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Past: Rendering Massive 
Geometric Data

Boeing 777, 470 M tri.

Scanned 
model, 372 M 

tri. (10 GB)
Large-scale virtual world, 83 M tri.

Over 3 Terabytes of 
geometric data



Present: Scalable Ray Tracing, 
Image Search, Motion Planning

● Designing scalable graphics and geometric 
algorithms to efficiently handle massive 
models on commodity hardware

Image 
search

Photo-realistic 
rendering

Motion 
planning



Recent Hardware Trends

● Multi and many cores
● CPUs and GPUs are increasing the # of cores

● Heterogeneous architectures
● Intel Sandy Bridge, AMD Fusion, and Nvidia Tegra

embedded chips

● Previous approaches
● Utilize either multi-core CPUs or GPUs

Images from NVIDIA 



Hybrid Parallel Computation for 
Proximity Queries

● Our initial work: manually assign jobs of 
continuous collision detection to CPUs and 
GPUs
● Received a best paper award at Pacific Graphics, 
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● A general, job distribution algorithm for CPUs 

and GPUs [Kim et al., TVCG 13, Spotlight 
paper]

Motion planning 
[Lee et al., ICRA 12]



Out-of-Core Proximity Computation for Particle-based 
Fluid Simulations [Kim et al., HPG 14]

Up to 65.6 M Particles
Maximum data size: 13 GB

Ours

Map-GPU

NVIDIA mapped memory Tech
- Map CPU memory space

into GPU memory address space

Two hexa-core CPUs w/ 192 GB RAM
GeForce GTX 780) with 3 GB video RAM



Heterogeneous Parallel 
Computing for Rendering

● T-ReX: Interactive Global Illumination of 
Massive Models on Heterogeneous 
Computing Resources, IEEE TVCG 2014
● Manually assign tasks to CPUs and GPUs
● Source codes are available

● Timeline Scheduling for Out-of-Core Ray 
Batching, High Performance Graphics (HPG), 
2017
● Automatic task assignment for high performance



T-ReX: Interactive Global Illumination of
Massive Models on Heterogeneous

Computing Resources

Tae-Joon Kim*, Xin Sun§, and Sung-Eui Yoon*

KAIST*, Microsoft Research Asia§

IEEE Transactions on Visualization and Computer 
Graphics (TVCG), 2014

Project Homepage with Codes:
http://sglab.kaist.ac.kr/T-ReX



Global Illumination
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Enormous computation is necessary



Interactive Global Illumination

 Utilize GPU
 Use sparse voxel octrees
 Model complexity < 10 M tris.

Interactive Indirect Illumination Using Voxel Cone Tracing [Crassin et al., PG11]
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Scanned model,
372 M tri. (10 GB)

 Due to advances of modeling, simulation, and data 
capture techniques

 Long data access time and low I/O performance

Massive Models

CAD oil tanker, 82 M tri. (4 GB)

Boeing 777, 366 M tri. (20 GB)
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Motivation

 Global illumination of small models can be 
done interactively
• Thanks to advance of GPU architecture

 Interactive global illumination with massive 
models is still challenging
• Maximize computation throughput

• Minimize I/O requirement
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GPUCPU

Heterogeneous Computing 
Resources

4 ~ 200 GB memory 2 ~ 8 GB memory
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Observation

 Global illumination effect is less sensitive 
to geometry details
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Our Approach

 Hybrid approach

GPUCPU

Compute direct 
illumination

Compute indirect
illumination

No mesh
data trans.

Transmit
intersection 

info.

Geometric representation
(full detailed, large)

Volumetric representation
of sparse voxel octree

(approximated, small)
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Computed using
voxels
Computed using
voxels
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Approximated Illumination

Raw mesh visualization Approximated voxel representationAfter shading



Results
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Outline

 Use photon mapping for rich visual effects
e.g., color bleeding

 Classify rays into fitting processors
• Each class of ray uses representation
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Ray Classification

 C-rays
• More sensitive to geometry details

• Generates high-frequency visual effects

• The primary rays and their secondary rays 
reflected on perfect specular materials
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Ray Classification

 G-rays
• Less sensitive to geometry details

• Generates low-frequency visual effects

• Any rays other than C-rays (e.g., gathering 
rays, shadow rays)
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Data Representations

HCCMeshes [Kim et al. Eurographics‘10]

• High quality geometry for C-ray
• Random-accessible compression (7:1 ~ 20:1)
• Supports high performance decompression

Augmented Sparse
Voxel Octree (ASVO)

• GPU side volumetric 
representation for G-ray

• Efficiently traversed in 
GPU

• Approximated geometry 
& photon map
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GPUCPU

Rendering Process

Trace Photons
(Voxel)

Trace C-ray
(Mesh)

Trace G-ray
(Voxel)

Inter. 
points

Photon
Info.

