays, most methods utilize DBSCAN clustering with re-ranked distances.
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SGVR Lab Lin et al. A Bottom-Up Clustering Approach to Unsupervised Person Re-ldentification. In AAAI 2019.

MIST Lin et al. Unsupervised Person Re-identification via Softened Similarity Learning. In CVPR 2020.
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Pseudo Label Refinement

» Key idea: Re-ID performance « Quality of pseudo-labels.

* There are inevitable noised in pseudo-labels (noisy label problem), and some
studies utilize predictions of an auxiliary network to refine labels.
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SGVR Lab MEB-Net (ECCV 20) Zhai et al. Multiple Expert Brainstorming for Domain Adaptive Person Re-identification. In ECCV 2020.
KAIST Ge et al. Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification. In ICLR 2020.
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Cluster-based Contrastive Learning

* Key idea: Utilize clustering results for contrastive learning which is demonstrated
its effectiveness in various unsupervised (self-supervised) tasks.

* Apply a contrastive learning in cluster-level.
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SGVR Lab Cluster Contrast (arXiv 21)

MIST Dai et al. Cluster Contrast for Unsupervised Person Re-ldentification. arXiv preprint arXiv:Zlgg.11568, 2021.



Camera-based Approaches

* Key idea: Camera labels are easy to obtain and can be used for re-ID training.
* Apply intra-camera level training and inter-camera level training.

* Directly reduce the intra-class variance by different camera views.
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Generalizable Person Re-identification

Recent techniques for domain generalizable approaches
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Domain Generalization (DG) Problem

* Trained re-ID models show degraded performance in unseen domains.

* Practically, it is not easy to train a re-ID model according to each environment
(domain).
o High cost (e.g., GPU, engineering, ...) is required.
o Data collection problem w/ privacy issues.
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Figure 1. Performance of two representative models. M: Train and
SGVR Lab test on Market1501. M—}G: Traine‘d on Market1501 and tested on
GRID . MS—G: Trained on multi-source datasets and tested on
KAIST .
Zhang et al. Learning Domain Invariant Representations for Generalizable Person Re-lIdentification. arXiv preprint arXiv:2103.15890.



Generalizable Person Re-identification

* In contrast to most DG studies focusing on close-set scenarios, generalizable
person re-ID focuses on the open-set problem.

MNIST MNIST-M SVHN Caltechl[ll LabeIMe PASCAL SUNO09 Cartoon Photo Sketch

(a) Digits (b) VLCS (c) PACS

( Conventional ]

:E}GﬂemMndﬂJ "§%%

Unseen domain

Hybrid dataset from multi-domains

SGVR Lab Zhou et al. Domain Generalization in Vision: A Survey. arXiv preprint arXiv:2103.02503.
MIST Wang et al. Camera-aware Proxies for Unsupervised Person Re-Identificatiog.aln AAAI 2021.



Generalizable Person Re-identification

* Generalizable person re-ID aims to solve “Domain Generalization (DG)” for
person retrieval.

 What makes it challenging?
o Each dataset (domain) has different characteristics.
o Season(Weather), Viewpoint, etc.
Market-1501 DukeMTMC-relD MSMT17

SGVR Lab Zheng et al. Joint Discriminative and Generative Learning for Person Re-identification. In CVPR 2019.
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Problem Setting

* Goal: Learn representations with good generalization capability on unseen
target domains.

* Protocol: Training on source domain with labels - Testing on unseen target
domains.

* Challenges: Domain gap between source and target domains.

SGVR Lab

KAIST
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Style Normalization-based Approaches

* CNNs are strongly biased to style (texture) of images.

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4% Indian elephant 71.1%  tabby cat 63.9% Indian elephant
10.3% indri 17.3% grey fox 26.4% indri
8.2% black swan 3.3% Siamese cat 9.6% black swan

* Style normalization-based approaches claim that “Style differences between the
domains make a domain gap”.

