
System Programming (CPH341), Fall 2018 / Instructor: Duksu Kim, VHPC Lab., KOREATECH 1

Duksu Kim
• Assistant professor, KORATEHC

• Education
• Ph.D. Computer Science, KAIST

• Parallel Proximity Computation on Heterogeneous Computing
Systems for Graphics Applications

• Professional Experience
• Senior researcher, KISTI

• 2014.07 – 2018.02

• High performance visualization

• Awards
• The Spotlight Paper, IEEE TVCG (Sept., 2013)
• Distinguished Paper Award, Pacific Graphics 2009
• CUDA Coding Contest

• 2nd place, NVIDIA Korea 2015

• Best programming award, NVIDIA Korea 2010

• Student stipend award, ACM symposium on
Interactive 3D Graphics and Games, 2009

Background on
Heterogeneous Computing

KSC 2018 Tutorial

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 2

Duksu Kim

• Parallel Computing Architectures
• Multi-core CPU and GPU

• Heterogeneous Parallel Computing
• Heterogeneous computing system

• Heterogeneous parallel algorithm

• Tools for Heterogeneous Computing

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 3

Outline

• Flynn’s Taxonomy

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 4

Parallel Computing Architecture

SISD
Single instruction stream

Single data stream

SIMD
Single instruction stream

Multiple data stream

MISD
Multiple instruction stream

Single data stream

MIMD
Multiple instruction stream

Multiple data stream

Single core processor Vector processor

Multi-core processorNot covered

MIMD

• Multiple Instruction, Multiple Data

• 여러개의명령어를각각의데이터에적용

• A set of independent processors
• E.g., Multi-core CPUs (up to 64 cores)

• Thread-level parallelism

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 5

Parallel Computing Architecture – Flynn’s Taxonomy

SIMD

• Single Instruction, Multiple Data

• 하나의명령어를여러개의데이터에적용

• Data Parallelism

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 6

Parallel Computing Architecture – Flynn’s Taxonomy

control unit

ALU1 ALU2 ALUn

…

for (i = 0; i < n; i++)

x[i] += y[i];

x[1] x[2] x[n]

n data items

n ALUs

SIMD

• Single Instruction, Multiple Data

• 하나의명령어를여러개의데이터에적용

• Data Parallelism

• E.g., 4 ALUs, 15 data

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 7

Parallel Computing Architecture – Flynn’s Taxonomy

Round ALU1 ALU2 ALU3 ALU4

1 X[0] X[1] X[2] X[3]

2 X[4] X[5] X[6] X[7]

3 X[8] X[9] X[10] X[11]

4 X[12] X[13] X[14]

Vector Processors

• Work with a vector (or data array)

• Typical examples of SIMD architecture
• E.g., MXX/SSE/AVX(x86), XeonPhi, GPU (SIMT)

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 8

Parallel Computing Architecture – Flynn’s Taxonomy – SIMD

SIMT

• The architecture of GPU is called SIMT
• Rather than SIMD

• Single Instruction, Multiple Threads
• A group of threads is controlled by a control unit

• E.g. 32 threads (= warp)

• Each thread has its own control context

• Different with traditional SIMD

• Divergent workflow among threads in a group is allowed

• With a little performance penalty (e.g., work serialization)

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 9

Parallel Computing Architecture

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 10

Parallel Computing Architecture

VS

Multi-core
CPU

GPU

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 11

• General Processing Unit
• Focus on the performance of a core

• Clock frequency, cache,
branch prediction, Etc.

• Single/Multi-core
• 1 ~ 32 cores

• SISD (or MIMD)
• Single instruction,

Single Data

• Graphics Processing Unit
• Focus on parallelization

• Increasing the # of cores

• Many core
• More than hundreds of cores

• SIMT
• Single instruction,

Multiple Threads

data

threads

a thread

CPU GPUvs

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 12

• Allocate more to
• Cache

• Control

• Optimized for
• Latency

• Sequential code

• Allocate more to
• Functional units

• Bandwidth

• Optimized for
• Throughput

• Streaming code

CPU GPUvs

CPU

• Strength
• High performance processing core

• Efficient irregular workflow handling

• Branch prediction

• Efficient handling for random memory access pattern

• Well-organized cache hierarchy

• Large memory space

• Weakness
• A small number of cores (up to 32)

