
Heterogeneous Parallel Computing
for Rendering Large-Scale Data

Sung-eui Yoon
Associate Professor

KAIST

http://sglab.kaist.ac.kr

Acknowledgements

● Collaborators
● My students, M. Gopi, Miguel Otaduy, George

Drettakis, SeungYoung Lee, YuWing Tai, John
Kim, Dinesh Manocha, Peter Lindstrom, Yong
Joon Lee, Pierre-Yves Laffont, Jeong Mo Hong,
Sun Xin, Nathan Carr, Zhe Lin

● Funding sources
● Boeing, Adobe, Samsung
● AMD, Microsoft Research Asia
● Korea Research Foundation
● MSIP, IITP

Past: Rendering Massive
Geometric Data

Boeing 777, 470 M tri.

Scanned
model, 372 M

tri. (10 GB)
Large-scale virtual world, 83 M tri.

Over 3 Terabytes of
geometric data

Present: Scalable Ray Tracing,
Image Search, Motion Planning

● Designing scalable graphics and geometric
algorithms to efficiently handle massive
models on commodity hardware

Image
search

Photo-realistic
rendering

Motion
planning

Recent Hardware Trends

● Multi and many cores
● CPUs and GPUs are increasing the # of cores

● Heterogeneous architectures
● Intel Sandy Bridge, AMD Fusion, and Nvidia Tegra

embedded chips

● Previous approaches
● Utilize either multi-core CPUs or GPUs

Images from NVIDIA

Hybrid Parallel Computation for
Proximity Queries

● Our initial work: manually assign jobs of
continuous collision detection to CPUs and
GPUs
● Received a best paper award at Pacific Graphics,

09
● A general, job distribution algorithm for CPUs

and GPUs [Kim et al., TVCG 13, Spotlight
paper]

Motion planning
[Lee et al., ICRA 12]

Out-of-Core Proximity Computation for Particle-based
Fluid Simulations [Kim et al., HPG 14]

Up to 65.6 M Particles
Maximum data size: 13 GB

Ours

Map-GPU

NVIDIA mapped memory Tech
- Map CPU memory space

into GPU memory address space

Two hexa-core CPUs w/ 192 GB RAM
GeForce GTX 780) with 3 GB video RAM

Heterogeneous Parallel
Computing for Rendering

● T-ReX: Interactive Global Illumination of
Massive Models on Heterogeneous
Computing Resources, IEEE TVCG 2014
● Manually assign tasks to CPUs and GPUs
● Source codes are available

● Timeline Scheduling for Out-of-Core Ray
Batching, High Performance Graphics (HPG),
2017
● Automatic task assignment for high performance

T-ReX: Interactive Global Illumination of
Massive Models on Heterogeneous

Computing Resources

Tae-Joon Kim*, Xin Sun§, and Sung-Eui Yoon*

KAIST*, Microsoft Research Asia§

IEEE Transactions on Visualization and Computer
Graphics (TVCG), 2014

Project Homepage with Codes:
http://sglab.kaist.ac.kr/T-ReX

Global Illumination

௢ ௢ ௢ ௜ ௜ ௜ ௜
ஐ

௢ ௜ ௜ ௜

௜

ே

௜ୀଵ

௢

14

Enormous computation is necessary

Interactive Global Illumination

 Utilize GPU
 Use sparse voxel octrees
 Model complexity < 10 M tris.

Interactive Indirect Illumination Using Voxel Cone Tracing [Crassin et al., PG11]

15

Scanned model,
372 M tri. (10 GB)

 Due to advances of modeling, simulation, and data
capture techniques

 Long data access time and low I/O performance

Massive Models

CAD oil tanker, 82 M tri. (4 GB)

Boeing 777, 366 M tri. (20 GB)

16

Motivation

 Global illumination of small models can be
done interactively
• Thanks to advance of GPU architecture

 Interactive global illumination with massive
models is still challenging
• Maximize computation throughput

• Minimize I/O requirement

17

GPUCPU

Heterogeneous Computing
Resources

4 ~ 200 GB memory 2 ~ 8 GB memory

18

Observation

 Global illumination effect is less sensitive
to geometry details

19

Our Approach

 Hybrid approach

GPUCPU

Compute direct
illumination

Compute indirect
illumination

No mesh
data trans.

Transmit
intersection

info.

Geometric representation
(full detailed, large)

Volumetric representation
of sparse voxel octree

(approximated, small)

20

Computed using
voxels
Computed using
voxels

21

Approximated Illumination

Raw mesh visualization Approximated voxel representationAfter shading

Results

22

Outline

 Use photon mapping for rich visual effects
e.g., color bleeding

 Classify rays into fitting processors
• Each class of ray uses representation

23

Ray Classification

 C-rays
• More sensitive to geometry details

• Generates high-frequency visual effects

• The primary rays and their secondary rays
reflected on perfect specular materials

24

Ray Classification

 G-rays
• Less sensitive to geometry details

• Generates low-frequency visual effects

• Any rays other than C-rays (e.g., gathering
rays, shadow rays)

25

Data Representations

HCCMeshes [Kim et al. Eurographics‘10]

• High quality geometry for C-ray
• Random-accessible compression (7:1 ~ 20:1)
• Supports high performance decompression

Augmented Sparse
Voxel Octree (ASVO)

• GPU side volumetric
representation for G-ray

• Efficiently traversed in
GPU

• Approximated geometry
& photon map

26

GPUCPU

Rendering Process

Trace Photons
(Voxel)

Trace C-ray
(Mesh)

Trace G-ray
(Voxel)

Inter.
points

Photon
Info.

Shading
Photon

Info.