SGVR Lab

KAIST

Geirhos et al. ImageNET-Trained CNNS Are Biased Towards Texture; Increasing Shape Bias Improves Accuracy And Robustness. In ICLR 2019.
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Style Normalization-based Approaches

» Key idea: Reduce style variations via a feature normalization.
e Style Normalization can be achieved by Instance Normalization (IN).

* Some works train a style-invariant network by using both BN and IN.
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BN, 256

RBLUB
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BN, 256 BN, 256 1)(1 conv
BN
ReLU RelU IN, 256 %__, Diagram of Batch-Instance Normalization. The style gate determines the proper
3 } RiLU normalization method based on the importance of the style information.
(a) original (b) IBN-a (c) IBN-b

BIN (NeurlPS 18)

Fig. 3. Instance-batch normalization (IBN) block. (a) Original bottleneck (b) bottienedk-IN
IBN-Net (ECCV 18) DualNorm (BMVC 19)

Pan et al. Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net. In ECCV 2018.

SGVR Lab Jia et al. Frustratingly Easy Person Re-ldentification: Generalizing Person Re-ID in Practice. In BMVC 2019.

Nam et al. Batch-Instance Normalization for Adaptively Style-Invariant Neural Networks. In NeurIPS 2018.
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Style Normalization-based Approaches

» Style normalization also can remove the discriminative information.

 SNR (CVPR 21) disentangles identity-relevant and —irrelevant features.

Style Normalization and Restitution (SNR)

Input
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Style Normalization and Restitution (CVPR 20)

SGVR Lab Jin et al. Style Normalization and Restitution for Generalizable Person Re-identification. In CVPR 2020.
Choi et al. Meta Batch-Instance Normalization for Generalizable Person Re-ldentification. In CVPR 2021.
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Meta Learning-based Approaches

* Meta learning approaches adapt the concept of “learning to learn” to simulate
the train-test process of domain generalization scenarios.

o Make the training process like a domain generalization task.

* |t divides given datasets into a meta-train domain and a meta-test domain.

* Meta learning process can be divided into “meta-train” and “meta-test”.

o Meta-train = conventional re-ID training.
o Meta-test = domain generalization training.

SGVR Lab

KAIST
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Meta Learning-based Approaches

* Compute the loss on a meta-test domain with the trained model in a meta-train

domain.
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Memory-based Multi-Source Meta- Learning (CVPR 21)

Zhao et al. Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-ldentification. In CVPR 2021.
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Hybrid Approaches

 MetaBIN (CVPR 21) trains a style normalization module by meta learning pipeline.

o Train BIN (Batch-instance normalization) parameters in a meta learning manner.

‘%1 All source domains (random split)

Bias toward BN . BiastowardIN Under-style-norm.. Over-style-norm.
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MetaBIN (CVPR 21)

Choi et al. Meta Batch-Instance Normalization for Generalizable Person Re-ldentification. In CVPR 2021.
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Conclusion

* Person re-ID aims to retrieve a person corresponding to a given query across
disjoint camera views or different time stamps.
o Large intra-variation & Small inter-variation, Open-set, Data collection, ...

e Supervised approaches.

o Part feature learning, Attention mechanism, Feature disentanglement, ...

* Unsupervised approaches.

o Pseudo-label refinement, Cluster-level contrastive learning, ...

 Domain generalizable approaches.
o Style normalization, Meta learning, ...

SGVR Lab

KAIST
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Conclusion

e Other research topics for practical usage of person re-ID techniques.
o Continual (incremental) learning.
o Occluded person re-ID.

o Cross-modality person re-ID. 3l RGB camera RGB camera IR camera
" in the day in the night in the night

|

Probe

Gallery |

Occluded-REID Partial-REID'  P-ETHZ ' P-DukeMTMC-relD
Occluded person re-ID Cross-modality person re-ID
SGVR Lab Zhuo et al. Occluded Person Re-identification. In ICME 2018.
KAIST Wau et al. RGB-Infrared Cross-Modality Person Re-ldentification. In ICCV 2017.
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Q&A

Thank You!
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