• More space for controls

• Lower performance than GPU

• In a perspective of FLOPS

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 13

The difference between CPU and GPU

GPU

• Strength
• A massive number of cores

• But, less powerful than CPU core

• Much higher performance than CPU

• In a perspective of FLOPS

• Weakness
• Small memory space

• High bandwidth memory = expensive

• Performance penalty for
irregular workflow

• Weak for
random memory access pattern

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 14

The difference between CPU and GPU

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 15

• Tasks with irregular
workflow and random
memory access pattern

• Large memory space

• Compute-intensive
and regular streaming
tasks

• High performance

CPU GPU

Acceleration algorithms on graphics applications

Hierarchical traversal Primitive-level tasks

• Parallel Computing Architectures
• Multi-core CPU and GPU

• Heterogeneous Parallel Computing
• Heterogeneous computing system

• Heterogeneous parallel algorithm

• Tools for Heterogeneous Computing

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 16

Outline

• A computing system consisting of more than one
type of computing resources

• Examples
• A desktop PC having both multi-core CPUs and GPUs

• A multi-GPU system consisting of different types of GPUs

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 17

Heterogeneous Computing System

• Use multiple heterogeneous computing resources
at once for solving a problem

• Advantage
• Fully utilize all available computing resources

• Achieve high performance

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 18

Heterogeneous Parallel Algorithm

• How to distribute workload to available
resources
• Workload balance

• How to reduce communication overhead

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 19

Issues on Heterogeneous Algo.

In this tutorial,
we will learn how prior works have solved these issues
for proximity computation and rendering.

In this tutorial,
we will learn how prior works have solved these issues
for proximity computation and rendering.

• Parallel Computing Architectures
• Multi-core CPU and GPU

• Heterogeneous Parallel Computing
• Technical issues

• Tools for Heterogeneous Computing

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 20

Outline

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 21

APIs for using Multi-core CPU

• Pthreads (POSIX threads)

• 함수라이브러리

• Low-level API

• 사용자가제어

• 스레드생성, 분배등

• 세밀한제어가능
(flexible)

• 구현이복잡함

• 처음부터병렬
알고리즘작성필요

• OpenMP

• 지시어(directive)기반
• 컴파일러가전처리및
병렬코드생성

• High-level API

• 컴파일러및런타임의제어

• 구현이간편함
• 지시어만추가하여

serial 코드를병렬화가능

• 제한적제어기능
• But enough!

• Windows API, Intel TBB, Etc.

• CUDA
• Only support GPUs from Nvidia

• Highly optimized for Nvidia GPUs

• More control functions for Nvidia GPUs

• OpenCL
• Support most GPUs (e.g., Nvidia, AMD)

• Can utilize multiple GPUs with a same code
• Efficiency is not guaranteed

• Shader languages, OpenACC, Etc.

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 22

APIs for using GPUs

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 23

Multi-core CPUs + GPUs

• Heterogeneous systems are all around!
• E.g., multi-core CPUs + GPUs

• With heterogeneous parallel algorithm,
• We can greatly improve the performance of our application

• To design efficient heterogeneous parallel Algo.,
• Understand characteristics of devices and tasks

• Two common issues

• Workload balance

• Communication overhead

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 24

Summary

• bluekdct@gmail.com

• http://hpc.koreatech.ac.kr

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 25

Any Questions?

mailto:bluekdct@gmail.com
http://hpc.koreatech.ac.kr/

Proximity Computation

Heterogeneous Computing on

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 1

KSC 2018 Tutorial

Duksu Kim

• Compute relative placement

or configuration of two objects

• Collision detection

• Distance computation

• Neighbor search

• Basic operations in various

applications

• Graphics, simulations,

robotics, Etc.

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 2

Proximity Computation

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 3

Proximity Computation in App.

Motion planning Realistic rendering Particle-based Sim.

