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Preface

Rendering is a way of visualizing various 3D models in 2D images
or videos. It is one of fundamental tools in the field of computer
graphics. Thanks to its ubiquitous demand, it is not only used for
applications in computer graphics, but also widely used for many
other fields.

There have been tremendous progress on rendering techniques.
One of epitomes for rendering techniques is games, where we can
see real-time, yet high-quality rendering images. These real-time
techniques are commonly based on the concept of rasterization,
which is the main theme of Part I of this book. Another successful
application of computer graphics is movie. Unlike games, the movie
production accommodates much longer computational time for
higher rendering quality. Ray tracing based rendering techniques,
therefore, are utilized more frequently for movies. These ray tracing
techniques are mainly discussed in Part II.

These techniques have been developed for many decades. For
example, the concept of ray tracing was introduced to the field of
computer graphics at 1980. Since rendering techniques have been
studied for a long period of time, it is very hard to catch up all the
major concepts, unless properly guided. Also, new concepts and
techniques have been constantly proposed.

Many graphics books are available, but only a few rendering
books are available. Furthermore, most of them focuses either one
of two main rendering techniques, rasterization and ray tracing, in
an advanced manner. Given this situation, I decided to treat both of
them, while covering most fundamental concepts of those techniques.
I will also cover advanced topics as I have more time, built on top of
those basic concepts.

In order to save time of writing this book and better explain
concepts, I re-used many existing materials (e.g., images) of lecture
slides and papers. For each of them, I mentioned its source, but here
I’d like to point out that I borrowed many images from lecture slides
used in a Computer Graphics course given at University of North
Carolina at Chapel Hill for Part I and lecture slides of Prof. Kavita
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Bala for Part II. Also, the latex template of this book is based on the
Tufte’s design style and is based on the Apache license.

Finally, many students of CS380, CS480, CS580 offered at KAIST
posed many interesting questions that are the basis of many Q&A
parts of this book. Also, many of them gave useful comments on
different parts of this book.

Sung-eui, KAIST
July, 2018



1
Introduction

Rendering is one of the fundamental techniques in computer graph-
ics, visualization, and many other related fields. Since the rendering
technique has been widely used in many different applications, its
perceived meaning can vary a lot depending on people using it.

For users and developers for games, rendering techniques should
be interactive and can support many interesting visual effects (e.g.,
magic fire). In terms of the performance, the rendering part used
in games should take less than 10 ms, since the whole frame takes
33 ms assuming 30 frames per second, and other parts (e.g., game
logics and network) can take 10 ms to 20 ms. As a result, rendering
methods adopted in such games should be extremely fast1. 1 Games requires real-time rendering

techniques spending only 10 ms for
each frame

For viewers, artist, and developers for movies, rendering tech-
niques should be photo-realistic and provide even artistic controls on
effects that they want to express. In many movies (e.g., Jurassic Park),
we see scenes captured from real cameras and mixed together with
computer generated effects and virtual objects. Rendering methods
for these movies should be indistinguishable between real and virtual
scenes. As a result, these techniques are usually based on physics
and simulations of light and material interactions. Furthermore,
artists and directors making such movies are not satisfied with such
realistic looking results2. They want to convey particular emotion 2 Rendering used for movies needs

to provide realistic results, while
supporting various artistic directions

and mood on computer generated effects. We thus need techniques
accommodating such user inputs.

As you can see, there are such a wide variety of rendering appli-
cations with different characteristics. Therefore, a single rendering
method satisfying all those characteristics and requirements is hard
to be developed. As a result, many different rendering and visual-
ization methods have been developed. Instead of covering them in
detail in this book, we would like to cover main techniques and their
variations.
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1.1 Rendering Techniques

At a high level, there are two main, but different rendering tech-
niques: rasterization and ray tracing. There are two main rendering tech-

niques: rasterization and ray tracingRasterization is to traverse triangles of a model and project trian-
gles to the frame buffer. Rasterzation is classified as an object driven
rendering method and has been widely accelerated by various hard-
wares (e.g., GPUs) because of its simplicity. Thanks to the simplicity
and the hardware acceleration, rasterization based rendering meth-
ods can show an interactive rendering performance even for massive
models consisting of more than hundreds of millions of triangles 3. 3 Sung-Eui Yoon, Brian Salomon, Russell

Gayle, and Dinesh Manocha. Quick-
VDR: Interactive View-dependent
Rendering of Massive Models. In IEEE
Visualization, pages 131–138, 2004

Thanks to these features, rasterization techniques are available in
OpenGL and DirectX, graphics APIs, and adopted in many games
through game engines (e.g., Unity).

Ray tracing, however, generates rays per each pixel and finds
triangles that intersect with these rays by traversing an acceleration
hierarchy. Ray tracing is classified as a view-driven rendering method
and requires random access on meshes and hierarchies. Therefore,
it requires much complex control logics and caches and in turn
has been showing much (e.g., two orders of magnitude) slower
performance than that of rasterization based methods.

Although ray tracing shows much slower performance than rasteri-
zation, it can naturally support physically-correct rendering because
its algorithm follows the physical intersections between lights and
materials. Therefore, it has been widely used in offline applications
(e.g., movies) that require high-quality rendering results. On the
other hand, rasterization has been widely used for interactive applica-
tions such as games.

While there are such stereotypical usages of rasterization and
ray tracing, these techniques are still under active, yet steady devel-
opment, and are thus improved in many different directions. For
example, many games want to interactively support realistic render-
ing effects that ray tracing has been able to support in the domain of
rasterization. Furthermore, some of recent applications such as Poket-
mon Go, an AR (augmented reality) application, needs to seamlessly
integrate camera-captured scenes and computer generated effects. To
realize this, ray tracing and rasterization techniques are used together
to achieve both the performance and quality4. 4 Ray tracing and rasterization are

used together for achieving the fast
performance and high quality.

Relationship with other fields. Computer graphics commonly as-
sumes that virtual scenes are represented by various types of models
such as triangles for the scene geometry and BRDF for material ap-
pearance (Fig. 1.1). The main output of various computer graphics
methods is an image or a series of images known as video. Com-
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Figure 1.1: An overall structure
of computer graphics. Images
are adopted from Google image
search.

mon methods for computer graphics include rendering, a type of
simulation for light and material interactions, and many other types
of simulations such as cloth, fire, character simulations. Computer
vision commonly starts with images and attempts to extract models
(e.g., geometry and BRDF), and image processing deals with images
for denoising or many other image improvement. One of well known
image processing tools is Photoshop from Adobe.

These different approaches have been developed and matured in
its own fields (e.g., computer graphics and vision). Recently, these
techniques developed from different fields are mixed together to cre-
ate novel applications and approaches. As a result, their boundaries
become rather blurred in these days.

Applications of computer graphics. Numerous applications of
computer graphics exist. A lot of them are in the entertainment
business for making games and movies (Fig. 1.2). Some movies are
generated totally based on computer graphics, or some scenes of
movies have various special effects. They also get renewed attentions
with other related technology advances such as introduction of 3D
TV to consumer markets and head mounted display (HMD) for
virtual reality (VR) and augmented reality (AR).

In addition to various entertainment applications, various product
designs and analysis such as computer-aided design (CAD) uses
computer graphics. Also, medical and scientific visualization is a big
part of computer graphics. Finally, information visualization that
associates various geometric meaning to complex data (e.g., graphs)
are getting bigger and bigger.

Organization of the book. Rendering has been studied in various
aspects covering optics and novel applications. As a result, we focus
on the following two parts in this book.
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Figure 1.2: Applications of
computer graphics. From the
top left, image cuts of startcraft,
toy story, a CT image of mouse
skull, a weather visualization
from LLNL, and a double eagle
oil tanker for CAD.

1. Rasterization. Rasterization is an efficient rendering technique
that mainly works in an image space that can be easily accelerated
in GPUs. This approach is discussed in Part I.

2. Ray tracing. Ray tracing is a common approach of simulating the
physical interaction between the light and materials. It is therefore
widely used for providing physically-based rendering. This is
discussed in Part II.

1.2 Related Materials

Rendering techniques have been studied for several decades, and
excellent books are available. We list some of them here:

• Fundamentals of Computer Graphics, by Peter Shirley et al. 5. This 5 Peter Shirley and Steve Marschner.
Fundamentals of Computer Graphics. A. K.
Peters, Ltd., 3rd edition, 2009

book covers various fundamental topics of computer graphics.

• Physically based rendering by Pharr et al. 6.. This book also cov- 6 Matt Pharr and Greg Humphreys. Phys-
ically Based Rendering: From Theory to
Implementation 2nd. Morgan Kaufmann
Publishers Inc., 2010a

ers a wide variety of topics of physical-based rendering. It also
provides source codes for all the concepts discussed in the book.
If you want to have hands-on experience on physics-based ren-
dering, this book provides both theoretical concepts and practical
programming tools.

• Advanced Global illumination, by Dutre et al. 7. This book covers 7 Philip Dutre, Kavita Bala, and Philippe
Bekaert. Advanced Global Illumination.
AK Peters, 2006

physics-based rendering techniques.

• Realistic ray tracing, by Shirley et al. 8. While this book is rather 8 Peter Shirley and R. Keith Morley.
Realistic Ray Tracing. AK Peters, second
edition, 2003

old, it covers various concepts and detailed information of ray
tracing, which is one of main ingredients of building physics-
based rendering.
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Figure 1.3: This shows a list of
graphics related conferences
and journals according to
Google Scholar at 2016. Note
that many conferences papers
in computer graphics are pub-
lished at journals, and thus
journals (e.g., ACM Trans. on
Graphics) are ranked higher
than well-known conferences
(e.g., SIGGRAPH).

These books cover fundamental concepts of rendering, but lacks
recent developments. If you want to follow those recent techniques,
you can find recent papers through the following:

• Google scholar. You can find recent technical papers from various
search engines. Especially, Google scholar is useful, since it also
identifies papers that refer to a particular paper. By looking this in-
formation, you can find prior and future works given a particular
paper.

• Graphics conferences and journals. Novel ideas are generated in
every where. One can easily learn those novel ideas by looking
at recent papers published at graphics conferences and journals.
One of well-known of them is ACM SIGGRAPH, whose papers
are published at a journal called ACM Trans. on Graphics (ToG).
Google Scholar also provides a list of influential conferences and
journals with their ranking (Fig. 1.3).

1.3 Common Q & A

Do we need an excellent artistic sense to study computer graph-
ics or to become an technical expert in this field? Not really. Of
course, it is always better to have a good artistic sense to work on
visual data processing. However, if some jobs require such a high
standard of artistic senses, those jobs may be for artistic designers,
not for engineers. In my opinion, it is more important to have better
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engineering backgrounds (e.g., mathematical backgrounds and algo-
rithm developments) and problem-solving skills. For example, I don’t
have any sense of art, but I work on computer graphics!

I have found that something like tea pot and bunny models are
widely used in many papers and technical videos. Why? You
made a good observation. Some of models including the Utah teapot
and Stanford bunny have been created earlier as research results or
research benchmarks. Then, these models are distributed to other
researchers for their follow-on research. That’s why these models are
widely used in many papers.



Part I

Rasterization
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Rasterization is one of most popular rendering techniques devel-
oped for computer graphics. It simply projects triangles in a scene
into a viewing space and color pixels overlapped with those triangles.
This approach is very simple and thus can be implemented efficiently
in specialized hardwares. Especially, many graphics hardware and
GPUs support this rasterization scheme.

It, however, does not simulate the natural interaction between light
and materials. Simply speaking, in reality, objects are not projected
into our eyes! Due to this issue, rasterization schemes have funda-
mental drawbacks of simulating various rendering effects such as
shadows, transparency, and so on. Nonetheless, thanks to its fast per-
formance, many techniques and fixes have been proposed to improve
its rendering quality.

In this part, we discuss the fundamental engine of rasterization,
which is developed in many graphics library such as OpenGL and
DiretX accelerated by GPUs. In other parts , we study global illu-
mination that physically simulates interactions between lights and
materials.

1.4 Related Materials

Many useful resources for rasterization techniques are available.
Some of them are listed here:

• OpenGL Programming Guide. OpenGL is one of very popular
computer graphics library that can be used in a wide variety of
computing platform including Windows, Linux, and mobile OS.
OpenGL provides various useful low-level graphics APIs, and
they are well explained in this book and in its reference book.
Early version of these books are available on free at internet. We
also explain some of OpenGL APIs and their concepts, when we
explain concepts of rasterization for delivering concrete examples.

• Real-time rendering 9 and its resource. This book covers a vast 9 Tomas Akenine-Möller, Eric Haines,
and Naty Hoffman. Real-Time Rendering
3rd Edition. A. K. Peters, Ltd., 2008

amount of topics that are related to rasterization and real-time
rendering techniques. Its resource cite 10 has many useful web 10 http://www.realtimerendering.com/

pages and links.

• OpenGL tutorials. Many OpenGL tutorials exist at Web. Some of
them are based on the legacy OpenGL, but http://www.opengl-tutorial.
org/ discusses useful tutorials based on a recent OpenGL (ver. 3.3
and later).

http://www.realtimerendering.com/
http://www.opengl-tutorial.org/
http://www.opengl-tutorial.org/




2
Rendering Pipeline

Rendering triangles for scenes requires an excessive amount of
computation time, since there could be many triangles representing
scenes, and each triangle can map to hundreds of pixels in the screen
space. As a result, carefully designed steps, known as rendering
pipeline, has been proposed.

2.1 Classic Rendering Pipeline

Let us first discuss the classic rendering pipeline, before studying a
modern, but complex one.

Fig. 2.1 shows an example of a classic rendering pipeline running
on a GPU. An graphics application runs on a CPU in general and
sends geometry of the scene and a camera setting that its user wants
to see to a GPU by using a graphics library such as OpenGL. The
rendering pipeline implemented in a GPU processes such requests
and computes an output image displayed in a screen.

In general, the rendering pipeline consists of many steps for
drawing an image from the user’s camera position and orientation in
an efficient manner. At a high level, they usually breaks into vertex
processing and pixel processing units. The vertex processing step
transforms input geometry into ones mapped in the screen space.
Those ones are converted into pixels with appropriate colors by
the pixel processing step, and this step is commonly known as the
rasterization step.

Historically, these steps take a high computation time and thus
are implemented in a chip in a hard-wired manner. These steps,
therefore, are rather fixed functions and invoked through graphics
APIs. As we have more processing power and developers request
more flexibility on programming, the GPU implementing these
steps become more general like CPU and can run various graphics
programs such as OpenGL shaders.

While more accurate rendering techniques (e.g., global illumi-
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Classic Rendering Pipeline

CPU

GPU

Transformation: 
Vertex processing

Rasterization: 
Pixel processing

Figure 2.1: This shows a
schematic diagram of classic
rendering pipeline consisting
only two steps: vertex and pixel
processing steps.

nation) have been proposed with high performance, rasterization
scheme is one of the most efficient rendering algorithms specializing
on local illumination, which considers the light energy transfer be-
tween a surface and a light source. We therefore study this scheme in
a detailed manner in Chapter 3 and 7.

2.2 Modern Rendering Pipeline

Figure 2.2: This shows a ren-
dering pipeline adopted in
OpenGL 3.0. This image is
excerpted from the OpenGL
homepage.

Fig. 2.2 shows a schematic view on a modern rendering pipeline
adopted in OpenGL 3.0. While this differs a lot from the classical one,
it shares both vertex and pixel (e.g., fragment) processing steps.

• Vertex specification. Vertices and triangles are defined and passed
to the following step.

• Vertex processing. Each vertex is processed by a vertex shader, a
program working on each vertex. It performs various modeling
transformation, viewing, and projection transformations.

• Vertex post-processing. It performs various basic operations after
the vertex processing step and serves as a setup stage for the
following steps such as rasterization. It includes clipping (Sec. 6.4),
homogeneous divide (Sec. 4.2.1), and viewport transformation
(Sec. 3.1).

• Primitive assembly. Face culling is performed in this step.

• Rasterization. This step converts a triangle represented by vertices
into a number of fragments.

• Fragment shader. It also processes each fragment generated by the
prior rasterization step.
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2.3 OpenGL and Other Tools

The rendering pipeline has been implemented and accelerated in
GPUs. To enjoy such hardware acceleration, we use OpenGL and
DirectX. OpenGL is more widely available in different operation
systems and devices, since DirectX depends on Windows OS. Most
concepts and techniques that are covered in this part are available at
such APIs. Nonetheless, it is useful to know what other tools related
to graphics are available and their goals. Fig. 2.3 shows other tools
and languages that can utilize various features of GPU other than the
rasterization.