27

Results

 Interactive responsiveness
• About 30 ms response time for dynamic

changes on cameras, materials, and lights

 High performance
• 3 M ~ 20 M rays/s

 High complexity
• Up to 470 M triangles

28

Results

 Test environment (PC)
• Intel Core i7 CPU (hexa-core) w/ 8 GB RAM
• NVIDIA GTX 680 card with 2 GB DRAM

15% of GPU memory was allocated for upper ASVO

 Boeing 777 model benchmark
• 366M Triangles
• 15.6 GB mesh + 21.8 GB BVH for raw model
• 6.55 GB for HCCMesh
• 11 area lights (generated 5 M photons each)

29

Comparison

 3.9 times improvement over CPU-only
implementation
• Same algorithm, but running on CPU only
• Main memory holds both representations

(HCCMeshes, ASVOs)

 135 times improvement over simple
photon mapping on CPU
• Using HCCMeshes only

30

Demonstration

31

Progressive Rendering

32

 Progressively refine the frame

Materials Changes

33

Lights Changes

34

Conclusion

 Present an integrated progressive
rendering framework for global illumination
of massive models
• Use a decoupled representation: HCCMeshes

in CPU and ASVOs in GPU for handling
large-scale models

 Reduce expensive transmission costs and
achieve high utilizations for CPU and GPU

35

Limitations

 Volumetric representation
• Biased and inconsistent

• Spans more space than its geometric model

36

Point light sources Highly glossy materials

TIMELINE SCHEDULING
FOR OUT-OF-CORE

RAY BATCHING
Myungbae Son Sung-EuiYoon

SGVR Lab
KAIST

Our Scenario

• Complex scenes
• Out-of-core model: Too big data!
• Cannot be stored in main / GPU memory

Boeing 777, 366 M tri. (20GB)

• Complex device configurations
• Distributed memory cluster system
• Client-assisted remote rendering
• Renderfarm of heterogeneous devices

3
8

Challenges

• Excessive page swap required
• I/O cost dominates the rendering time

• Global Illumination with incoherent rays
• Efficient ray scheduling is required

Data transfer
(Disk I/O, GPU copy)
Ray processing

• Massively complex scene
• Over 96% of runtime is spent on I/O in naïve BDPT (Boeing777)

t

Cache hit

Cache miss

3
9

Challenges

Complex and heterogenenous device configurations…

4
0

Challenges

Further down to the processor and memory hierarchy level…

• Different processors

• Different memory channels

• Different nodes and network

4
1

Goal & Contributions

4
2

Design a scheduler for global illumination
• Processes massive models
• Supports variety of computing environments

• Complex and heterogeneous device configurations

Our contributions
• A modeling technique: device configurations and jobs
• A scheduling algorithm: Greedy Makespan Balancing (GMB)
• An adaptation to path tracer

OURAPPROACH

Our Approach

4
4

• Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) and TimingModel

• Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

• Adaptation to actual renderer framework
Out-of-core path tracer

Formulation: Device Connectivity Graph

• Graph of memory devices
• Memory

Disk storage, RAM,GMEM

• Connections (Channels)
PCIe (RAM ↔ GMEM)
SATA (Disk ↔ RAM)
LAN (RAM ↔ RAM)
…

• Stores bandwidth information

45

Formulation: Timing Model

• Assume simple yet efficient linear model on time

• Job execution

• Data transfer

• Fitting each parameter (𝑆𝐸𝑇𝑈𝑃 𝑅𝐴𝑇𝐸 𝐿𝐴𝑇 𝐵𝑊)
• Use least squares method on test run

4
6

Our Approach

47

• Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) andTiming Model

• Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

• Adaptation to actual renderer framework
Out-of-core path tracer

Timeline Scheduling

• A representation of schedule with timing constraints

• For ◇ processors
Executable jobs are allocated

• For ↔ memorychannels
Data transfers are allocated

• Dependencies
between jobs and fetches

schedule: a set of timelines that jobs and fetches are allocated

4
8

Greedy Makespan Balancing Algorithm

1. Choose least occupied compute device 𝑑
4
9

Greedy Makespan Balancing Algorithm

2. Find job 𝑗𝑖 that can be run at 𝑑 as soon as possible
18

3. Add 𝑗𝑖 and data fetch to the schedule

Greedy Makespan Balancing Algorithm

4. Repeat until devices are occupied enough
10

Our Approach

20

• Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) andTiming Model

• Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

• Adaptation to actual renderer framework
Out-of-core path tracer

Out-of-core Path TracerJobs

53

RESULTS

Benchmark scene

• Model preparation
• Even-sized median-split kdtree, 27 / 26 subdivision, respectively

Boeing777 (26.5GB, 496M tri, 5.2sec/img)

55

SponzaMuseum (12.3GB, 245M tri, 34.8 sec/img)

(800 × 800 × 32𝑠𝑝𝑝 × 60𝑓𝑟𝑎𝑚𝑒𝑠)

Horizontal Scalability – Boeing777

56

Horizontal Scalability – SponzaMuseum

57

Efficiency on Data Fetching

• Central scene DB scenario

• Initially no data at slave nodes at all

• The master node gives scene data blocks on-demand

GPU0 GPU1 GPU2 GPU3

RAM0 RAM1 RAM2 RAM3

HDD0
HDD1 HDD2 HDD3

58

Efficiency on Data Fetching

(Boeing777)
Our method converges to peak performance much faster than previous methods

59

Conclusion

60

• Presented specification techniques for out-of-core MC ray
tracing on arbitrary hardware setup
• DCG and timing model

• Presented a timeline based scheduling algorithm
• GMB algorithm

• Applied to the out-of-core path tracer
• Prediction technique for future rays

Conclusions

● Two different techniques, manual
assignment and automatic approaches, for
large-scale rendering

● Released a free book on rendering

● Working on a journal version of
our tutorial