Others

[Jia 2010] [Liangjun 2008]

Collision
detection

Others

[Our in-house render]

Ray tracing
Others

Neighbor
search

[Our in-house simulator]

• Various acceleration techniques

• Acceleration hierarchies

• Culling algorithms

• Specialize algorithms for a target application

• Approximation algorithms

• Achieve several orders of magnitude

performance improvement

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 4

Proximity Computation Acceleration

Collision Detection with BVH

• Bounding Volume Hierarchy (BVH)
• Organize bounding volumes as a tree

• Leaf nodes have triangles

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 5

Example: Acceleration Hierarchy for Proximity computation

Collision Detection with BVH

• Hierarchy traversal

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 6

Example: Acceleration Hierarchy for Proximity computation

A

B C

X

Y Z

Collision test pair queue

(A,X)

A X

Dequeue

BV overlap test

Collision Detection with BVH

• Hierarchy traversal

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 7

Example: Acceleration Hierarchy for Proximity computation

A

B C

X

Y Z

Collision test pair queue

(B,Y)

BV overlap test

Dequeue Refine

(B,Z) (C,Y) (C,Y)

Collision Detection with BVH

• Hierarchy traversal

• Primitive-level test
• At leaf nodes, exact collision tests between two triangles

• Solving equations

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 8

Example: Acceleration Hierarchy for Proximity computation

• Widely used in many applications to improve the
performance by reducing search space

• Two common task types
• Hierarchical traversal

• Primitive-level test

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 9

Hierarchy-based Acceleration Algo.

Two Common Task Types

• Hierarchical traversal
• Many branches

• Irregular workflow

• Random memory access pattern

• Primitive-level test
• Compute-intensive work

• Regular memory access pattern

• A set of tasks (streaming task)

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 10

Hierarchy-based Acceleration Algorithms

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 11

In previous session,

• Tasks with irregular
workflow and random
memory access pattern

• Large memory space

• Compute-intensive
and regular streaming
tasks

• High performance

CPU GPU

Acceleration algorithms on graphics applications

Hierarchical traversal Primitive-level tasks

HPCCD:

Hybrid Parallel Continuous Collision

Detection using CPUs and GPUs

System Programming (CPH341), Fall 2018 / Instructor: Duksu Kim, VHPC Lab., KOREATECH 12

Duksu Kim, Jae-Pil Heo, JaeHyuk Huh, John Kim, Sung-Eui Yoon

Computer Graphics Forum (Pacific Graphics), 2009

Received a distinguished paper award at the conference

Observation

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 13

HPCCD

Workload Distribution

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 14

HPCCD – Approach

CPUs

GPUs
Primitive
tests

Hierarchical traversal tasks

Results

Initial task

Reduce Communication Overhead

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 15

HPCCD – Approach

• Identify disjoint tasks
• Remove synchronization in the main loop

of the algorithm

• Optimize data communication
between CPU and GPU

Please see the paper for the detailsPlease see the paper for the details

A B

Accessed nodes are disjoint

Results

• Testing Environment
• One quad-core CPU (Intel i7 CPU, 3.2 GHz)

• Two GPUs (NVIDIA GeForce GTX285)

• Run eight CPU threads by using Intel’s hyper threading
technology

• Compare the performance over using a single
CPU-core

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 16

HPCCD

Results

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 17

HPCCD

● 146K triangles

● 13.6 X speed-up

● 54ms (19 FPS)

● 94K triangles

● 10.4 X speed-up

● 23ms (43 FPS)

● 252K triangles

● 12.5 X speed-up

● 54ms (19 FPS)

Results

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 18

HPCCD

94K triangles

Scheduling in Heterogeneous Computing

Environments for Proximity Queries

System Programming (CPH341), Fall 2018 / Instructor: Duksu Kim, VHPC Lab., KOREATECH 19

Duksu Kim, Jinkyu Lee, Junghwan Lee, Insik Shin, John Kim, Sung-Eui Yoon

IEEE Transactions on Visualization and Computer Graphics, Sept., 2013

Selected as the Spotlight Paper for the issue

Observation

• HPCCD = Manual workload distribution

• No guarantee to efficient utilization of computing
resource

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 20

Scheduling in Heterogeneous Computing Environments for Proximity Queries

Approach Overview

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 21

Scheduling in Heterogeneous Computing Environments for Proximity Queries

Computing
resource 1
(CPU or GPU)

Optimization-
based Scheduler

Task queue

Result
collector

Initial
task

Hierarchical traversal tasks & Primitive tests

Results Computing
resource n

. . .