Recently, Vulkan was introduced for achieving even higher per-
formance on mobile phones 1 that have lower performance than PCs. 1 G. Sellers and J.M. Kessenich. Vulkan

Programming Guide: The Official Guide to
Learning Vulkan. Addison Wesley, 2016

For achieving its goal, Vulkan allows users to various low-level APIs
with low overheads and multi-tasking. Nonetheless, it comes with
certain costs such as higher programming burdens to users.

While these APIs provide the full features of the rendering
pipeline, they are rather low-level APIs. When we want to develop
high-level applications such as a game, we need to utilize a more
powerful set of tools and SWs. This is a gap that modern game and
rendering engines such as Unity try to fill in. Additionally, in graph-
ics applications (e.g., games and movies), content creation is one of
main tasks, and many modeling and animation tools are available.

Initially, GPU is designed as a specialized hardware to accelerate
the rendering process, which is captured in the rendering pipeline.
However, as the performance of GPU is getting higher and various
demands on programmability on the rendering pipeline arise. As
a result, parts of vertex and fragment stages can be programmable
through a dedicated language, i.e., GLSL and HLSL.

While these shading languages are designed to effectively utilize
functions of GPUs for graphics applications, non-traditional needs on
using GPUs for non-graphics applications keep increasing, thanks to
its higher performance on streaming tasks than CPUs. To accommo-
date such demands, a general purpose language for utilizing GPUs
has been proposed, and CUDA and OpenCL are two examples.

2.3.1 Common Questions

What if we have new input devices (e.g., joystick, or multiple input
devices used in PlayStation or XBox)? How can we handle those de-
vices in OpenGL programs? OpenGL does not have any function-
ality to support those various input devices. GLUT library supports
some of basic input devices such as keyboard and mouses. For other
devices, you need to use other external libraries that support those
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Figure 2.3: This figure shows
other APIs, SWs, and languages
that are related to OpenGL
and computer graphics. In
this book, we mainly discuss
the core rendering pipeline
that rasterizes input models.
Nonetheless, many game and
rendering engines (e.g., Unity)
are commonly used as conve-
nient, high-level tools. Also,
shading languages are used in
recent OpenGL verions, to add
various details on rendering
results. Additionally, general
purpose computing languages
for GPU (e.g., CUDA) are also
used for implementing arbitrary
programs on GPUs. Images
are excerpted from the Vulkan
overview and Google images.

devices.

In what cases, is OpenGL used rather than DirectX? OpenGL is
cross-platform graphics API, while DirectX is proprietary library for
Windows. Because of the openness of OpenGL, it, more specifically,
OpenGL ES, is widely used for many embedded systems including
mobile phones.

In what portions of my OpenGL program are executed in CPU and
GPU? In a typical OpenGL program, rendering parts (e.g., portions
started with glBegin and ended with glEnd) are performed in GPU,
graphics hardware, if your computer is equipped with such GPU. All
the control parts, e.g., calling OpenGL functions and handling events,
are performed in CPU. In other words, various functionality inside
OpenGL APIs are commonly performed in GPU, while all the other
parts are performed in CPU.



3
Transformation

Many components of rasterization techniques rely upon different
types of transformation. In this chapter, we discuss those transforma-
tion techniques.

3.1 Viewport Transformation

In this section, we explain the viewport transformation based on an
example. Fig. 3.1 show different spaces that we are going to explain.

Suppose that you have an arbitrary function, f (x, y), as a function
of 2 D point (x, y); e.g., f ((x, y)) = x2 + y2. Now suppose that
you want to visualize the function in your computer screen with a
particular color encoding method, e.g., heat map that assigns hot and
cold colors depending on values of f (x, y).

This function is defined in a continuous space, say x and y can
be any real values. In computer graphics, we use a term of world to
denote a model or scene that we would like to visualize or render. In
this case, the function f (x, y) is our world. Our goal is to visualize
this function so that we can understand this function better. In many
cases, the world is too large and thus we cannot visualize the whole
world in a single image. As a result, we commonly introduce a
camera to see a particular region of the world.

Unfortunately, our screen is not in the continuous space and has
only a limited number of pixels, which is represented by a screen
resolution. Our graphics application can use the whole screen space
or some part of it. Let us call that area as a screen space. Fig. 3.2
show common conventions of the screen space. Finally, we visualize
a part of the world seen through the camera into a part of our screen
space, which is commonly known as a viewport; note that we can
have multiple viewports in our screen.

Suppose a position, xw, in the world that we are now seeing in the
camera. In the end, we need to compute its corresponding position,
xs, in our screen space of the viewport. If we know xs, we can draw
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Mapping from World to Screen in 
OpenGL

World

Window

Viewport

NDC

Screen

Camera

xw xn xs

Figure 3.1: This shows a map-
ping from a viewable region
in the world through a camera
to the viewport in our screen
space pass through the interme-
diate space, normalized device
coordinate (NDC).
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(0,0) (width-1,0)

(width-1, 
height-1)

(0,
height-1)

Windows Screen 
Coordinates

(0,0)

OpenGL Screen 
Coordinates

Figure 3.2: This shows two
different conventions of screen
coordinate spaces.

the color of the world position xw at xs. The question is how to
compute xs from xw, i.e., the mapping from the world space to the
viewport or screen space.

Normalized device coordinate (NDC). While world and screen
spaces are two fundamental spaces, we also utilize NDC. NDC
is a canonical space, whose both X and Y values are in a range of
[−1, 1]. NDC serves as an intermediate space that is transformed to
the screen space, which is hardware-dependent space. As a result,
given the world potion xw, we first need to compute a position in
the NDC space, xn, followed by mapping to xs. We will also see
various benefits of using NDC later, which include simplicity and
thus efficiency of various rasterization operations.

32

World Space to NDC

-1
w.l

1
w.r

-1
w.b

1
w.t

xn?
xwxn = Axw + B

w.lw.r
(w.l)x

1)(1
1)(x wn

−
−=

−−
−−

12 −
−

−=
w.lw.r
(w.l)xx w

n

w.lw.r
w.lw.rB

w.lw.r
A

−
+−=

−
=    ,2 Figure 3.3: Mapping between

the world space and NDC.

Mapping from the world space to NDC. Suppose that the part
of the world that we can see through a camera is represented by
[w.l, w.r] × [w.b, w.t], where w.l and w.r are the visible range along
X-axis and w.b and w.t define the visible range in Y-axis, while the
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NDC space is represented by [−1, 1]× [1, 1].
Since the relative ratio of xw and xn is same in each space, we have

the following relationship:

xn − (−1)
1− (−1)

=
xw − (w.l)
w.r− w.l

.

xn = 2
xw − w.l
w.r− w.l

− 1.

xn = Axw + B,

where A = 2
w.r−w.l , B = −w.r+w.l

w.r−w.l . This equation indicates that
given the information, we can compute the NDC coordinate with
one multiplication and one summation. Similarly, we can derive the
mapping equation from xn to xs.

An issue of this approach is that there are too many pixels and
thus evaluating such simple equations requires computational time.
Since most graphics applications require interactive or real-time
performance, we need to think about efficient way of handling these
operations early in the history of computer graphics. Furthermore,
it turns out that such mapping and similar transformations are
very common operations in many graphics applications. The most
common way of handling them in an efficient and elegant way is to
adopt linear algebra and use matrix operations.

3.1.1 Common Questions

Can glBegin () with GL_POLYGON support concave polygons?
According to its API description, GL_POLYGON works only with
convex polygons. But, what may happen with concave polygons?
Since it is not part of the specification of OpenGL, each vendor can
have their own handling method for that kind of unspecified cases. If
you are interested, you can try it out and let us know.

In the case of rendering circles, shown as an example in the lecture
note, we render them by using lines. Is there a direct primitive
that supports the circle? OpenGL has a limited functionality that
supports continuous mathematical representations including circles,
since a few model representations (e.g., triangles) have been widely
used and it is hard to support all the possible representations. How-
ever, OpenGL keeps changing and it may support many continuous
functions in a near future. At this point of time, we need to discretize
continuous functions with triangles or other simple primitives and
render them.

We use the NDC between the world space and the screen space.
Isn’t it inefficient? Also, don’t we lose some precision during this
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process? There is certainly some overhead by introducing the NDC.
However, it is very minor compared to its benefits in terms of simpli-
fying various algorithms employed throughout the rendering process.
Yes. We can lose more precision during the conversion process due
to float operations. However, it may be very small and may not cause
significant problems for rendering purposes. Nonetheless, the trans-
formation is based on analytic equations, not pixels, and thus can be
easily recovered to the original information.

OpenGL is designed for cross-platform. But, I think that it means
that we cannot use assembly programming for higher optimiza-
tions. Yes. You’re right. We cannot use assembly languages for such
optimizations. However, programmers for graphics drivers for each
graphics vendor definitely use an assembly language and attempt to
achieve the best performance. High-level programmers like us rely
on such drivers and optimize programs with OpenGL API available
to us.

Multi-threading with OpenGL: Since OpenGL has been designed
very long time ago and has many different threads, it requires some
cares to use multiple threads for OpenGL. There are many articles in
internet about how to use multiple threads with OpenGL. I recom-
mend you to go over them, if you are interested in this topic.

Why do we use a viewport? The viewport space doesn’t need to be
the whole window space. Given a window space, we can decompose
it into multiple sub-spaces and use sub-spaces for different purposes.
An example of using multiple viewports is shown in Fig. 3.4.

3.2 2D Transformation

In this section, we discuss how to represent various two dimensional
transformation in the matrix form. We first discuss translation and
rotation.

2D translation has the following forms:

x′ = x + tx, (3.1)

y′ = y + ty, (3.2)

where (x, y) is translated as an amount of (tx, ty) into (x′, y′). They
are also represented by a matrix form:[

x′

y′

]
=

[
x
y

]
+

[
tx

ty

]
. (3.3)
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Figure 3.4: This figure shows
multiple viewports, each of
which shows an arbitrary
3D view in addition to top,
front, and side views. The
image is excerpt from screen-
shots.en.sftcdn.ne.

Given the 2D translation, its inverse function that undoes the transla-
tion is:

x = x′ − tx, (3.4)

y = y′ − ty. (3.5)

Also, its identity that does not change anything is:

x′ = x + 0, (3.6)

y′ = y + 0. (3.7)

Let us now consider 2D rotations. Rotating a point (x, y) as an
amount of θ in the counter-clock wise is:[

x′

y′

]
=

[
cos θ − sin θ

sin θ cos θ

] [
x
y

]
= Rθ

[
x
y

]
, (3.8)

where Rθ is the rotation matrix. Its inverse and identity are defined
as the following:

R−1 =

[
cos θ sin θ

− sin θ cos θ

]
, (3.9)

Rθ=0 =

[
1 0
0 1

]
. (3.10)
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Suppose that you want to rotate an object by 30 degrees, followed
by rotating it again with 60 degrees. We intuitively know that rotat-
ing 90 degrees in a single time gives the same effect of rotating 30

degrees and 60 degrees again.V Formally, one can prove the follow-
ing equation:

Rθ2 Rθ1 = Rθ1+θ2 . (3.11)

3.2.1 Euclidean Transformation

In this subsection, we would like to discuss a particular class of
transformation, Euclidean transformation. The Euclidean transfor-
mation preserves all the distances between any pairs of points. Its
example includes translation, rotation, and reflection. Since the shape
of objects under this transformation is preserved, the Euclidean
transformation is also known as rigid transformation.

This rigid transformation is one of most common transformation
that we use for various game and movie applications. For example,
camera rotation and panning are implemented by the rigid transfor-
mation.

Mathematically, the Euclidean transformation is represented by:

T(x) = Rx + t, (3.12)

where R and t are rotation matrix and 2D translation vector.
While this is a commonly used mathematical representation,

this representation has a few drawback for graphics applications.
Typically, we have to perform a series of rotation and translation
transformation for performing the viewport transformation, camera
operations, and other transformation applied to objects. As a result, it
can take high memory and time overheads to apply them at runtime.
Furthermore, there is cases that we need to compute a invert oper-
ation from a coordinate from the screen space to the corresponding
one in the world space. Given the series of rotation and translation
operations, the inverting operation can require multiple steps.

As an elegant and efficient approach to these issues, the homo-
geneous coordinate has been introduced and explained in the next
section.

3.2.2 Homogeneous Coordinate

Homogeneous coordinates are originally introduced for projective
geometry, but are widely adopted for computer graphics, to represent
the Euclidean transformation in a single matrix. Homogeneous coordinates provides

various benefits for transformation and
are thus commonly used in graphics.

Suppose a 2D point, (x, y) in the 2D Euclidean space. For the
homogeneous coordinates, we introduce an additional coordinate,
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and (x, y) in the 2D Euclidean space corresponds to (x, y, 1) in the 3D
homogeneous coordinates. In fact, (zx, zy, z), z 6= 0 also corresponds
to (x, y) by dividing the third coordinate z to the first and second
coordinates, to compute the corresponding 2D Euclidean coordinate.

Intuitively speaking, (zx, zy, z) represents a line in the 3D homo-
geneous coordinate space. Nonetheless, any points in the line maps
to a single point (x, y) in the 2D Euclidean space. As a result, it can
describe a projection of a ray passing through a pin hole to a point.

Let us now describe its practical benefits for our problem. Before
we describe the Euclidean transformation (Eq. 3.12) and its problems.
By using the 3D homogeneous coordinate, the Euclidean transforma-
tion is represented by:x′

y′

1

 =

cos θ − sin θ tx

sin θ cos θ ty

0 0 1


x

y
1

 . (3.13)

Note that the translation amount tx and ty are multiplied with the
homogeneous coordinate, which is one. As a result, the translation is
incorporated within the transformation matrix that also encodes the
rotation part simultaneously.

One of benefits of using the homogeneous coordinates is to sup-
port the translation and rotation in a single matrix. This property
addresses problems of the Euclidean transformation (Sec. 3.2.1).
Specifically, even though there are many transformations, we can
represent each transformation in a single matrix and thus their mul-
tiplication is also represented in a single matrix. Furthermore, its
inversion can be efficiently performed. Thanks to these properties
resulting in a higher performance, the homogeneous coordinates
have been widely adopted.

Revisit to mapping from the world space to NDC. We discussed
viewport mapping, one of which operation transforms world space
coordinates to those in NDC space (Sec. 3.1). Since this transfor-
mation uses multiplication, followed by the additions, it can be
represented by homogeneous coordinates and thus in a single matrix:

x′

y′

1

 =

 2
w.r−w.l 0 −w.r+w.l

w.r−w.l
0 2

w.t−w.b −w.t+w.b
w.t−w.b

0 0 1


x

y
1

 . (3.14)

Nonetheless, the matrix is not exactly in the Euclidean trans-
formation, since it involves scaling. This is covered in the affine
transformation in the next section.
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3.2.3 Affine Transformation

We discussed the Euclidean transformation that is a combination
of rotation and translation in Sec. 3.2.1. We now study on an affine
transformation, which covers wider transformation than the Eu-
clidean transformation.

In the 2D case, the affine transformation has the following matrix
representation:

x′

y′

1

 =

a11 a12 a13

a21 a22 a23

0 0 1


x

y
1

 . (3.15)

The affine transformation preserves parallel lines under the transfor-
mation, but does not necessarily preserve angles of lines. The affine
transformation covers a combination of rotation, translation, shearing,
reflection, scaling, etc. The transformation is also called projective
transformation, since it also supports projection, which is discussed
in Sec. 4.2.

OpenGL functions. Various transformation functions (e.g., glTranslate(·))
available at early versions of OpenGL (e.g., version 2) are deprecated
in recent versions. Nonetheless, it is informative to see its usage with
corresponding matrix transformations, which are adopted in the
recent OpenGL.

The following code snippet shows a display function of rendering
a rectangle with a rotation matrix.

void display(void)
{

// we assume the current transformation matrix to be the identify matrix.
glClear(GL_COLOR_BUFFER_BIT); // initialize the color buffer.

glPushMatrix(); // store the current matrix, the identify matrix, in the matrix stack
glRotatef(spin, 0.0, 0.0, 1.0) ; // create a rotation matrix, Mr .
glColor3f (1.0, 1.0, 1.0) ;
glRectf(−25.0, −25.0, 25.0, 25.0); // create geometry, say, v.
glPopMatrix(); // go back to the initial identify matrix.

glFinish () ; // send all OpenGL commands to GPU and finish once they are done.

glutSwapBuffers();
}

The actual rasterization done in GPU occurs once glFinish() is
called. Before rasterizing the rectangle, we perform the specified
transformation, which is to compute v′, where v′ = Mrv. We then
rasterize the rectangles with transformed geometry, v′.
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3.2.4 Common Questions

Is there any benefit of using column-major ordering for the matrix
over row-major ordering? Not much. Some people prefers to use
column-major, while others like to use row-major. Somehow, people
who designed OpenGL may prefer column-major ordering.