Shading
Photon

Info.
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Results

 Interactive responsiveness
• About 30 ms response time for dynamic 

changes on cameras, materials, and lights

 High performance
• 3 M ~ 20 M rays/s

 High complexity
• Up to 470 M triangles
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Results

 Test environment (PC)
• Intel Core i7 CPU (hexa-core) w/ 8 GB RAM
• NVIDIA GTX 680 card with 2 GB DRAM

15% of GPU memory was allocated for upper ASVO

 Boeing 777 model benchmark
• 366M Triangles
• 15.6 GB mesh + 21.8 GB BVH for raw model
• 6.55 GB for HCCMesh
• 11 area lights (generated 5 M photons each)

29



Comparison

 3.9 times improvement over CPU-only 
implementation
• Same algorithm, but running on CPU only
• Main memory holds both representations 

(HCCMeshes, ASVOs)

 135 times improvement over simple 
photon mapping on CPU
• Using HCCMeshes only
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Demonstration
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Progressive Rendering
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 Progressively refine the frame



Materials Changes
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Lights Changes
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Conclusion

 Present an integrated progressive 
rendering framework for global illumination 
of massive models
• Use a decoupled representation: HCCMeshes

in CPU and  ASVOs in GPU for handling 
large-scale models

 Reduce expensive transmission costs and 
achieve high utilizations for CPU and GPU
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Limitations

 Volumetric representation
• Biased and inconsistent

• Spans more space than its geometric model

36

Point light sources Highly glossy materials



TIMELINE SCHEDULING
FOR OUT-OF-CORE

RAY BATCHING
Myungbae Son Sung-EuiYoon 

SGVR Lab
KAIST



Our Scenario

• Complex scenes
• Out-of-core model: Too big data!
• Cannot be stored in main / GPU memory

Boeing 777, 366 M tri. (20GB)

• Complex device configurations
• Distributed memory cluster system
• Client-assisted remote rendering
• Renderfarm of heterogeneous devices

3
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Challenges

• Excessive page swap required
• I/O cost dominates the rendering time

• Global Illumination with incoherent rays
• Efficient ray scheduling is required

Data transfer
(Disk I/O, GPU copy)
Ray processing

• Massively complex scene
• Over 96% of runtime is spent on I/O in naïve BDPT (Boeing777)

t

Cache hit

Cache miss

3
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Challenges

Complex and heterogenenous device configurations…

4
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Challenges

Further down to the processor and memory hierarchy level…

• Different processors

• Different memory channels

• Different nodes and network

4
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Goal & Contributions

4
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Design a scheduler for global illumination
• Processes massive models
• Supports variety of computing environments

• Complex and heterogeneous device configurations

Our contributions
• A modeling technique: device configurations and jobs
• A scheduling algorithm: Greedy Makespan Balancing (GMB)
• An adaptation to path tracer



OURAPPROACH



Our Approach

4
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• Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) and TimingModel

• Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

• Adaptation to actual renderer framework
Out-of-core path tracer



Formulation: Device Connectivity Graph

• Graph of memory devices
• Memory

Disk storage, RAM,GMEM

• Connections (Channels)
PCIe (RAM ↔ GMEM)  
SATA (Disk ↔ RAM)  
LAN (RAM  ↔ RAM)
…

• Stores bandwidth information
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Formulation: Timing Model

• Assume simple yet efficient linear model on time

• Job execution

• Data transfer

• Fitting each parameter ( 𝑆𝐸𝑇𝑈𝑃 𝑅𝐴𝑇𝐸 𝐿𝐴𝑇 𝐵𝑊)
• Use least squares method on test run

4
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Our Approach
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• Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) andTiming Model

• Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

• Adaptation to actual renderer framework
Out-of-core path tracer



Timeline Scheduling

• A representation of schedule with timing constraints

• For ◇ processors
Executable jobs are allocated

• For ↔ memorychannels
Data transfers are allocated

• Dependencies
between jobs and fetches

schedule: a set of timelines that jobs and fetches are allocated

4
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Greedy Makespan Balancing Algorithm

1. Choose least  occupied compute device 𝑑
4
9



Greedy Makespan Balancing Algorithm

2. Find job 𝑗𝑖 that can be run at 𝑑 as soon as possible
18



3. Add 𝑗𝑖 and data fetch to the schedule

Greedy Makespan Balancing Algorithm

4. Repeat until devices are occupied enough
10



Our Approach
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• Formulation technique for MC ray tracing jobs
Device Connectivity Graph (DCG) andTiming Model

• Timeline scheduling and Greedy Makespan Balancing algorithm
Simple, iterative algorithm that considers utilization and latency hiding

• Adaptation to actual renderer framework
Out-of-core path tracer



Out-of-core Path TracerJobs
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RESULTS



Benchmark scene

• Model preparation
• Even-sized median-split kdtree, 27  / 26 subdivision, respectively

Boeing777 (26.5GB, 496M tri, 5.2sec/img)
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SponzaMuseum (12.3GB, 245M tri, 34.8 sec/img)

(800 × 800 × 32𝑠𝑝𝑝 × 60𝑓𝑟𝑎𝑚𝑒𝑠)



Horizontal Scalability – Boeing777
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Horizontal Scalability – SponzaMuseum
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Efficiency on Data Fetching

• Central scene DB scenario

• Initially no data at slave nodes at all

• The master node gives scene data blocks on-demand

GPU0 GPU1 GPU2 GPU3

RAM0 RAM1 RAM2 RAM3

HDD0
HDD1 HDD2 HDD3
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Efficiency on Data Fetching

(Boeing777)
Our method converges to peak performance much faster than previous methods
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Conclusion
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• Presented specification techniques for out-of-core MC ray  
tracing on arbitrary hardware setup
• DCG and timing model

• Presented a timeline based scheduling algorithm
• GMB algorithm

• Applied to the out-of-core path tracer
• Prediction technique for future rays



Conclusions

● Two different techniques, manual 
assignment and automatic approaches, for 
large-scale rendering

● Released a free book on rendering

● Working on a journal version of 
our tutorial