Optimization-based Scheduling

• Design an accurate performance model
• Predict how much computation time is required to finish

jobs on a resource

• Important to achieve the optimal scheduling result

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 22

Scheduling in Heterogeneous Computing Environments for Proximity Queries

Expected running
time model

Optimization
formulation

Iterative LP solver

Performance Model

• Performance relationship between jobs and

resources is complex

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 23

Scheduling in Heterogeneous Computing Environments for Proximity Queries

Job type 1

Job type n

Resource 1

Processor architecture

Memory

Communication

Execution model

…

Resource 2

Processor architecture

Memory

Communication

Execution model

…

…

. . .

Performance Model

• Abstract the complex relationship as an

expected running time model

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 24

Scheduling in Heterogeneous Computing Environments for Proximity Queries

Job type 1

Job type n

Resource 1

Processor architecture

Memory

Communication

Execution model

…

Resource 2

Processor architecture

Memory

Communication

Execution model

…

Expected

Running

Time

. . .

Performance Model

• Running time is linearly increased as the

number of jobs is increased

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 25

Scheduling in Heterogeneous Computing Environments for Proximity Queries

Performance Model

• Running time is linearly increased as the

number of jobs is increased

• Each computing resource requires a

specific amount of setup cost

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 26

Scheduling in Heterogeneous Computing Environments for Proximity Queries

Performance Model

• Inter-device data transfer time depends on the
pair of devices

• Data transfer time is linearly increased as the
number of jobs is increased

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 27

Scheduling in Heterogeneous Computing Environments for Proximity Queries

Expected Running Time Model

• T() : Expected running time on computing resource
i for processing n jobs of job types j that are
generated from computing resource k

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 28

Scheduling in Heterogeneous Computing Environments for Proximity Queries

Setup time
Processing time

Data transfer time

Optimization-based Scheduling

• Formulate an optimization problem
• Based on the expected running time model

• Need to represent the scheduling problem as a form of
optimization problem

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 29

Scheduling in Heterogeneous Computing Environments for Proximity Queries

Expected running
time model

Optimization
formulation

Iterative LP solver

Optimization Formulation

• Minimize the makespan (L) problem

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 30

Scheduling in Heterogeneous Computing Environments for Proximity Queries

Processing time

Processing time

Processing time

Processing time

CPU 1

CPU 2

GPU 1

GPU 2

Time

Computing
resource

Makespan (L)

Optimization Formulation

• Calculate the optimal job distribution with the
expected running time

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 31

Scheduling in Heterogeneous Computing Environments for Proximity Queries

Resource i Rest time for completing
already assigned jobs

Processing time for
jobs will be assigned

Expected processing time

①

① The expected processing time of computing resources is equal or smaller
than the makespan

Optimization Formulation

• Calculate the optimal job distribution with the
expected running time

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 32

Scheduling in Heterogeneous Computing Environments for Proximity Queries

①

① The expected processing time of computing resources is equal or smaller
than the makespan

② There are no missing or duplicated jobs

②

Optimization Formulation

• Calculate the optimal job distribution with the
expected running time

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 33

Scheduling in Heterogeneous Computing Environments for Proximity Queries

①

① The expected processing time of computing resources is equal or smaller
than the makespan

② There are no missing or duplicated jobs

③ Each job is atomic

②

Job distribution

③

Optimization-based Scheduling

• High computational cost
• Jobs are dynamically generated at runtime

• Optimization process takes long time for interactive or
real-time applications

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 34

Scheduling in Heterogeneous Computing Environments for Proximity Queries

Expected running
time model

Optimization
formulation

Iterative LP solver

NP-hard Problem!