3.3 Affine Frame

Figure 3.5: What is the coordi-
nate of the point against the
blue frame?

In this chapter, we started with viewport transformation, followed
by 2D transformation. Overall, an underlying question along these
discussions is this: suppose that we have two different frames and
we know coordinates of a point in a frame. What is the coordinates
of the point in the different frame? For example, the viewport trans-
formation is an answer to this question with the world and viewport
frames.

We use a set of linearly independent basis vectors to uniquely
define a vector. Suppose that ~V1, ~V2, ~V3 are to be three such basis
vectors represented in a column-wise vector. We can then define a
vector, ~X, with three different coordinates, c1, c2, c3, as the following:

~X =
3

∑
i=1

ci~Vi =
[
~V1 ~V2 ~V3

] c1

c2

c3

 = Vc, (3.16)

where V is a 3 by 3 matrix, whose columns corresponds to the basis
vectors.

Now let’s consider how we can represent a point, ṗ, in the 3D
space. Unfortunately, the point cannot be represented in the same
manner as we used for defining a vector in above. To define a point
in the space, we need an anchor, i.e., origin, of the coordinate sys-
tem. This makes the main difference between points and vectors.
Specifically, points are absolute locations, while vectors are relative
quantity.

A point, ṗ, is defined with respect to the absolute origin, ȯ, as the
following:

ṗ = ȯ +
3

∑
i=1

ci~Vi =
[
~V1 ~V2 ~V3 ȯ

] 
c1

c2

c3

1

 . (3.17)

Figure 3.6: The affine frame
consisting of three basis vectors
and the origin.

Simply speaking, we can define a point by using 4 by 4 matrix[
~V1 ~V2 ~V3 ȯ

]
, whose each column includes three basis vectors

and the origin. As a result, this matrix is also called a affine frame; in
this chapter, we will just use a frame for simplicity.
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We can also define a vector with the frame as the following:

~x =
3

∑
i=1

ci~Vi =
[
~V1 ~V2 ~V3 ȯ

] 
c1

c2

c3

0

 . (3.18)

Interestingly, the fourth coordinate for any vector with the frame has
0, since the vector is not based on the origin.

Defining points and vectors with the frame has various benefits.
Here are some of them:

1. Consistent model. Various operations between points and vectors
reflects our intuition. For example, subtracting two points yields
a vector and adding a vector to a point produces a point. These
operations are consistent with respect to our representations with
the frame: 

a1

a2

a3

1

−


b1

b2

b3

1

 =


c1

c2

c3

0

 . (3.19)


a1

a2

a3

1

+


v1

v2

v3

0

 =


c1

c2

c3

1

 . (3.20)

2. Homogeneous coordinate. We introduced the homogeneous
coordinate to represent the rotation and translation in a single
matrix (Sec. 3.2.2). Such homogeneous coordinates are actually
defined in the affine frame, and the fourth coordinate indicates
whether it represents points or vectors depending on its values.

3. Affine combinations. Adding one point to another point does not
make sense. Nonetheless, there is a special case that makes sense.
Suppose that we add two points with weights of α1 and α2, where
the sum of those weights to be one, i.e., α1 + α2. We then have the
following equation:

α1


a1

a2

a3

1

+ α2


b1

b2

b3

1

 =


c1

c2

c3

1

 . (3.21)

Intuitively speaking, this affine combination results in a linear
interpolation between those two points. This idea can be also
extended to any number of points. One example with three points
includes the barycentric coordinate (Sec. 10.2).
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3.4 Local and Global Frames

We would like to conclude this section by discussing local and global
frames, followed by revisiting the viewport transformation in these
frames.

Suppose that you have a point, ṗ, defined in the affine frame, W,
with a coordinate of c; i.e., ṗ = Wc. We now want to translate the
point with T and then rotate it with R. The transformed point, ṗ′,
is defined as the following and can be interpreted in two different
directions:

ṗ′ =WRTc

=W(RTc) = Wc′ // use the global frame (3.22)

=(WRC)c = W′c // use a local frame. (3.23)

Figure 3.7: Global (left) and
local (right) frames of the same
transformation.

The second equation is derived by changing the coordinate given
the global frame W. The third equation is derived by modifying
the frame itself into a new local frame, say W′, while maintaining
the coordinate. These two different interpretation can be useful for
understanding different transformations.

Let us remind you that we started with this chapter by discussing
the viewport transformation. Let’s apply local and global frames to
the viewport transformation. During the viewport transformation,
the point does not move. Instead, we want to compute a coordinate
in the viewport space, V, from that in the world space, W. In other
words, we can represent them as the following:

ṗ = Wc = Vc′, (3.24)

where the relationship between the world and viewport spaces is
represented by V = WS.

In this case, the coordinate c′ in the viewport space is computed as
the following:

ṗ = Wc = VS−1c = V(S−1c) = Vc′. (3.25)

This approach, considering coordinates with different frames, can
be very useful for considering complex transformation. We will use
this approach for explaining 3D rotation transformations in the next
section.

3.5 3D Modeling Transformation

To create a scene consisting of multiple objects, i.e., models, we
need to place those models in a particular place in the world. This
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operation is modeling transformation that commonly consists of
translation and rotation.

3D translation is extended straightforwardly from the 2D transla-
tion:

c′ =


1 0 0 tx

0 1 0 ty

0 0 1 ty

0 0 0 1

 c. (3.26)

The rotation in the 3D space along the canonical axis is easily
extended from the 2D case. For example, the rotation along the X axis
is computed as the following:

R`
X =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 . (3.27)

The 3D rotation against an arbitrary vector requires additional
treatments. Nonetheless, the affine frame we studied in Sec. 3.2.3
simplifies this process and we thus discuss this approach here in this
section.

Figure 3.8: Geomtry for 3D
rotation.

Suppose that we would like to rotate a vector, ~x, given a rotation
axis vector,~a. When the rotation axis aligns with one of canonical
X, Y, or Z axis, we can easily extend the 2D rotation matrix to 3D
rotation matrix. Unfortunately, the rotation axis may not be aligned
with those canonical axes, complicating the derivation of the rotation
matrix. We now approach this problem in the perspective of the
affine frame. The vector ~x can be considered to be defined in the
frame of three basis vectors consisting of~a, the red one, and two
other orthogonal vectors, the black and green vectors in the figure.

Let’s first compute the black vector ~x⊥, which is orthogonal to~a,
and the plane spanned by these two vectors contains the rotation
vector ~x. We can decompose two coordinates, s and t, of ~x in the
plane defined by~a and ~x⊥, respectively. To compute such coordinates,
we can apply the dot product. s and t, and ~x⊥ are then computed by
canceling the coordinate of~a, as follows:

s = ~x ·~a,

~x⊥ = ~x− s~a,

t = ~x ·~x⊥.

The green vector~b that is orthogonal to both~a and ~x⊥ is computed
by the cross product between~a and ~x⊥; i.e.,~b =~a×~x⊥.

So far, we have computed three basis vectors of a local affine frame
that can define the vector ~x. Specifically, the vector ~x is defined as the
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following:

[
~a ~x⊥ ~b ȯ

] 
s
t
0
0

 , (3.28)

where ȯ is a virtual origin of our local affine frame. The rotation in
the amount of θ along the rotation axis~a is transformed to the rota-
tion along the X axis in the local affine frame. As a result, coordinates
of the rotated vector are computed as the following:

[
~a ~x⊥ ~b ȯ

]
R`

X


s
t
0
0

 . (3.29)

Quaternion is an popular alternative for the 3D rotation, and many
tutorials are available for the topic.





4
Camera Setting

In this chapter, we discuss two important aspects of a camera setting:
1) how to setup camera parameters, and 2) how to project objects into
a 2D viewing space.

For the simplicity, we discuss these issues with a pinhole camera,
one of simple camera setting. Modern cameras employ many differ-
ent types of lenses and thus are much more complex than the pinhole
camera. We also discuss how to extend such realistic cameras in other
chapters .

4.1 Viewing Transformation

To see a particular portion of the world scene, it is natural to specify
the camera. The camera is specified with its origin, and X, Y, and
Z axis in the world space (Fig. 4.1), which define the affine frame
of the camera space. The viewable image is then mapped to the
X-Y space in the camera space. As a result, the goal of the viewing
transformation is to convert the coordinates defined in the world
space into those in the camera or viewing space.

Unfortunately, defining those parameters, e.g., X-axis of the cam-
era, in the world space is neither an intuitive nor easy task. Instead,
we would like to design an intuitive and easy way of defining those
parameters. Following quantities are commonly adopted ones for
defining the viewing space:

1. Eye point, e. This is simply the position of the camera.

2. Look-at point, p. We typically have a specific target that we want
to look at. As a result, requiring such a look-at point is not a big
burden to users.

3. Up-vector, ~ua. While we have the look-at point, the orientation
of the camera is not specified. For example, we can look at the
target point, while we maintain our head upward or downward.
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Figure 4.1: To generate an im-
age, we specify a camera in the
world space, which consists of
the origin and X, Y, and Z axis
of the camera.

As a result, we require to specify an up-vector, ~ua, that define the
orientation of the camera.

While we prepared an intuitive way of defining the camera, we
still need to define the affine frame of the viewing space. The next
goal is to define the affine frame from these parameters, as the follow-
ing:

1. Look-at vector,~l. The Z-direction of the camera can be computed
by computing the look-at vector,~l, which is computed by p− e with
a proper normalization, l̂ = l

|l| . Note that we use the hat notation, ,̂
to denote a normalized vector, whose magnitude is one.

2. Right vector,~r. The X-axis of the camera is computed by the cross
product between the look-at vector l̂ and the given up-vector vecua:

~r =~l × ~ua,

r̂ =
~r
|r| . (4.1)

3. Adjusted up-vector, û.

r

Figure 4.2: Adjusting the initial
up-vector.

The given up-vector may not be perpendicular to the look-at and
right vectors. As a result, we recompute a new up-vector, û, that
is perpendicular to both of them: û = r̂ × l̂. Since it is difficult
and cumbersome for users to specify the initial up-vector in this
way, we adjust the up-vector in this way. Usually, this process is
performed within a graphics library such as OpenGL.

Let’s consider how to transform coordinates in the world space
to the viewing space defined in the camera space. This problem is
exactly same one that we discussed for local and global frames of
Sec. 3.4. As a result, we apply the concept of changing frames to this
problem.
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Suppose that the coordinate in the world space is c. What we want
is to translate the camera origin such that the camera origin becomes
the origin in the viewing space. This is represented by T−e. We then
rotate the coordinate with a rotation matrix, Rv, into the camera
space. As a result, we have the following equation:

Wc = ERvT−ec, (4.2)

where W and E are frames of the world space and camera space.
Therefore, the viewing matrix is defined as RvT−e that convert the
world space coordinate c into one in the camera space.

For the world space, we use canonical basis vectors and thus
W = I. Also, the viewing space E is represented by the three basis
vectors. As a result, we have the following relationship:1 0 0

0 1 0
0 0 1

 =
[
r̂ û −l̂

]
Rv (4.3)

[
r̂ û −l̂

]−1
= Rv (4.4)

The matrix of
[
r̂ û −l̂

]
= M is an orthonormal matrix, whose

columns are orthogonal to each other and unit normal vectors. In this
case, MT M = I is satisfied and thus M−1 can be easily computed by
MT . As a result, the rotation matrix Rv is computed as the following:

Rv =

 r̂T

ûT

−l̂T

 (4.5)

Given the rotation matrix and translation matrix, the viewing
matrix V is computed as the following:

V = RvT−e =


r̂x r̂y r̂z 0
ûx ûy ûz 0
−l̂x −l̂y −l̂z 0

0 0 0 1




1 0 0 −ex

0 1 0 −ey

0 0 1 −ez

0 0 0 1

 . (4.6)

Connections to OpenGL. In an old version of OpenGL, the viewing
transformation is setup by calling ”gluLookAt (·)". This function
simply constructs the viewing matrix (Eq. 4.6) and composes it with
the current matrix that OpenGL maintains. In a recent OpenGL
version, e.g., 3.0, gluLookAt is no longer available, and one needs
to maintain their own viewing transformation in a vertex shader .
Fortunately, there are many available codes to implement equivalent
functions in recent versions of OpenGL.
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4.2 Projection

Projection occurs right after viewing transformation. Projection
maps 3D points defined in the camera or eye space into 2D points
in the image space. There are two common projection methods:
orthographic and perspective projection.

Figure 4.3: Orthographic projec-
tion.

The orthographic projection simply flattens 3D objects into the
2D image space. It preserves parallel lines before and after the pro-
jection. It is used for top and side views in various modeling tools
(e.g., 3ds Max). It can, however, appear unnatural due to the lack of
perspective foreshortening.

In a simplest form, the orthographic projection is defined as the
following: 

x′

y′

z′

1

 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1




x
y
z
1

 . (4.7)

As an additional details to the viewing and projection transforma-
tion, we also define a view volume for each camera. Fig. 4.4 shows
an example of the view volume for the orthographic projection with
related parameters defining the view volume. After the orthographic
projection, we map those 3D coordinates into ones in the NDC space
(Sec. 3.1).

In this context, the orthographic projection mapping to the NDC
space is computed as the following:

x′

y′

z′

1

 =


2

r−l 0 0 −(r+l)
r−l

0 2
t−b 0 −(t+b)

t−b
0 0 2

f−n
−( f+n)

f−n

0 0 0 1




x
y
z
1

 , (4.8)

where r, l, t, b, f , n indicates right, left, top, bottom, far, and near, re-
spectively. As a sanity check, when we have a coordinate of (l, 0, 0, 1),
it should give us −1 after the orthographic projection. This is verified
as the following:

x′(l) =
2l

r− l
− r + l

r− l
= − r− l

r− l
= −1. (4.9)

Note that we do not cancel the Z-coordinate even after the ortho-
graphic projection. We actually use the Z-coordinate for an important
rendering task, visibility check using the depth buffer (Ch. 7.4).

4.2.1 Perspective Projection

Perspective projection is very common in modern computer anima-
tion. It, however, takes a long history to be fully understood and
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Figure 4.4: The left figure
shows a view volume for the
orthographic projection. After
the orthographic projection, we
map 3D coordinates into ones
in the NDC space.

Figure 4.5: This shows the last
supper drawn by Leonardo da
Vince. This painting shows that
objects are drawn under the
perspective projection. Further-
more, the vanishing point is
located at the Jesus to empha-
size the theme of the paining.
In other words, perspective
projection may be intentionally
used for artistic expression.

used in arts. Fig. 4.5 shows an early example of a painting adopting
the perspective projection and its intentional use for artistic expres-
sion.

Figure 4.6: Vanishing points.

A key characteristic of the perspective projection is foreshortening
of far-away objects compared to close objects. Another characteristic
of perspective projection is that parallel lines in perspective projection
always intersect at a point, i.e., vanishing point.

In this section, we discuss such a perspective projection under
a simplistic camera model, pinhole camera. Fig. 4.7 shows a 2D
schematic illustration of a point into a view plane under a pinhole
camera. The point, p, has (y, z) coordinates in the Y-Z world space.
Under the pinhole, we can see the point by observing on the ray that
is reflected from the point and passes through the pinhole. We draw
the ray in the blue color.

In a camera we commonly have some kind of sensors (e.g., camera
sensors or film) to capture the light energy that the ray carries at the
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21

Perspective Projection for a 
Pinhole Camera
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Figure 4.7: This figure illus-
trates how a point maps in the
world space maps to one in the
view plane space.

end of the optical systems behind of the eye point, i.e., focal point. In
computer graphics, we, however, have such image recording plane in
front of the eye position, i.e., the camera center.

Given this configuration of the view plane, our goal is to compute
coordinates of the point, p′, in the view plane that is projected from
the 3D point p. Since the projected point p′ is in the view plane, its
Z-coordinate is d, which is the distance from the camera origin e to
the view plane. The unknown of p′ is its Y-coordinate.

To derive this, we apply properties of similar triangles between
4p′epd and 4pepz, and we then have the following relationship
based on the same proportion of same sides:

ys

d
=

y
z
⇒ ys = d

y
z

, (4.10)

where d and z are Z-coordinates of points pd and pz, respectively.
The next question is how to represent this equation in a matrix

form. The bottom line is how to represent 1
z in a matrix form. We

address this problem by utilizing the homogeneous coordinate with
the following simple matrix form:

wx′

wy′

wz′

w

 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0




x
y
z
1

 . (4.11)

The trick is on the homogeneous coordinate. In this case, the homo-
geneous coordinate after applying the perspective matrix is set to
the depth of the point, i.e., w = z. We then have the following the
homogeneous divide and accomplish the perspective projection:

w = z, x′ =
x
w

=
x
z

, y′ =
y
w

=
y
z

, z′ = 0. (4.12)
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The final homogeneous coordinate after the homogeneous divide is
1 = w

w .
We also define a view volume for the perspective projection and

convert it to the unit view volume, followed by mapping to the NDC
space. Based on this, we can also setup a perspective projection
matrix for the NDC space. In an old OpenGL version, this function is
supported by call glFrustum(·) or gluPerspective(·).

4.2.2 Common Questions

Can we support other projections than orthographic and perspec-
tive projections? For example, a projection simulating the image ob-
served from bug’s eyes? What if this projection is not represented
as a simple matrix? Yes, we can support many other projections
that are represented as some mathematical equations. Also, current
GPU can support arbitrary projections although the projection is not
represented as a simple matrix.

I felt that there are something missed in the image generated by
using perspective projection. Then, I realized that those images do
not have effects like out-of-focusing and in-focusing. How can we
support these effects? To correctly simulate these kinds of effects,
we need to simulate a lens that we are using in camera. This can
be supported by using ray tracing, but may take long computation
time. Instead, we can mimic similar effects by considering depth
values of rasterized objects. For example, the depth values of the
rasterized objects are far away from the user-defined focal depth,
we blur the image of the object. This is not a correct solution, but a
hacky solution that can run very fast in the rasterzation rendering
mode.





5
Interaction

In this chapter, we discuss basic ways of interacting with 3D objects.
We first discuss a file format of 3D objects (Sec. 5.1), and how to se-
lect and manipulate those objects (Sec. 5.2). We then discuss a simple
way of supporting 3D rotation based on a concept of the virtual track-
ball (Sec. 5.3), followed by handling hierarchically defined models
(Sec. 5.4).

5.1 Loading Objects

One can create a 3D object using various modeling tools such as
Blender, a free and open-source software, and Autodesk 3ds Max,
a commercial tool. Also, many 3D models have been created and
available commercially and freely at various websites. As a result, it
is also common to load those models and compose a 3D scene with
them.

As a step to compose and render such a scene, it is necessary to
read and load 3D objects. Many file formats are proposed to enable
such operations easily. In this section, we discuss an obj format, one
of simplest and widely available formats. A simple example of an obj
file format is shown in Frame 5.1.

# A simple cube in an obj file format // strings starting
with # are comments

v 1 1 1 // vertex specification
v 1 1 -1
v 1 -1 1

v 1 -1 -1
v -1 1 1

v -1 1 -1
v -1 -1 1

v -1 -1 -1
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f 1 3 4 // face specification
f 5 6 8

f 1 2 6

f 3 7 8

f 1 5 7

f 2 4 8

Basic obj file tokens are explained in below:

• # comments. The rest of the line starting with # is comment.

• v float float float. It specifies X, Y, and Z coordinates of a vertex.

• vn float float float. It defines a normal.

• vt float float. It specifies U and V texture coordinates.

• f int int int .. It defines a triangle (or other polygon) with vertices
with specified indices. These arguments are 1-based indices. When
we do not have normal information associated with the triangle,
we compute the normal out of the plane passing the triangle. The
direction, i.e., inward or outward, of the normal vector depends
on the ordering of those vertices (Ch. 6.3). As a result, an extra
attention is required on the ordering of vertices.

We can also read and store these files in an ASCII mode or binary
mode. It is usually more intuitive for human to use the ASCII mode,
since we can effective understand what the file describes. On the
other hand, the binary mode has benefits in terms of compact storage
and thus fast I/O operations.

Layouts. One can have an arbitrary ordering, i.e., layout, of vertices
and triangles. Nonetheless, the layout has been identified to play
an important role in terms of performance. Since modern computer
architectures adopt a block-based cache, the cache fetches a block
containing consecutively located data, when one of those data is
accessed. As a result, data that are likely to be accessed together are
recommended to be stored closely. This idea leads to cache-coherent
and cache-oblivious layouts 1. . 1 Sung-Eui Yoon, Peter Lindstrom,

Valerio Pascucci, and Dinesh Manocha.
Cache-Oblivious Mesh Layouts. ACM
Transactions on Graphics (SIGGRAPH), 24

(3):886–893, 2005

5.2 Selection

To interact with objects in graphics applications, we first need a way
of selecting a particular object in the 3D scene. Suppose that we
would like to select an object that the mouse pointer is locating at.
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Many possible approaches are possible, and two of them are listed
here:

1. Object-space approach. Given the point of the mouse cursor, we
can imagine a virtual ray passing from the camera origin to the
point. We can then identify objects that are intersecting objects
and choose the object that has the closest intersection point to the
viewer. Overall, this approach is ray casting, which is the basis for
ray tracing, a critical component of physically-based rendering
(Ch. 10).

2. Image-space approach. Since we have a rendered image in the
color buffer, we can directly access the pixel in the buffer, where
the mouse cursor is located at. Unfortunately, the pixel has only
the color of a rendered triangle, not the ID of the triangle. We
explain a concept of an item buffer that encodes the ID of each
triangle based on a color. This approach unlike the object space
method based on ray tracing works on the image buffer and thus
is an image-space approach.

It is worthwhile to mention that many graphics problems can be
approached in either the object-space, image-space, or even a hybrid
approach combining both of them, as described for the selection
problem.

5.2.1 Selection with Item Buffer

Figure 5.1: The top image
shows the color buffer of a
scene, while the bottom image
shows its item buffer rendered
in the back buffer.

For the selection problem mentioned in the prior section, we want to
encode a triangle ID on each pixel on a buffer.

A simple way given the rendering pipeline is to use the concept
of the item buffer. The item buffer is simply a different name to the
color buffer, with the difference of encoding IDs of triangles, not the
original colors of them. To encode an ID for each triangle, we use a
unique RGB color value, ID color, for each triangle or each object that
serves a smallest selection granularity.

We render all the objects with those ID colors, but we should
not show this result to a viewer, since this is not the final result.
Therefore, we render it to a back buffer, but do not swap it to the
front buffer that is accessed by a display device and thus visible to
the viewer. We then read the back buffer by calling an appropriate
access function, e.g., glReadPixels(·). Once we fetch the color ID
given the chosen pixel, we can identify its associate triangle or object.
We then provide a feedback based on the selection operation and
render the scene with its original colors.

Note that this selection method works by reading the buffer and
thus is categorized by an image space approach. As a result, this
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method shows common features of many image space approaches,
and some of them are them are:

1. Accuracy depending on the image resolution. A main character- Accuracy of image-space methods are
commonly controlled by the chosen
resolution of images.

istic of the image-space method is that its accuracy depends on
the chosen image resolution, since we identify the triangle ID by
accessing an pixel in the item buffer. When we have multiple tri-
angles in a pixel, the pixel can encode only a single triangle. As a
result, as we have higher resolutions, we have a higher accuracy in
terms of identifying a chosen triangle. Note that when we choose a
triangle based on a ray in the object-space method, we do not have
such a characteristic.

2. Different performance characteristics to the object space approach.
While the image-space method has its accuracy issue, it is com-
monly used in many different problems including the selection
problem, since it is relatively easy to implement and to show high
performance, mainly thanks to the support from GPUs. For ex-
ample, we render triangles and read the buffer through GPU, and
thus they can be done quite quickly. Nonetheless, it is less obvious
whether this approach has a better time complexity. Specifically,
the image-space method using the item buffer explained in this
section has a linear time complexity, while the ray tracing based
approach using an acceleration structure such as bounding volume
hierarchy has sub-linear complexity (Ch. 10.3). As a result, when
we have many objects and triangles, the object-space approach can
be faster.

In this section, we studied about an image-space selection method
using the item buffer. More importantly, we discussed its different
characteristics with those of an object-space method using ray trac-
ing.

5.3 Virtual Trackball

Figure 5.2: A trackball. The
image is excerpted from the
homepage of its vendor, Kens-
ington.

In the prior section, we discussed how to pick an object. Once we
select an object, we would like to re-position or re-orient the object.
For such operations, we can do that through many input devices
such as keyboard, mouse, touch screen, etc. For example, many
modeling tools (e.g., Autodesk 3ds Max) provide various object and
camera manipulations through mouse, which is an inexpensive and
widely used input device.

Discussing various interaction operations with available input
devices is beyond the scope of this section. Instead, we focus on how
to rotate an object in a 3D space. Fig. 5.2 shows a trackball, where a
rolling ball is attached. We can use the trackball to intuitively rotate
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an object, which is mapped to the ball on the track ball. Unfortu-
nately, the trackball is not widely available compared to keyboard
and mouse. We now see how we can support such convenient rota-
tion mechanisms with a mouse.

Figure 5.3: Top: we place a
ball on an object under the ro-
tation, while the viewing space
is touching the ball. Bottom:
suppose that we push a button
of a mouse at the location of
~a and release it at the another
location,~b. In this user input,
we want to rotate the ball and
its enclosed object from~a to~b.

Suppose that we enclose a sphere on an object that we would like
to rotate. Fig. 5.3-top image shows such a configuration. The 2D grid
represents our viewing plane. The interaction scenario for rotating
the object with the mouse works as the following: 1) the user locates
the mouse cursor and clicks a button at a point,~a 2, and then move

2 We represent this as a vector starting
from the ball origin to the point.

and specify the cursor into a different position,~b. Basically, based on
this interaction scheme, we want to roll the ball from~a to~b. The next
question is how to compute rotation information, the rotation axis,~r,
and its rotation amount, θ, realizing the rolling operation?

Suppose that you grasp the ball from~a to~b in your right (or
left) hand. The thumb in this case indicates the rotation axis~r. The
rotation axis is a vector orthogonal to both~a and~b, and this can be
computed by the cross product between them:

r̂ = â× b̂, (5.1)

where r̂ represents a normalized vector whose magnitude is one, i.e.,
r̂ = ~r

|~r| . The rotation angle θ is computed by the inverse of the dot
product:

θ = cos−1(â · b̂). (5.2)

If necessary, we can also compute a rotation matrix based on com-
puted axis and angle (Sec. 3.5).

5.4 Transformation Hierarchy

Some objects have many joints (Fig. 5.4), and we can move each joint
independently. In this section, we would like to compute transforma-
tions for those parts of an object.

As an example for the study, let’s consider an object consisting
of two parts with a joint (the rightmost object in Fig. 5.4). Each part
is usually defined in its own modeling coordinate; its center is com-
monly located at the origin, say (0, 0, 0), in its modeling coordinate.
We then apply appropriate transformations to those parts to locate it
at the world space. Since these parts are defined hierarchically, these
transformations are also defined in the same, hierarchical way.

Suppose that Mb and Mp are two transformation matrices that
converts from the base to the world, and from the part to the base,
respectively. In this context, to compute the base, say, its coordinate
b in its modeling space, in the world, we compute such transformed
locations based on Mbb. For the part, p, we need to apply Mp to
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: transform from the base to the world

: transform from the part to the base

Figure 5.4: The left and mid-
dle show two examples of
objects with many joints. The
left is a lamp with many joints,
and the middle shows a hu-
manoid robot, DRC hubo from
KAIST, who won DRC (DARPA
Robotics Challenge) held at
2015. The right shows an ex-
ample object consisting of two
parts.

locate the part in the base space, followed by Mb to the world space.
As a result, we apply MbMp p.
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Clipping and Culling

Figure 6.1: The top model
shows a coal-fired power plant
model consisting of 12 millions
of triangles. The model has
many pipes within the green,
furnace room. It has drastically
irregular distributions of trian-
gles across the model ranging
from a small bolt to large walls
in the furnace. This model is
courtesy of an anonymous
donor. Bottom images show
effects of performing various
culling operations. The middle
image is the result after per-
forming view-frustum culling
to the original power plant
model shown in the left. We
show these models in a 3rd per-
son view, while the light blue
shown in black lines represents
the 1st person’s view where we
perform various culling. The
right image shows the result
after performing occlusion
culling. Since the model has
a depth complexity, occlusion
culling shows a high culling
ratio in this case.

The performance of rasterization linearly increases as we have
more triangles. While GPU accelerates the performance of rasteriza-
tion, it improves only a constant factor, not the time complexity, i.e.,
growth rate, of the rasterization method. Especially, when we have
so many triangles in a scene, it may be prohibitively slow for such
scenes. An example includes a power plant scene consisting of 12

millions of triangles (Fig. 6.1).
In this chapter, we discuss two acceleration techniques, clipping

and culling, to improve the performance of rasterization. At a high
level, their main concepts are:

1. Culling. Culling throws away entire primitives (e.g., triangles)
and objects that cannot possibly be visible to the user. This is one
of important rendering acceleration methods.
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2. Clipping. Clipping clips off the visible portion of a triangle and
throws away the invisible part. This simplifies various parts of the
rasterization process.

6.1 Culling

Culling conservatively identifies a set of triangles and objects that
are invisible to the viewer, and does not pass them to the rendering
pipeline. Since the culling process itself can have its own overhead, it
is important to design an efficient culling method, while identifying a
large portion of invisible triangles among their maximum set.

Fig. 6.1 shows two culling methods, view-frustum culling and
occlusion culling, applied to the power plant model. Since this model
has a high depth complexity, i.e., many triangles map to a pixel in
the screen image, and widely distributed triangles across its scene,
such culling methods can be very effective, while they have their
own computational overheads. Some of culling methods work as the
following:

1. Back-face culling. We cannot see triangles heading away from us,
unless such triangles are transparent. In opaque models, back-face
triangles are blocked by front-face triangles. Back-face culling
can be done quite easily and integrated in the rendering pipeline
(Sec. 6.5).

2. View-frustum culling. The view-frustum (Fig. 6.1) shows an
example of the view-frustum and its culling result. Typically, the
view-frustum is defined as a canonical view volume within the
rendering pipeline and performed by checking whether a triangle
or an object is inside the volume or not.

Figure 6.2: Back-face triangles
of closed objects are invisible,
and back-face culling aims to
cull such triangles.

3. Occlusion culling. In the case of opaque models, we cannot
see triangles located behind the closest triangle to the viewer.
As we have more complex models, such models tend to have
more numbers of triangles and thus more numbers of triangles
map to a single pixel, resulting in a higher depth complexity. In
this case, occlusion culling identifies such occluded triangles or
objects. Typically, occlusion culling has been more difficult to be
adopted, since knowing whether a triangle is occluded or not may
require rasterizing the triangle, which we wanted to avoid initially
through occlusion culling.

In the next section, we discuss inside/outside tests that are basis
for many culling and clipping methods.
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6.2 Inside/Outside Tests

Figure 6.3: Notations of the
implicit line equation.

Many culling and clipping methods check whether a point (or other
primitives) is inside or outside against a line in 2D or a plane in 3D.
We thus start with a definition of a line for the sake of simplicity; the
discussion with the line naturally extends to 3D or other dimensions.

Among many alternatives on definitions on lines, we use the
following implicit line representation:

(nx, ny) · (x, y)− d = 0→
nxx + nyy− d = 0→

[
nx ny −d

] x
y
1

 = 0→

l̄ ṗ = 0, (6.1)

where (nx, ny) ≡ ~n is a unit normal vector of the line equation and
ṗ is a point in the homogeneous coordinate. We use l̄ to denote
coefficients of the line.

Given the line equation, we also define the positive half space, ṗ+,
where l̄( ṗ+) ≡ l̄ ṗ+ > 0; we also define the negative half space in
a similar way. We use the following lemma for explaining culling
techniques.

Lemma 6.2.1. When the normal of the line equation, Eq. 6.1, is a unit
normal vector, d gives the L2 distance from the origin of the coordinate
system to the line.

Proof. Let us define (x, y) to be the point in the line realizing the
minimum L2 distance from the origin to the line, and we then have
the following equation:

(nx, ny) = s(x, y),

n2
x + n2

y = 1,

s2(x2 + y2) = 1. (6.2)

where s is a non-zero constant. Since the point (x, y) is in the line, we
have the following equation:

nxx + nyy = d,

d =
1
s

(
n2

x + n2
y

)
=

1
s

,

=
√

x2 + y2 ∵ Eq. 6.2. (6.3)
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Figure 6.4: This shows three
different cases of culling the
polygon given its enclosing
spherical bounding volume.

In a similar way of proving the lemma, we can see that given
a point (x, y) that is or is not on a line whose normal is (nx, ny),
nxx + nyy gives a distance from the point to the line. We also utilize
this property for designing culling techniques.