Optimization-based Scheduling

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 35

Scheduling in Heterogeneous Computing Environments for Proximity Queries

Expected running
time model

Optimization
formulation

Iterative LP solver

35

Positive floating-point numbers

Designed an iterative LP solving
algorithm to handle the piece-wise
condition

Please see the paper for the detailsPlease see the paper for the details

Results

• Tested with various applications
• Simulations (Continuous collision detection)

• Motion planning (Discrete collision detection)

• Global illumination (Ray-Triangle intersection)

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 36

Scheduling in Heterogeneous Computing Environments for Proximity Queries

Results

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 37

Scheduling in Heterogeneous Computing Environments for Proximity Queries

FPS

+Tesla2075

+GTX480
+GTX580

+GTX285

Ours

Work stealing

Use different GPUs (high heterogeneity)

Continuous collision detection

Fracturing simulation

(252K Tri.)

• For conservative comparison, we did manual tuning to get the
best performance for tested methods except for ours

Results

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 38

Scheduling in Heterogeneous Computing Environments for Proximity Queries

• For conservative comparison, we did manual tuning to get the
best performance for tested methods except for ours

Motion planning

(137K Tri., 50K samples)

Ours

Work

stealing

Round-robin

FPS

Work

stealing

Round-robin

Ours

Use different GPUs

Global illumination

(436K Tri., 80M rays)

Use different GPUs

FPS

Out-of-Core Proximity Computation

for Particle-based Fluid Simulations

System Programming (CPH341), Fall 2018 / Instructor: Duksu Kim, VHPC Lab., KOREATECH 39

Duksu Kim, Myung-Bae Son, Young J. Kim, Jeong-Mo Hong, Sung-Eui Yoon

High Performance Graphics, 2014

Particle-based Fluid Simulation

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 40

OOCNNS

Neighbor search

Compute force

Move particles

ε

Performance bottleneck
- Takes 60~80% of simulation computation time

ε-Nearest Neighbor (ε-NN)

Observation

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 41

OOCNNS

• GPU shows much higher performance than CPU

• But, for a large scale simulation,
• The device memory on a GPU is not enough to load

whole grid data and store lists of neighbors for all
particles

• CPU has relatively large memory space
• More than hundreds of GBs

Out-of-core Algorithm

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 42

OOCNNS – Approach

Main memory (CPU side) GPU

Device memory

- Sub-grid(Block) data
- Particle data

ε-NN

Results

Boundary Region

• Required data in adjacent blocks

• Inefficient to handle in out-of-core
manner

• Multi-core CPUs handles the
boundary region
• CPU (main) memory contain all

required data

• Ratio of boundary region is usually
much smaller than inner region

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 43

OOCNNS – Approach

Hierarchical Work Distribution

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 44

OOCNNS – Approach

a b

d…

…

Front nodes

Workload tree

a b

c

d

Block size < GPU memory

c

- # of particles in the block
- # of neighbors in the block

Please see the paper for the detailsPlease see the paper for the details

How to determine the block size?

Results

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 45

OOCNNS

Up to 65.6 M Particles
Maximum data size: 13 GB

Ours

Map-GPU

NVIDIA mapped memory Tech
- Map CPU memory space

into GPU memory address space

Results

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 46

OOCNNS

Up to 32.7 M Particles
Maximum data size: 16 GB

15.8 M Particles
Maximum data size: 6 GB

Results

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 47

OOCNNS

12 CPU cores

A CPU core
12 CPU cores
+One GPU

Map-GPU Our method
Up to 26 X

Up to 51 X

Up to 8.4 X Up to 6.3 X

• We have learned how prior work improve the
performance of the proximity computation with
heterogeneous parallel algorithms

• Hints for designing a heterogeneous parallel Algo.
• Understand characteristics of tasks and resources

• Computational and Spatial perspectives

• Generally,
• Hierarchical work maps to CPU-like architectures

• Compute-intensive work maps to GPU-like architectures

• To achieve an optimal performance,
• Formulate performance model

• Design a dynamic work distribution algorithm

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 48

Summary

• bluekdct@gmail.com

• http://hpc.koreatech.ac.kr

High Performance, Heterogeneous Parallel Computing (HPC) Lab., KOREATECH 49

Any Questions?

mailto:bluekdct@gmail.com
http://hpc.koreatech.ac.kr/

	[KSC2018] Sec1_BG_Heterogeneous_Computing
	[KSC2018] Sec2_CnD