6.3 View-Frustum and Back-Face Culling

Let us discuss a simple culling scenario against a line before moving
to view-frustum and back-face culling. Suppose that we have a
polygon, and we can cull it when the polygon is located totally
outside a culling line, as shown in Fig. 6.4. Since it takes a high
culling overhead against each vertex of the polygon with many
vertices against the line, we use a bounding volume that tightly
encloses the polygon.

There are many different types of bounding volumes (BVs) in-
cluding spheres, boxes, oriented boxes, etc. Commonly, spheres
and axis-aligned bounding boxes (AABBs) are frequently chosen
bounding volumes, since they are easy to compute with a low com-
putational overhead and a reasonably high culling ratio. Detailed
discussions are available in the chapter of bounding volumes and
bounding volume hierarchy for ray tracing (Sec. 10.3). In this section,
we simply use the sphere for the sake of clear explanation.

Suppose that we use a sphere enclosing the polygon. As a simple
culling method in this case, we use its center, c, and radius, r, irre-
spective of how many vertices the polygon has. Specifically, we test
the center against a culling line, l( ṗ), by plugging its center position
to its implicit line equation. There are three different cases (Fig. 6.4),
depending on the value of l(c). Since we assume to cull the polygon
when it is located outside the line, we focus on this case only in this
chapter.

The value of l(c) indicates the L2 distance from the line to the
center c. When l(c) > r indicates that the sphere is conservatively
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Figure 6.5: The left image
shows a view-frustum in 2D,
while the right image shows
its canonical view volumes.
These lines in 2D and planes
in 3D of the canonical view
are compactly represented and
thus can result in fast runtime
performance.

outside the line, we can cull it from the further rendering process.
With the provided information, it is unclear whether this simple
culling operations results in a higher rendering performance than
naively rendering all those objects. Nonetheless, we have discussed
a basic concept of culling against a line. The performance of this
basic approach can be significantly improved by using hierarchically
computed bounding volumes, known as bounding volume hierarchy
(Sec. 10.3).

Let’s see how we perform the view-frustum culling. In rasteriza-
tion, we assume that we see objects only located within the view-
frustum, while this is not the case in reality 1. Based on this assump- 1 We can see other objects that are

reflected by objects (e.g., mirror) located
within the view-frustum.

tion, we can safely cull triangles located outside the view-frustum.
The view-frustum is defined as the left image of Fig. 6.5. We can

define such planes with the implicit plane equations, but the view-
frustum defined by the given camera setting is transformed to the
canonical view volume, which are defined as x = ±1, y = ±1, z =

±1, as mentioned in Sec 4.2. The right image of Fig. 6.5 shows the
canonical view-volume in 2D.

When a triangle is located outside either one of these six planes,
we cull the triangle. This operation applies to each triangle, and
is adopted in the rendering pipeline. For large-scale scenes where
the view-frustum contains only a portion of them, we can apply
the culling method in a hierarchical manner by using a hierarchical
acceleration data structure such as bounding volume hierarchy. This
approach is more involved and thus a rendering engine supports it.

Back-face culling can be done in a different way. In this section, we
discuss a method utilizing the inside/outside tests. One can observe
that we cannot see a triangle, when it faces backward (Fig. 6.2). More
specifically, suppose that we compute a plane passing the triangle.
Then, the triangle is classified as the back-face, when the eye is
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located in the negative half side of the plane.
To compute such a plane, we need a normal, the orthogonal vector

heading outward to the plane. Given a vertex ordering from v0, v1, v2

in the counter-clock wise, the normal of the triangle, ~n, and the
distance, d, of the plane is computed as the following:

~n = (v1 − v0)× (v2 − v0),

d = ~n · v0, (6.4)

where the dot product computes the projected distance of the vertex
v0 to the normal direction.

Later, in Ch. 7.3, we discuss a faster back-face culling method,
which is more appropriate to be adopted in the rendering pipeline.

Back-face culling in OpenGL. To cull back facing triangles in
OpenGL, we use glCullFace(·) after enabling the feature (e.g.,
GL_CULL_FACE). OpenGL identifies back-face or front-face based
on its normal computed from its vertex ordering (Ch. 7.3). OpenGL
also provides a way of defining back-face and front-face based on a
winding order of vertices between clockwise or counter-clockwise.
The counter-clockwise ordering indicates that when we wrap those
vertices starting from v0, passing v1 to v2 with the hand, the thumb
direction is the front-face. By culling away such back facing triangles,
we can avoid to generate fragments from those triangles, resulting in
a higher performance.

6.4 Clipping

Figure 6.6: A configuration of
culling an edge against a line.

In this section, we discuss clipping that identifies only a visible
portion of a primitive, i.e., triangle, and pass it to the following stage
(e.g., rasterization stage) in the rendering pipeline.

Let’s first discuss a simple case, clipping a line segment consisting
of two points, ṗ0, ṗ1, against another line, whose coefficient is rep-
resented by~l. Our goal here is to identify the clipping point, ṗ, that
intersects with another line~l. To compute the point, we present ṗ
with a line parameter, t, as the following:

ṗ = ṗ0 + t( ṗ1 − ṗ0). (6.5)

The point should be in another line and thus l̄ ṗ = 0. We then have
the following equation:

l̄ · ( ṗ0 + t( ṗ1 − ṗ0)),

t =
−(l̄ · ṗ0)

l̄ · ( ṗ1 − ṗ0)
. (6.6)
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Figure 6.8: The left shows out-
codes for each region defined
by four lines of the view re-
gion. The right shows results
of culling edges based on the
Cohen-Sutherland method.

Each vertex is also associated with other attributes like colors and
texture coordinates. We can also compute those attributes for the
clipping point based on the same interpolation method.

Figure 6.7: The Sutherland-
Hodgman method computes a
clipped polygon against a line.

Based on this simple line-by-line clipping method, we explain a
clipping method, Sutherland-Hodgman algorithm for a polygon in-
cluding a triangle against a line (e.g., a line of the viewport rectangle)
of a convex viewport.

In this method, we traverse each edge of the polygon and check
whether the edge is totally inside against the line or not. When it is
totally inside or outside, we keep it or throw away it, respectively.
Otherwise, we compute two clipping points as shown in Fig. 6.7 and
connect them with a new edge. We also apply this process repeatedly
against each line of the viewport region.

6.4.1 Cohen-Sutherland Clipping Method

The Cohen-Sutherland method is used to quickly check whether
an edge is totally inside or outside given the view region, by using
the concept of outcodes. An outcode is assigned to each vertex of
primitives, whose each bit encodes whether the vertex is inside or
outside against its corresponding line (Fig. 6.8). For example, the first
bit in the figure corresponds inside (1) or outside (0) regions against
the red line.

When we consider two binary codes, c1 and c2, assigned to two
vertices of an edge, we have the following conditions and actions:

• If (c1 ∨ c2) = 0, the edge is inside.

• If (c1 ∧ c2) 6= 0, the edge is totally outside.

• If (c1 ∧ c2) = 0, the edge potentially crosses the clip region at planes
indicated by true bits in (c1 ⊕ c2). Nonetheless, this could be false
positive, meaning that they are identified to be potentially crossing
the clip region, but are not actually.
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Figure 6.9: This shows different
stages of the rendering pipeline
with vertex coordinates and
view-frustum in each space.

This also applies to a triangle case by utilizing three outcodes com-
puted from three vertices of the triangle.

6.5 Clipping in the Pipeline

We discussed how to clip an edge against a plane of the view-
frustum before. We would like to now discuss in which stage of
the rendering pipeline we perform the clipping operation.

Fig. 6.9 shows how vertex coordinates change as we perform
different steps in the rendering pipeline. Overall, there are three
different places where we can perform the clipping operation. The
first option is the world space where the view-frustum is defined.
The second and third options are before and after performing the
homogeneous divide.

Each option has its pros and cons. The most intuitive option
would be the first one. Also, the third option seems to be good, since
the plane equations of the view-frustum in that space are canonical
like x = 1, and the clipping operation can be done quite quickly.
Nonetheless, if we do not clip an edge that spans outside the view-
frustum before this stage, the edge flips around due to the projection
carried by the homogeneous divide, and generates an unexpected
behavior. As a result, the third option is not possible.

Interestingly, the second option has been identified empirically
to show the best place to perform the operation, since it does not
have the problem of the option three and their plane equations are
also defined quite easily. The space of the option two is known as
the clip space. Let us discuss how the view-frustum is defined in this
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clip space. Specifically, x′/w′ = 1 in the third space corresponds to
x′/w′w′ = w′ → x′ = w′ in the clip space, which does not depend on
the camera setting, and thus can be done efficiently.

2 As you may realize through this discussion, the rendering 2 Structures of the rendering pipeline
are not fixed and can be changed for
better performance and usability.

pipeline has been heavily tested and optimized to deliver the highest
rendering performance. Nonetheless, these choices can change de-
pending on different workloads (e.g., some games use geometry or
texture heavily) and hardware performance (e.g., faster memory read
or computation).

6.6 Common Questions

Even though some objects are outside the view frustum, they can
be seen though transparent objects or reflected from mirrors. Ex-
actly. The rasterization algorithm is a drastically simplified rendering
algorithm over the real interactions between lights and materials. The
direct illumination, seen thought primary rays, are well captured
by rasterization, while other indirect illuminations are not captured
well in the rasterization. To address this problem, many techniques
have been proposed in the field of rasterization. However, the most
natural way of handling them is to use ray tracing based rendering
algorithms.





7
Rasterization

The main idea of rasterization is to project a triangle into the view
space and rasterize it into fragments in the color and depth buffers.
In this chapter, we assume that vertices of the triangle are projected
into the view space, after they undergo various transformations,
followed by clipping and NDC transformation.

7.1 Primitive Rasterization
Rasterization is optimized for process-
ing triangles thanks to their simplicity.For the rasterization process, we commonly use triangles as input

primitives, mainly because it is the simplest polygon and simplifies
the rasterization process. Nonetheless, these other representations
are also decomposed into a set of triangles and fed into the rasteriza-
tion process.

Rasterization process has two main goals: 1) pixel coverage deter-
mination (Fig. 7.1) and 2) parameter interpolation (Fig. 7.5). Given a
pixel of the color buffer (or other buffers), we determine whether the
pixel belongs to a given triangle or not. Once the pixel is covered by
the triangle, we also need to compute its color or other parameters
such as its depth value for the depth buffer.

For the coverage problems, many directions are possible. One is to
check whether the center of a pixel is inside of a triangle. Another is
to measure an area coverage ratio of a pixel against the triangle. The
first one is based on a point sample, while the latter one is based on
area computation. While the area based computation is more correct,
the sample based approach is more efficient, and thus is commonly
adopted for rasterization process. They share common pros and
cons between point sample based and area based approaches, as we
discussed for image-space and object-space methods (Ch. 5.2).
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݁̅଴݁̅ଵ
݁̅ଶݒሶ଴ ሶଵݒ

ሶଶݒ Figure 7.1: The left shows one,
pixel coverage determination, of
two main goals of the rasteriza-
tion process. The right shows
configurations of vertices and
edges of a triangle used for our
discussion.
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Scanline Triangle Rasterizer
●Walk along edges and process one scanline 

at a time
●Rasterize spans between edges

Figure 7.2: This shows a scan-
line based rasterization. The
scanline can be incrementally
computed between two neigh-
boring rows.

Scanline based triangle rasterization. Some of early techniques
for rasterization are based on a concept of scanline, a row of pixels
that span a triangle (Fig. 7.2). At those days, the memory was very
expensive, and thus having the full resolution of color and depth
buffers is not preferred. Instead, these scaneline based approaches
maintain a scanline and incrementally update the scanline to raster
the whole triangle. Specially, we rasterize an input triangle from
top to bottom. Once we meet a vertex of the triangle, we setup the
scanline information (e.g., starting and end coordinates shown as red
pixels in the figure). For the next scanline, we incrementally update
those starting and end coordinates by utilizing slope information of
two edges starting from the vertex.

While this technique was adopted early on, it was identified to
show poor scalability to handle scenes with many triangles, since this
technique relies on expensive sorting operations and is not friendly
for parallelization. Instead, ray tracing and Z-buffer techniques as
visible surface determination, i.e., visibility techniques, are prevail
techniques in these days (Sec. 10.4).

In the next section, we discuss another rasterization technique
combined with the Z-buffer technique.

7.2 Rasterization with Edge Equations

In this section, we discuss a rasterization technique for triangles
based on edge equations, as shown in the right side of Fig. 7.1. We
will see that this approach is simply and friendly for parallelization,
to achieve a high performance and thus handle a scene with many
triangles.

17

Edge Equation Coefficients
● The cross product between 2 homogeneous 

points generates the line between them

● A pixel at (x,y) is “inside” an edge if 
E(x,y)>0
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E(x,y) Ax By C= + +Figure 7.3: An edge represen-
tation from two vertices of a
triangle.

Let us first compute an edge equation given two vertices, v̇0 and
v̇1, of a triangle (Fig. 7.3). Our goal is to construct an edge equation,
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ē, whose normal vector heads towards the inside of the triangle.
Overall, coefficients of the edge equation is given by the cross prod-
uct between those two vertices:

ē =v̇0 × v̇1

=
[

x0 y0 1
]t
×
[

x1 y1 1
]t

=
[
(y0 − y1) (x1 − x0) (x0y1 − x1y0)

]
=
[

A B C
]

. (7.1)

It is not intuitive to compute the edge equation in this way. Here is
the rationale. Think of a line passing v̇0 in the homogeneous space,
i.e, (x0w, y0w, w) with an arbitrary value w. We also think another
line passing v̇1. The edge in the 2D space maps to a plane in the
3D homogeneous space. Since these two lines and the plane passes
the origin, (0, 0, 0), of the 3D homogeneous space, the normal of
the plane, i.e., the edge equation, is computed by the cross product
between v̇0 − (0, 0, 0) and v̇1 − (0, 0, 0).

Once we set the edge equation ē in this way, points, ṗ, inside the
triangle have ē ṗ > 0. We then see that pixels of the triangle reside
in the positive half-spaces against three edge equations from the
triangle (Fig. 7.1).

While the aforementioned approach is simple enough to identify
which pixels are inside a triangle, there are a few special cases re-
quiring certain treatments. They are two cases of sharing edges and
vertices.

Sharing an edge. The left image of Fig. 7.4 shows that a shared
edge of two triangles passes the center of a pixel. This case arises
rarely, but can happen, since there are many pixels, say 1 M pixels
when we use a 1 K by 1 K image resolution. When we assign the
pixel to both of those two triangles, the pixel color varies depending
on an order of rendering those two triangles, which is not a desirable
effect. We thus need a tie-breaker assigning only a single triangle to
the pixel.

A simple method is to consider the normal of each edge of a
triangle and to assign the pixel to either one of them. For example,
we can use the following simple tie-breaker:

bool t =

A > 0 if A 6= 0,

B > 0 otherwise,

where (A, B) are the normal vector of an edge computed by Eq 7.1.
We then assign a triangle to the pixel, when (ē( ṗ) > 0) ∨ (ē( ṗ) =

0∧ t).
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triangle 1

triangle 2

(A,B)

Pixel center

Snapped vertex

Figure 7.4: This figure shows
two cases requiring special
treatments for the pixel cover-
age.

Sharing a vertex. The right image of Fig. 7.4 shows another degen-
erated case, where a shared vertex of triangles is located at the center
of the pixel. For handling this case, one can use a similar tie-breaker
that we designed for the shared edge case. Another approach is to
snap or quantize vertices of triangles in a way that those snapped or
quantized vertices are not aligned with center coordinates of pixels.

7.3 Interpolation Parameters

21

Interpolating Parameters 
● Specify a parameter, say redness (r) at 

each vertex of the triangle
● Linear interpolation creates a planar function

x
y

Figure 7.5: This shows the lin-
ear interpolation of color values
associated with three vertices.

In the last section, we discussed which pixels are covered by a tri-
angle based its edge equations. In this section, we study how to
compute colors and other parameters for the pixel, given associated
information of the triangle.

Suppose that each vertex has associated information such as
color, normal, etc. For the sake of simplicity, we explain various
concepts based on the color, especially, red channel information,
r(x, y), given a pixel (x, y). Given three red values associated with
three vertices of a triangle, we need a way of interpolating these
values for a pixel within the triangle. The simplest method is to pick
a red value among those three values. While this is simple, it does
not produce reasonably high-quality rendering results.

Among many options, we use the linear interpolation from those
available values associated with three vertices (Fig. 7.5). The linear
red plane is then defined as the following:

r(x, y) = Arx + Br + Cr, (7.2)

where Ar, Br, Cr are three coefficients of the 2D plane. There are
three unknowns and we thus need three equations to compute the
plane. Fortunately, these three equations are defined by available
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information of three vertices as the following equation:

[
r0 r1 r2

]
=
[

Ar Br Cr

] x0 x1 x2

y0 y1 y2

1 1 1

→

[
Ar Br Cr

]
=
[
r0 r1 r2

]
(y1 − y2) (x2 − x1) (x1y2 − x2y1)

(y2 − y0) (x0 − x2) (x2y0 − x0y2)

(y0 − y1) (x1 − x0) (x0y1 − x1y0)


det

x0 x1 x2

y0 y1 y2

1 1 1


,

(7.3)

where r0, r1, r2 are three red values associated to corresponding three
vertices.

An interesting fact is that the area of the triangle, Av̇0 v̇1 v̇2 , is com-
puted as the following by utilizing the determinant of a matrix:

Av̇0 v̇1 v̇2 =
1
2

det

x0 x1 x2

y0 y1 y2

1 1 1

 (7.4)

=
1
2
((x1y2 − x2y1) + (x2y0 − x0y2) + (x0y1 − x1y0))

=
1
2
(C20 + C12 + C01), (7.5)

where C20, C12, C01 are coefficients of three edge equations, ē20, ē12, ē01,
respectively; ē20 indicates the edge equation constructed from v̇2 to
v̇0.

Note that when the area is zero, the triangle is invisible. Further-
more, when the area is negative, the triangle is back-facing. If the
back-face culling is enabled (Ch. 6.3), we cull the triangle for later ras-
terization. Otherwise, we flip normals of edge equations and perform
later rasterization.

Let’s consider the interpolation equation (Eq. 7.3). Actually, other
components of the top matrix are coefficients of three edge equations!
We then have the following interpolation equation:

[
Ar Br Cr

]
=

1
2Av̇0 v̇1 v̇2

[
r0 r1 r2

] ē20

ē12

ē01

 , (7.6)

where ē20 represents an 1 by 3 vector containing its three coefficients,
A20, B20, C20.

Once we compute coefficients of the red plane (Eq. 7.2), we can
compute a color on any pixel within the triangle.
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Figure 7.6: The left shows an in-
put scene, while the right image
shows its Z-buffer. The white
color represents the farthest
depth value, 1, while the black
one indicates the closest value,
0.

7.4 Z-Buffering

The Z-buffer technique is a visibility determination technique, which
encodes the depth value of a visible triangle per each pixel. Overall,
it is an image-space technique to determine the visible triangle by
using a 2D buffer, i.e., depth-buffer. Z-buffer is one of the most important

concepts for rasterization. Simply
speaking, we address a complex
problem of visibility determination
using a 2D map.

Fig. 7.6 visualizes the depth buffer, i.e., Z-buffer, given a scene.
The depth buffer simply contains depth values of visible trian-
gles. Note that each vertex of a triangle has its position information
(x, y, z). Once we project it to the image space, we also have its depth
value in the canonical view volume (Ch. 4.2). The depth value in the
canonical view volume spans in the range of [0, 1], where 0 indicates
the closest one, while 1 indicates the farthest one.

Given the depth value of each pixel, more correctly, fragment,
rasterized from a triangle, we can easily know that whether the
fragment has a depth value smaller than the one stored in the depth
buffer and thus visible. Once the fragment has a smaller depth value,
we update the depth buffer with that depth value at the pixel. We
continue this process until we process all the fragments generated
from the rasterization process.

As you can see, this Z-buffer is very simple, and thus can be well
adopted to a hardware implementation. While there have been many
advanced techniques, this Z-buffer technique is the most common
technique adopted in rasterization. Nonetheless, recent ray tracing
techniques are getting wider attentions thanks to its conceptual
simplicity and better functionality supporting realistic rendering
effects (Ch. 10).

Processing order. Note that the rasterization method based on the
edge equation can be parallelized among different pixels. For exam-
ple, a rasterization result of a pixel does not depends on anything of
another pixel. This opens up various approaches to parallelize the
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process for achieving higher performance.

26

Traversing Pixels

● Free to traverse pixels
● Edge and interpolation equations can be 

computed at any point

● Try to minimize work
● Restrict traversal to primitive bounding box
● Hierarchical traversal

●Knock out tiles of pixels (say 4x4) at a time
●Test corners of tiles against equations
●Test individual pixels of tiles not entirely 
inside or outside

Figure 7.7: Rasterization pro-
cess can be parallelized, and
any ordering of processing
pixels or tiles can be possible.

Fig. 7.7 shows two examples of the processing ordering of pixels
for rasterizing the triangle. In practice, we identify a bounding box
covering the triangle and process the region based on tiles. A tile
is a sub-region, say 4 by 4 pixels, of the image space. A GPU core
is assigned to process each tile. Different GPU cores process those
tiles in a parallel manner, to achieve a high performance. A GPU
core assigned to a tile needs to setup three edge equations for a
pixel, (x, y), in the tile. For the neighboring pixel, say (x, y + 1), we
incrementally compute those edge equations, as the following:

E(x, y) =Ax + By + C,

E(x + 1, y) =A(x + 1) + By + c

=E(x, y) + A. (7.7)

So far, we have discussed the rasterization process converting
a triangle into a set of fragments. This is one of main concepts of
rasterization, setting apart it from ray tracing.

While the rasterization process adopted back-face culling, it can
be very slow, especially, when the given scene has so many triangles.
There have been many scalable techniques (e.g., mesh simplification)
to handle such cases.
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Illumination and Shading

In this chapter, we look into basic concepts of illumination and
shading. These topics can have different meanings depending on
the context. In this chapter, we focus on computing effects of lights
for illumination per vertex, followed by applying those illumination
results to fill triangles. Before we talk about these concepts, let us
first think about how we see things.

8.1 How can we see objects?

Each one of us might have thought about how we can see objects at
one point in the past, since seeing things is a part of our daily activity.
To fully explain the whole process is beyond the scope of this book.
Instead, we would like to point out main components of this process.

Figure 8.1: This illustrates that
the sun light is composed of
different wavelengths, which
are perceived in different colors.
The image is excerpted from
the Newton magazine.

At a high level, seeing objects means that we receive the light
energy in our eye, which is in the end transferred to our brain. Let
us first talk about the light. The light is electromagnetic waves, and
our human eyes see only a portion of the spectrum of those electro-
magnetic waves, commonly called visible light (Fig. 8.1). Visible light
refers to wavelengths in a range of 400 and 700 nm.

Our eye has multiple layers and one of them is retina, which con-
tains photoreceptor cells sensing the visible light. There are mainly
two types of such cells: rod and cones. The rod cell is extremely sen-
sitive to photons and can be even triggered by even a single photon.
The rod cells give information mainly about intensity of the light,
while cone cells are about the color information. There are also three
types of cones, each of which responds to different wavelengths,
which we call red, green, and blue colors (Fig. 8.2). In reality, color
does not exist, but based on response levels from these three cone
types, our brain reconstructs the color. Color does not exist in reality. Instead,

our brain reconstructs based on re-
sponse levels of red, green, blue cones.

Now let’s consider how the light interacts with materials. This pro-
cess can be explained in different levels including quantum physics,
but in this chapter, we give only a high level idea on the process.



70 rendering

Figure 8.2: This figure shows
the response level of rod and
cone cells as a function of wave-
lengths. This figure is available
from Anatomy and Physiology
under the Creative Commons
Attribution 3.0 license.

Once a material or an atom receives a photon, the atom enters into its
excited sate. It then returns back to its normal state, while emitting
its energy into the space. The energy can be interpreted into another
photon or wave, thanks to the duality of the light. The key factor
that we need to know is directions of the emitted photon and their
wavelengths that determine the perceived color.

Figure 8.3: This illustrates
how the leaf interacts with the
coming light. This image is
excerpted from the Newton
magazine.

As an concrete example, please consider a leaf shown in Fig. 8.3.
The incoming sun light is a mix of various electromagnetic waves
with a set of different wavelengths, and thus can be perceived as a
white light. Once the sun light hits with the leaf, the leaf receives its
energy, which is used for its photosynthesis and dissipated as heat.
Nonetheless, some of its received energy is emitted into waves (and
particles) with different wavelengths. In this leaf case, the emitted
energy has the wavelengths corresponding to the green color. As a
result, we see the green color to the leaf. Furthermore, the emitted
energy is distributed into all the possible directions, and thus we can
see the leaf in any directions towards it.

8.2 Bi-Directional Reflectance Distribution Function

Depending on materials, they have different reflectance behaviors.
For example, the chalk is diffuse, meaning that it reflects the light in
all possible directions. We thus see the chalk in any view directions.
On the other hand, when we look at the surface of an apple, there
can be a highlight, a bright spot, when we have a particular view
direction. We call such materials to be glossy. BRDF is used to explain the reflection

behavior of a material.
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Figure 8.4: The left image
shows incoming and outgoing
directions, which are four pa-
rameters of a BRDF. The right
image shows a gonioreflec-
tormeter measuring the BRDF;
it is from Univ. of Virginia.

Since materials have different reflectance distributions, we need
a function to encode such behaviors. Bi-directional reflectance dis-
tribution function (BRDF) is introduced to meet the requirement.
BRDF, f (·), is defined over incoming light direction and outgoing
light directions. Each direction in the 3D space is encoded with two
parameters, θ and φ. As a result, BRDF is a four dimensional function
(Fig. 8.4). Detailed explanation on BRDF is available at the chapter on
radiometric quantities (Ch. 12).

Gonioreflectormeter is used to measure BRDF, by rotating a light
source and sensor location (Fig. 8.4). This approach takes very long
time, and thus it is one of active research areas to efficiently measure
the BRDF.

Measured BRDF itself can be very large in terms of memory
footprint. It is thus common to encode and use them in a compact
representation. In the following section, we discuss one of most
simple illumination models.

8.3 Phong Illumination Model
The Phong model is an empirical model,
but is used a lot for its simplicity.The Phong illumination model is a simple and classical illumination

model that is adopted in early versions of OpenGL. This model is just
empirical, not based on physics, and does not even preserve basic
physical assumption such preserving energy. Nonetheless, it has been
commonly used thanks to its simplicity.

The Phong illumination model has the following three compo-
nents:

• Ambient term. The ambient term represents a kind of background
illumination, and works as a constant value (Fig. 8.5). Specifically,
for computing the reflected ambient illumination, Ir,a, it multiplies
an ambient reflectance coefficient, ka, to an incoming ambient
illumination, Ii,a, i.e., Ir,a = ka Ii,a. Intuitively, this is a drastic
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Figure 8.5: This shows different
terms of the Phong model. This
figure is made by Brad Smith.

simplification of complex inter-reflection between lights and
materials. Simulating this term well is a critical component of
global illumination, while it is drastically ignored in the Phong
model.

• Diffuse term. Most objects can be seen in any view directions,
and this indicates that they are diffuse. The diffuse term aims to
support this visual phenomenon.

• Specular term. Certain objects such as metals show strong high-
lights in a particular viewing direction. The specular term simu-
lates this feature.

Before we discuss diffuse and specular terms in a detailed manner,
let’s first discuss light sources, which are also mentioned when we
explain the ambient term. For the ambient term, we use an ambient
light that virtually emits light energy to every location of triangles.
We discuss point and direction light sources, followed by briefly
mentioning other types of light sources.

Point and directions light sources. The light direction plays an
important role on computing illumination. A point light source emits
light energy from a single point, pl . The point light may seem too
crude approximation compared to light sources that we encounter
in real life. Nonetheless, we can approximate them by using a set of
point light sources.

The light direction, ~L, on a point, p, on a surface is then computed
as the following:

~L =
pl − p
|pl − p| . (8.1)

Note that the light direction varies depending on the location of the
surface p.

Unlike the point light, the directional light is located far away
from the observer, and thus the light direction is considered as a
constant, irrespective of observing locations. The directional light
can be thought as a point light source whose location is set at infinity.
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Figure 8.7: The left shows the
configuration of the Lambert’s
cosine law, and its effects are
shown in the right.

For example, sun is located far away from us, and thus we use the
directional light to represent the sun light source.

Figure 8.6: Area lights.

Area light sources are a common type of light sources. The area
light has a certain light shape with an area and thus can generate soft
shadows (Fig. 8.6). Directly considering area lights is more complex
than working with point lights. A simple approximation to an area
light is to generate a set of point lights on the area light. The number
of generated point lights defines illumination levels of soft shadow.

Diffuse term. Many objects have the diffuse property, and that is
why we can see them! Here we assume the ideal diffuse material;
the chalk is close to such a material. The ideal diffuse material re-
flects an incoming energy into all the possible directions with the
same amount of energy. As a result, the reflection becomes view-
independent. This diffuse property is caused by a rough surface in a
microscopic level, and is perceived as the uniform distribution in the
space in the macroscopic level. The diffuse term is explained by the

Lambert’s cosine law.The Lambert’s cosine law explains how an incoming energy is
reflected depending on the configuration between the surface and the
light direction. Suppose that we want to compute the reflected energy
Ir on a surface having a normal ~N given the light direction ~L. The
reflected energy Ir is then computed as the following:

Ir =Ii cos θ

=Ii(~N ·~L), (8.2)

where θ is the angle between two vectors of ~L and ~N. Fig. 8.7 shows
the configuration of these vectors.

48

Figure 8.8: The configuration
for the Lambert’s cosine law.

Note that as the reflected energy becomes the highest, when the
light direction is aligned with the surface normal. Fig. 8.7 also shows
how the reflected energy behaves as we have different light directions.
When we have a material-dependent, diffuse coefficient, kd, the
reflected energy of the diffuse term is Ir,d = kd Ii(~N ·~L).

Proving the cosine law. Let us see how to prove the Lambert’s
cosine law. Suppose that we have a beam of light with a width of w
and energy of I (Fig. 8.8). In this case, the light density per unit area
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Snell’s Law
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Figure 8.9: This shows how the
reflected light direction is com-
puted for the perfect specular
object.

is I
w . We then lean the beam as an amount of θ. The area receiving

the light energy become larger, and takes w
cos θ . Its light density is

then I cos θ
w . As a result, we can see that the light density reduces as an

amount of cos θ.

Specular term. Let us first consider a perfect mirror-like object. In
this case, the reflected light angle is same to the incoming light angle
(Fig. 8.9). This is explained by the Snell’s law, which is described in
a detailed manner in Ch. 10.1. Under the ideal specular material, the
reflected light direction, ~R is computed as 2(~N ·~L)~N −~L.

The ideal specular material rarely exists in practice. More common
objects are glossy materials, which have highlight along a particular
direction and spreads its energy out from the direction. Specifically,
when the viewing direction, ~V, is on the ideal reflected direction ~R,
the viewer sees the highest illumination. We then reduce the energy
as the viewing direction is away from ~R. To capture this observation,
the Phong illumination uses the following specular term:

Ir,s =ks Is(cos φ)ns

=ks Is(~V · ~R)ns , (8.3)

where ks, Is, ns are material-dependent specular coefficient, inten-
sity for the specular component of a light, and specular exponent,
respectively. Fig. 8.10 shows example results of the specular term. The Phong model describes materials

by treating them to have ambient, dif-
fuse, and specular properties together.

The final Phong illumination is computed by summing these
different terms, ambient, diffuse, and specular terms, of different
lights (Fig. 8.5). Note that most common objects are described by
combining these terms, not a single term.

Local and global illumination. While the Phong illumination
is not a physically-based model, it has been widely used for its
simplicity and efficiency. Nonetheless, it has a fundamental issue,
a local illumination model. The Phong illumination achieves its
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26

Examples of Phong

varying light directions

varying specular exponents

Figure 8.10: This shows how
the illumination changes as a
function of a viewing direction
and specular exponents of the
specular term of the Phong
illumination model.

efficiency by considering only the local information such as the
surface normal, viewing information, and the light information. The Phong model and rasterization

considers the rendering process locally
for efficiency.

When there is a blocker occluding the light energy, it, however,
generates shadows, which is not considered at all at the Phong illu-
mination. To support such effects, we need to consider the reflected
energy or blocked energy from other geometry. This requires us to
access global information, which slows down the overall process-
ing. Rasterization is designed in a way to reduce such global access
for achieving a high performance and thus the Phong illumination
has been well suited for rasterization. We discuss how to generate
shadow within rasterization in Ch. 9.4.1. A more physically based
approach is to use ray tracing techniques, which are explained in
Part II.

8.4 Shading

Shading is a process of adjusting a color of a primitive based on
various information such as the normal of the primitive and its angle
to the light or view direction. Shading can refer to the illumination
process and cover broader approaches including various effects
(e.g., lens flare), which are implemented by shader programs. While
shading is a broad topic, we discuss how to compute colors within
the primitive (e.g., triangle) in this section.

Common shading (or interpolation) methods are as the following:

• Flat shading. For flat shading, we use only a single color for the
primitive. As a result, each triangle in this approach looks to be
constant, i.e., flat, in the image space. To perform flat shading, we
use a normal of a triangle and perform the Phong illumination
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model or other illumination models to compute the single color.
This is the simplest and fastest approach.

• Gouraud shading. This approach provides a smooth rendering
result by computing different colors for vertices of a primitive
and interpolating them within the primitive. While this approach
shows smooth rendering results, it comes with performing three
independent illumination for vertices and interpolation.

• Phong shading. This approach interpolates normals of vertices
and computes colors with them within the primitive by evaluat-
ing an illumination model with interpolated normals. Since we
interpolate normals of vertices, we can generate highlight within
the triangle, even though we do not have such highlight in each
vertex. When we use the Gouraud shading in this case, we cannot
generate the highlight within the primitive, since we interpolate
colors of vertices. Fig. 8.11 shows difference between Gouraud and
Phong shading methods.

Figure 8.11: This shows
Gouraud (top) and Phong
(bottom) shading methods. Blue
arrows indicate the locations
of evaluating an illumination
model.

8.5 Common Questions

We have learned that we compute an illumination value for each
vertex. For smooth objects (like the teapot model shown in the
slide), it should be okay. But, when we draw a box, then the box
may look smooth, not showing different and discontinuous colors
between neighboring faces of the box. If we use a normal for each
vertex of the box, we may get such smooth rendering result, which
is not correct one. Instead, we use multiple vertices for each point of
the box. For example, we use different vertex data for each point in
different faces of the box. Note that these vertices should have the
same positional value, but they can have different normals, which can
generate discontinuous colors between different faces. Refer to the
slide of "Decoupling Vertex and Face Attributes via Indirection" in
the lecture slide of "Interacting with a 3D world".

Is there any techniques that can show better quality than the Phong
Illumination and can be used in interactive games? I want to know
techniques that can show near physically-based illumination that
can be used in games? Ambient occlusion has been proposed as
an approximation for physically-based global illumination. It can
be pre-computed and used quite quickly at runtime, leading to be
suitable for interactive games. Moreover, in some CG movies, this
technique has been used.



9
Texture

Achieving higher realism has been one of main goals of computer
graphics. For this goal, we have developed many modeling tech-
niques by using more triangles, lights, and materials. Unfortunately,
using additional resources (e.g., triangles and lights) come with sides
effects such as additional running time and memory overheads. Texture mapping adds additional

details, without much overheads.Since achieving the interactive performance has been another main
goal of computer graphics, various approximation rather than di-
rectly relying upon additional geometry and lights has been studied.
Among various techniques, texture mapping has been one of main
approximation techniques (Fig. 9.1).

One thing that we need to understand is that while textures are
originally designed for representing complex shapes of geometry,
they can be utilized for various other purposes. At a high level, a
texture is simply a 2D array, which is one of the most simplest data
representations in computer architectures, and can be readily pre-
computed and used at runtime. Note that the Z-buffer used for
visibility determination can be considered as a type of a texture.
Thanks to these nice properties, textures have been widely used.

Figure 9.1: Texture mapping
adds a lot of details to the ge-
ometry illuminated by lights,
enabling higher realism without
adding much overheads.
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We first explain the main purpose of using texture mapping,
followed by its various applications.

9.1 Texture Mapping

A texture is a 2 D (or 3 D and even a higher dimensional) buffer,
whose each element represents a pixel color or some other values.
Commonly a texture refers to a 2D image. Texture mapping indicates
a mapping from a part of the texture to a part of a model. Fig. 9.3
shows an example of a 2D texture mapping.
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(x4,y4)
(u4,v4)

(x1,y1)
(u1,v1)

(x2,y2)
(u2,v2)

(x3,y3)
(u3,v3)

Figure 9.2: Texture mapping.

We use 2 D texture coordinates, commonly (u, v), to locate a par-
ticular location of a 2D texture. We link the texture location to a
particular location or a vertex of a mesh by using 2D or higher ge-
ometry coordinates (e.g., 3D coordinate (x, y, z) of a vertex). Fig. 9.2
shows that we map (u, v) coordinates of multiple texture locations
to a 2D mesh, i.e., quad in the 2D space, represented by (x, y) coor-
dinates. You may also recall that we use vt token to specify (u, v)
texture coordinates to a vertex for an obj file format (Ch. 5.1).
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Screen space

Texture space
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Figure 9.3: The left figure
shows a mapping from a tex-
ture to a triangle representing
a part of a character. We use
a few texture maps with dif-
ferent resolutions. The image
is excerpted from a MMO-
champion site. To perform
texture mapping, we compute
a representative color of a pixel
within the triangle from the
texture space, as shown in the
right figure. Note that a pixel of
the triangle maps to an arbitrar-
ily shaped quadrilateral in the
texture space.

To apply the texture mapping, we compute a texture coordinate of
a fragment of a triangle, while rasterizing the triangle. We compute
the texture coordinate by interpolating texture coordinates associated
with vertices of a triangle, as we did for other attributes (e.g., color)
(Ch. 7.3).

Once we compute the texture coordinate, we compute the 2D
indices of the corresponding texture pixel, known as texel, and use
the color of the texel for illumination or other purposes.

Perspective-correct interpolation. Note that a naive interpolation of
various vertex attributed in the image space does not provide the ex-
pected results that are supposed to be computed by the object-space
interpolation. To achieve the correct result even in the image-space
interpolation, the perspective-correct interpolation is developed.
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Handling Oversampling

texture

sample

Bi-linear interpolation

0 0(x ,y )

1 1(x ,y )

(x,y)α

α
β

0c 1c

2c 3c

Figure 9.4: The left image
shows the case of oversampling.
The sampling in the texture
space is too small compared
to the texture resolution. The
right image shows the bi-linear
interpolation to address the
oversampling problem.

9.2 Oversampling of Textures

Let’s take a look at the right image of Fig. 9.3. A box-shaped frag-
ment generated for rasterizing a triangle maps to a quadrilateral, i.e.,
a polygon with four sides, instead of the uniform box shape. This
phenomenon occurs due to various transformations (e.g., modeling
and projective transformations) and the angle of the triangle against
the view direction. Oversampling occurs when we zoom in

the triangles.Since the pixel in the image space does not match with that in the
texture space, we have two cases: oversampling and undersampling
cases. Oversampling refers to the case where the sampling resolution
in the texture space is smaller than the available resolution of the
texture. Fig. 9.4 shows this oversampling case. The quadrilateral
in the texture space is even contain in a texel of the texture. The
oversampling issue occurs when we magnify the geometry. We aim to reconstruct the original

signal out of available texture samples
and compute the signal value at the
sampled texture location.

Please take a moment to think about how to compute the represen-
tation color for the quadrilateral. Surprisingly, this kind of issues is
quite common in computer graphics, image processing, etc. A simple
method is to identify the nearest neighbor texel center and use its
color for the quadrilateral. In the case of the left image of Fig. 9.4, the
blue pixel is the closest to the quadrilateral, more exactly, the sam-
pling point location. Note that during the rasteriation, we compute
colors or other attributes based on center positions of pixels.

While this nearest neighbor approach is quite fast, its visual qual-
ity is poor, especially along the boundary of texels. In other words,
when two sampling locations are very close, but are in different tex-
els, they get different colors, resulting in visual gaps in the image
space (Fig. 9.5).

Another approach is to use linear interpolation. Given the sam-
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Visual Comparison

Mag. filter: nearest
Min. filter: linear

Mag. filter: linear
Min. filter: linear

Mag. filter: linear
Min. filter: mipmap

Original texture

Figure 9.5: Different render-
ing results with different mag.
and min. filters for texture
mapping.

pling location, we identify four nearby texels, e.g., c0 to c3 in the right
image of Fig. 9.4. We then perform the linear interpolation along the
U and V texture directions, thus named as bi-linear interpolation. Let
us define α and β to be a blending factor along X and Y directions,
respectively. They are then defined as the following:

α =
x− x0

x1 − x0
, β =

y− y0

y1 − y0
. (9.1)

The color, c, at the sampling location under the bi-linear interpolation
is computed as follows:

c = (1− β) ((1− α)c0 + αc1) + β ((1− α)c2 + αc3) . (9.2)

The effect of using the bi-linear interpolation over the nearest
neighbor one is shown in Fig. 9.5. We can see that boundary shapes
of texels were smoothened. Nonetheless, we can also see that the
edge information inherent in the original texture was filtered out
too. We can thus see that there are trade-off in terms of filtering
unnecessary edges and preserving original edges. This boils down to
the classical reconstruction and sampling problem.

9.3 Under-sampling of Textures
Under-sampling arises when we zoom
out the geometry, and thus a fragment
of a triangle maps to a large area in the
texture space.

Let us know discuss the other sampling issue, undersampling. Un-
dersampling rises when we zoom out from the geometry and thus
each triangle become small in the image space. Therefore, a pixel of
a triangle maps to a large quadrilateral area in the texture space. The
problem is thus to compute a representative color out of many texels
covered by the quadrilateral.
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Figure 9.6: This shows a
mipmap or image pyramid
of an image.

A naive approach to the undersampling is to compute all those
texels under the quadrilateral and compute a representative color
value, e.g., the average value of them. This approach, unfortunately,
slows, since it requires us to access many texels and computations.
Instead of this on-demand approach, pre-filtering that pre-filters the
original texture in a way to efficiently handle undersampling has
been more widely used and studied. In this section, we discuss two
approaches, mip mapping and summed area table, for the undersam-
pling problem.

Mipmap or mipmapping is a multi-scale representation for a
texture (or any other types of images) to efficiently handle the under-
sampling issue. Given an input image, a mipmap is composed of a
sequence of images whose U and V resolutions are reduced half over
its higher resolution (Fig. 9.6). As a result, mipmap is also called an
image pyramid. Each low-resolution image is a pre-filtered version of
its higher one.

At runtime when we use the mipmap, we pick a particular image
level among the available image resolutions of the mipmap given
the required texture resolution. If necessary, we can also perform
interpolation between two image resolutions, resulting in tri-linear
interpolation for computing a color for the sampling location. In
whatever cases, we access only a few samples on the mipmap and
get pre-filtered texture values, resulting in faster and better visual
quality.

The memory requirement of using a mipmap is 1
3 , about 33%,

since the total size of using the mipmap is computed as the following:

∞

∑
0

(
1
4

)i
=

1
1− 1

4
=

4
3

. (9.3)

Fig. 9.5 shows different rendering results w/ linear filtering or
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mipmap. By using the mipmap, we get smoother image results over
linear filtering for far-away regions where we minify the geometry.
Again, the mipmap is a fast way of handling the undersampling
problem, but can remove the original edge information.

A reason why the mipmap produces a over-smoothed result is that
the mipmap computes its image pyramid only based on an isotropic
filtering shape, i.e., square shapes. As a result, when we have have
an very elongated quadrilateral shape in the texture space, we cannot
find filtering resolutions along both U and V directions. A solution to
this case of anisotropic filtering is the summed area table.

Summed-area table. A summed-area table is proposed to support
anisotropic filtering, specifically, a rectangular shape, not the squared
shape, on the texture space. Given a texture, T(u, v), its summed-
area table, S(u, v), is computed by summing all the elements whose
elements are smaller than u or v:

S(u, v) = ∑
i≤u∧j≤v

T(u, v). (9.4)

We then compute the average color value, ca, on a rectangular
regions, e.g., the blue region given by [u0, u1]× [v0, v1] as shown in
Fig. 9.7, as the following:

ca =
T(u1, v1)− T(u1, v0)− T(u0, v1) + T(u0, v0)

(u1 − u0)(v1 − v0)
. (9.5)
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Summed-Area Tables
Original texture Summed-area table

Figure 9.7: The left images
show a configuration of the
summed area table, while the
right image shows rendering
results of the summed area ta-
ble and mipmapping. The right
image is created by Denny.

Fig. 9.7 also compares the rendering results computed by the
mipmap and summed-area table. The summed-area table shows
better quality, since it provides anisotropic filtering. Nonetheless, it
has additional runtime and memory overheads over the mipmap.
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9.4 Approximating Lights

It is easy to paint on images and capture images than constructing
geometry, and thus textures have been widely used for various appli-
cations. In this section, we discuss two techniques, shadow mapping
and environment mapping, of using textures for approximating
complex lights.

Before we move on to them, let us first discuss light maps. Light
maps are images that contain light intensity. We then use these light
maps as textures for adjusting colors of triangles. A simple method
of computing colors with a light map is to multiply the intensity
contained in the light map with the color computed by illumination
or other functions. Fig. 9.8 shows an example of using textures
and light maps. Creating complex lighting effects requires high
computation, and thus pre-computing, also called baking, them in
light maps are still commonly used in many interactive applications.
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Light Maps in Quake
● Light maps are used to store pre-computed 

illumination

Texture 
Maps

Light 
Maps

Data RGB Intensity

Resolution High Low

Light map 
image by Nick 

Chirkov

Textures Only Textures & Light Maps
Figure 9.8: This shows results
only with textures and both
with textures and light maps
used for a game called Quake.

9.4.1 Shadow Mapping

Shadow is one of fundamental lighting effects that we can see in
daily life, and provide various 3D depth cues. While providing
shadows is important, it is not that easy to efficiently and correctly
generate shadows in rasterization. This problem has been studied
for many decades and shadow mapping as a type of texture map-
ping is proposed for creating realistic rendering results within the
rasterization framework.

Please recall our discussion on the Phong illumination model
(Ch. 8.3). The model has three components of ambient, diffuse, and
specular terms. Unfortunately, diffuse and specular terms do not con-
sider any other objects that block lights from light sources, while the
ambient term is a drastic simplification by using a constant for con-
sidering inter-reflection. Essentially, the Phong illumination model
does not consider the case of having shadows, i.e., the existence of
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other objects that block the light. This is mainly attributed since the
Phong illumination model, more importantly, rasterization itself, is a
local model that mainly aims for high efficiency. Shadow mapping is a two pass ren-

dering method to generate shadows
without global and random access on
other objects.

Our challenge is to generate shadows within the rasterization
framework. While considering shadows itself requires us to access
other objects, resulting in global access on various data, we approach
this problem as a two-pass algorithm using shadow mapping. Its
main concept is shown in Fig. 9.9.
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Depth map 
from light

Shadow Maps

Depth map 
from eye

Figure 9.9: This visualizes the
process of using shadow map-
ping to generate shadows on
the rendering result seen by the
eye.

The problem of the rasterization process is that when we perform
an illumination on a fragment of a triangle, we cannot know whether
the fragment can receive the light energy from a light source. When
we do not receive the light energy due to a blocking object, we add
only the ambient term, since the diffuse and specular terms become
zero. To know whether a fragment can receive the light energy from
a light source, we rasterize the whole scene at the position of the light
source and treat its depth map as a shadow map for the light. This is
the first-pass of generating shadows.

The depth map generated from the light position contains depth
values of visible geometry from the light. We then raster the whole
scene at the viewer’s position, similar to the regular rasterization
process. This is the second pass of our method. A difference in
this second pass compared to the regular rasterization is that we
check whether we can receive the light energy on a fragment that we
generate at the second pass.

To know whether the fragment receives the light energy or not, we
compute its depth from the light position, dl . When dl is bigger than
the stored depth value, d, of the shadow map, we determine that the
fragment cannot receive the light energy and we thus give only the
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ambient term to the fragment, not the diffuse nor specular terms. Shadows maps are just a type of
textures and thus inherits pros. and
cons. of texture mapping.

While we explain shadow mapping in a concise manner above,
there are a lot of technical issues. Most of them are related to the
oversampling and undersampling that we discussed for texture
mapping; note that the shadow map is another type of textures
and thus inherits issues of texture mapping. Nonetheless, it is
very important to understand how we address a kind of global
illumination, shadow generation, through a texture, the shadow map.

9.4.2 Environment Mapping

In the prior section, we discussed how to generate shadows using
shadow mapping. Another common rendering effect is to support
reflection on mirrors or other metal-like objects. For those models,
we see other objects reflected on such reflecting objects. In other
words, supporting this effect belongs to a type of global illumination
requiring the access to other objects.
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Environment Maps

View

Spherical 
env. map

ࡾ (ࡾ)۳ Figure 9.10: Two images in the
left visualize how we use the
spherical environment map-
ping, while the right image
shows an example of using the
environment map to simulate
the reflection effect.The rasterization framework also relies upon using another type

of texture mapping, environment mapping, for this reflection effect.
Suppose that we have a view direction on a reflecting object shown
in the gray color in Fig. 9.10. When the object is the specular object,
the reflected ray, ~R, is computed by the Snell’s law (Ch. 8.3). We then
need to access an object along the reflected ray, ~R. Unfortunately, this
is a ray tracing process, and is not efficiently adopted for rasteriza-
tion. An environment map captures sur-

rounding geometry or lights, and can
be used as a texture to approximate
them at runtime.

To enable the reflection efficiently, we introduce environment
mapping, which captures colors of the surrounding environment in
a texture. For environment mapping, we can use different types of
geometry capturing the environment. Examples include sphere, cube
maps, etc. In this chapter, we explain environment mapping based on
a sphere for the sake of the simplicity.

As shown in the middle image of Fig. 9.10, we place a sphere
at the center of the reflection object. We map the sphere into a 2D
texture space; since we can represent the sphere with two angles, θ

and φ, the 2D texture space can be constructed by these two angles.
We then generate a ray starting from the center of the sphere to each
texel of the sphere and encode the color of the ray at that texel; we
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use a projection instead of ray tracing for efficiently building the
map.

At runtime, when we raster a triangle of the reflecting model, we
know the viewing direction, and thus identify a texel ID that the
reflection ray from the center of the sphere, E(~R), will access. Unfor-
tunately, since the environment map is generated at the center of the
object, not each location that we have reflection, there are visual gaps
between the computed one and the ground truth. Nonetheless, we
can support an approximate reflection by using an additional texture.

The environment map is also used to encode complex types of
lights and used for providing realistic lighting for rasterization.

9.5 Approximating Geometry

Textures are also used to approximate complicated geometry. Es-
pecially, when we have many geometry, it requires long running
computation time with high memory requirement. A single or multi-
ple textures are effective ways of approximating them with reduced
running and memory overheads.
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Bump Mapping
●Modifies the normal not the actual 

geometry 
● Texture treated as a heightfield
● Partial derivatives used to change the normal
● Causes surface to appear deformed by the 
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Figure 9.11: We use the bump
map (shown in the middle) to
adjust normals of the geometry
during the rasterization, to
enrich the appearance of the
model (shown in the right.)
Since we do not change the
actual geometry, we can see
that the geometry is unchanged
at its silhouette.

Bump and normal mapping. Bump mapping modifies normals
of geometry, not the actual geometry. The texture used for bump
mapping encodes an amount of changes to normals of the geometry
(Fig. 9.11). This is an approximate, yet effective way of enriching
the geometry. Nonetheless, we can observe that the actual geometry
is not aligned with the adjusted normals, especially when we look
at the silhouette of the object. Normal mapping is similar to bump
mapping, but the normal map directly gives the normal that we use
on top of a simple geometry (Fig. 9.12).

Displacement mapping. Unlike bump and normal mapping, dis-
placement mapping adjusts the actual geometry based on a provided
displacement map. A common usage of displacement mapping is
to encode a height change on the displacement map and adjust the
geometry along its normal direction according to the height. Adjust-
ing the geometry requires tessellation, subdividing the geometry into
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Figure 9.12: We can provide
detailed look on a simple geom-
etry by using normal mapping.
The image is created by Paolo
Cignoni.

smaller patches and adjusting them to accommodate the given height
(Fig. 9.13).

Figure 9.13: Displacement
mapping changes the actual
geometry according to its map
unlike bump mapping. To en-
able displacement mapping, we
tessellate the initial geometry
into smaller ones.

We covered only a few examples of approximating geometry.
Other notable examples include 3D or solid textures representing 3D
shapes and billboards, which are a set of 2D textures representing
complex geometry (e.g., trees).





Part II

Physically-based Rendering
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In Part I, we discussed rasterization techniques. While the rateriza-
tion technique provides the efficient performance based on rendering
pipeline utilizing modern GPUs, its fundamental approach is not
based on the physical interaction between lights and materials. An-
other large stream of rendering methods are based on such physical
interactions and thus are known as physically-based rendering.

In this part, we discuss two different approaches, ray tracing
and radiosity, of physically based rendering methods. Ray tracing
and radiosity are two main building blocks of many interactive or
physically based rendering techniques. We first discuss ray tracing in
this chapter, followed by radiosity (Ch. 11. We then study radiometric
quantities (Ch. 12) to measure different energy terms to describe the
physical interaction, known as the rendering equation (Ch. 13.1).

The rendering equation is a high dimensional integral problem,
and thus its analytic solutions in many cases are not available. As an
effective solution to solving the equation, we study the Monte Carlo
technique, a numerical approach in Ch. 14, and its integration with
ray tracing in Ch. 15. In many practical problems, such Monte Carlo
approaches are slow to converge to noise-free images. We therefore
study importance sampling techniques in Ch. 14.3.

9.6 Available Tools

Physically based rendering has been studied for many decades, and
many useful resources are available. Some of them are listed here:

• Physically Based Rendering: From Theory to Implementation 1. 1 Matt Pharr and Greg Humphreys.
Physically Based Rendering, Second
Edition: From Theory To Implementation.
Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2nd edition, 2010b.
ISBN 0123750792, 9780123750792

This book also known as pbrt comes with concepts with their
actual implementations. As a result, readers can get understand-
ing on those concepts and actual implementation that they can
play with. Since this book discusses such implementation, we
strongly recommend you to play with their source codes, which
are available at github.

• Embree 2 and Optix 3. Embree and Optix are interactive ray trac- 2 Ingo Wald, Sven Woop, Carsten
Benthin, Gregory S Johnson, and
Manfred Ernst. Embree: A kernel
framework for efficient cpu ray tracing.
ACM Trans. Graph., 2014

3 Steven G. Parker, James Bigler, An-
dreas Dietrich, Heiko Friedrich, Jared
Hoberock, David Luebke, David McAl-
lister, Morgan McGuire, Keith Morley,
Austin Robison, and Martin Stich. Optix:
a general purpose ray tracing engine.
ACM Trans. Graph., 29:66:1–66:13, 2010

ing kernels that run on CPUs and GPUs, respectively. While
source codes of Optix are unavailable, Embree comes with their
source codes.

• Instant Radiosity. Instant radiosiy is widely used in many games,
thanks to its high quality rendering results with reasonably fast
performance. Unfortunately due to its importance in recent game
industry, mature library or open source projects are not available.
One of useful open source projects are from my graphics lab. It is
available at: http://sglab.kaist.ac.kr/~sungeui/ICG/student_

presentations.html.

http://sglab.kaist.ac.kr/~sungeui/ICG/student_presentations.html
http://sglab.kaist.ac.kr/~sungeui/ICG/student_presentations.html
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Ray Tracing

Ray casting and tracing techniques have been introduced late 70’s
and early 80’s to the computer graphics field as rendering techniques
for achieving high-quality images.

Ray casting 1 shoots a ray from the camera origin to a pixel and 1 Arthur Appel. Some techniques for
shading machine renderings of solids. In
AFIPS 1968 Spring Joint Computer Conf.,
volume 32, pages 37–45, 1968

compute the first intersection point between the ray and objects in
the scene. Ray casting then computes the color from the intersection
point and use it as the color of the pixel. It computes a direct illu-
mination that has one bounce from the light to the eye. Its result is
same to those of the basic rasterization considering only the direct
illumination.

Ray tracing 2 is an recursive version of the ray casting. In other 2 Turner Whitted. An improved
illumination model for shaded display.
Commun. ACM, 23(6):343–349, 1980

words, once we have the intersection between the initial ray and
objects, ray tracing generates another ray or rays to simulate the in-
teraction between and the light and objects. A ray can be considered
as a photon traveling in a straight line, and by simulating many rays
in a physically correct way, we can achieve physically correct images.
While the algorithm is extremely simple, we can support various
effects by generating different rays (Fig. 10.1).

10.1 Basic algorithm
Ray tracing simulates how a photon
interacts with objects.The basic ray tracing algorithm is very simple, as shown in Algo-

rithm 1. We first generate a ray from the eye to the scene. While a
photon travels from a light source, we typically perform ray tracing
in backward from the eye (Fig. 10.2). We then identify the first inter-
section point between the ray and the scene. This has been studied
well, especially around the early stage of developing this technique.
At this point, we simply assume that we can compute such intersec-
tion points and this is discussed in Sec. 10.2.

Suppose that we identify such an intersection point between the
ray and the scene. We can then perform various shading operations
based on the Phong illumination (Sec. 8.3). To see whether the point
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Figure 10.1: One of early im-
ages generated by ray tracing,
i.e., Whitted style ray tracing.
The image has reflection, re-
fraction, and shadow effects.
The image is excerpted from its
original paper.

Algorithm 1 Basic ray tracing

Trace rays from the eye into the scene (backward ray tracing).
Identify the first intersection point and shade with it.
Generate additional, secondary rays needed for shading.

Generate ray for reflections.
Generate ray for refraction and transparency.
Generate ray for shadows.

is under the shadow or not, we simple generate another ray, called
shadow ray, to the light source (the bottom image of Fig. 10.2).

Reflection and refractions are handled in a similar manner by
generating another secondary rays (Fig. 10.3). The main question
that we need to address here is how we can construct the secondary
rays for supporting reflection and refraction. For the mirror-like
objects, we can apply the perfect-specular reflection and compute
the reflection direction for the reflection ray, where the incoming
angle is same to the outgoing angle. In other words, the origin of
the reflection ray, R, is set to the hit point of the prior ray, and the
direction of R is set as the reflection direction. Its exact equation is
shown in Sec. 8.

Most objects in practice do not support such perfect reflection. For
simple cases such as rays bending in glasses or water, we apply the
Snell’s law to compute the outgoing angle for refraction. The Snell’s
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Figure 10.2: We generate a ray,
primary ray, from the eye (top).
To see whether the intersec-
tion point is in the shadow or
not, we generate another ray,
shadow ray, to the light source
(bottom). These images are
created by using 3ds Max.

law is described as follows:

sin θ1

sin θ2
=

n2

n1
, (10.1)

where θ1 and θ2 are incoming and outgoing angles given rays at
the interface between two different objects (Fig. 10.4). n1 and n2

are refractive indices of those two objects. The refractive index of a
material (e.g., water) is defined as c

v , where c is the velocity of the
light in vacuum, while v is the speed of the light in that material. As
a result, refractive indices of different materials are measured and can
be used for simulating such materials within ray tracing.

Many objects used in practice consist of many different materials.
As a result, the Snell’s law designed for isotropic media may not be
appropriate for such cases. For general cases, BRDF and BSSRDF
have been proposed and are discussed in Ch. 12.

Physically based rendering techniques adopt many physical
laws, as exemplified by adopting the Snell’s law for computing
refraction rays. This is one of main difference between rasterization
and physically based rendering methods. For various effects, ray tracing generate

different types of rays, while rasteriza-
tion adopts different types of texture
maps.

Note that in rasterization techniques, to handle shadow, reflection,
refraction, and many other rendering effects, we commonly generate
some maps (e.g., shadow maps) accommodating such effects. As
a result, handling texture mapping efficiently is one of key compo-
nents for many rasterization techniques running on GPUs. On the
other hand, ray tracing generates various rays for such effects, and
handling rays efficiently is one of key components of ray tracing.
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Figure 10.3: Handling reflection
and refraction by generating
secondary rays.

10.2 Intersection Tests

Performing intersection tests is one of main operations of ray tracing.
Furthermore, they tend to become the main bottleneck of ray tracing
and thus have been optimized for a few decades. In this section, we
discuss basic ways of computing intersection tests between a ray and
a few simple representations of a model. Implicit forms of objects are commonly

used for intersection tests.Any points, p(t), in a ray parameterized by a parameter t can be
represented as follows:

p(t) = o + t~d, (10.2)

where o and ~d are the origin and direction of the ray, respectively. A
common way of approaching this problem is to first define an object
in an implicit mathematical form, f (p) = 0, where p is any point
on the object. We then compute the intersection point, ti, satisfying
f (p(ti)) = 0.

We now look at a specific case of computing an intersection point
between a ray and a plane. A well known implicit form of a plane is:

~np− d = 0, (10.3)
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Figure 10.4: How a ray bends
at an interface between simple
objects, specifically, isotropic
media such as water, air, and
glass, is described by the Snell’s
law.

where ~n is a normalized normal vector of the plane and d is the
distance from the origin to the plane. This implicit form of the plane
equation is also known as the Hessian normal form 3. 3 E. Weisstein. From mathworld–a

wolfram web resource. URL http:

//mathworld.wolfram.com
By plugging the ray equation into the implicit of the plane equa-

tion, we get:

~n(o + t~d)− d = 0

t =
d−~no
~n · ~d

. (10.4)

We now discuss a ray intersection method against triangles, which
are one of common representations of objects in computer graph-
ics. There are many different ways of computing the intersection
point with triangles. We approach the problem based on barycentric
coordinates of points with a triangle. Barycentric coordinates are computed

based on non-orthogonal bases.Barycentric coordinates are computed based on non-orthogonal
bases unlike the Cartesian coordinate system, which uses orthogonal
bases such as X, Y, and Z-axis. Suppose that p is an intersection point
between a ray and a triangle consisting of three vertices, v0, v1, v2

(Fig. 10.5). We can represent the point p as the following:

p =v0 + β(v1 − v0) + γ(v2 − v0)

=(1− β− γ)v0 + βv1 + γv2

=αv0 + βv1 + γv2, (10.5)

where we use α to denote 1− β− γ. We can then see a constraint that
α + β + γ = 1, indicating that we have two degrees-of-freedom, while
there are three parameters.

Let’s see in what ranges of these parameters the point p is inside
the triangle. Consider edges along two vectors v0 − v1 and v2 − v0

(Fig. 10.5). Along those edges, β and γ should be in [0, 1], when the

http://mathworld.wolfram.com
http://mathworld.wolfram.com
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Figure 10.5: In the barycentric
coordinate system, we repre-
sent the point p with β and
γ coordinates with two non-
orthogonal basis vectors, v1 − v0

and v2 − v0.

point is inside the triangle. Additionally, when we consider the other
edge along the vector of v1 − v2, points on the edge satisfy γ = 1− β4. 4 When we consider a 2 D space whose

basis vectors map to canonical vectors
(e.g., X and Y axises) with β and γ
coordinates, one can easily show that
the relationship γ = 1− β is satisfied on
the edge of v2 − v1.

When we plug the equation into the definition of α, we see α to be
zero. On the other hand, on the point of v0, β and γ should be zero,
and thus α to be one. As a result, we have the following property:

0 ≤ α, β, γ ≤ 1, (10.6)

where these three coordinates are barycentric coordinates and α =

1− β− γ. Barycentric coordinates are also known
as area coordinates, since they map to
areas of sub-triangles associated with
vertices.

There are many different ways of computing barycentric coordi-
nates given points defined in the Cartesian coordinate system. An
intuitive way is to associate barycentric coordinates with areas of
sub-triangles of the triangle; as a result, barycentric coordinates are
also known as area coordinates. For example, β associated with v1 is
equal to the ratio of the area of 4pv0v2 to that of 4v0v1v2.

Once we represent the intersection point p within the triangle
with the barycentric coordinates, our goal is to find t of the ray that
intersects with the triangle, denoted as the following:

o + t~d = (1− β− γ)v0 + βv1 + γv2, (10.7)

where unknown variables are t, β, γ. Since we have three different
equations with X, Y, and Z coordinates of vertices and the ray, we can
compute those three unknowns.

10.3 Bounding Volume Hierarchy

We have discussed how to perform intersection tests between a ray
and implicit equations representing planes and triangles. Common
models used in games and movies have thousands of or millions of
triangles. A naive approach of computing the first intersection point
between a ray and those triangles is to linearly scan those triangles
and test the ray-triangle intersection tests. It, however, has a linear
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Figure 10.6: This figure shows
different types of Bounding
Volumes (BVs).

time complexity as a function of the number of triangles, and thus
can take an excessive amount of computation time.

Many acceleration techniques have been proposed to reduce the
time spent on ray intersection tests. Some of important techniques
include optimized ray-triangle intersection tests using Barycentric
coordinates 5. In this section, we discuss an hierarchical acceleration 5 Tomas Möller and Ben Trumbore.

Fast, minimum storage ray-triangle
intersection. J. Graph. Tools, 1997

technique that can improve the linear time complexity of the naive
linear scan method. Bounding volume hierarchies are sim-

ple to use and have been widly adopted
in related applications including colli-
sion detection.

Two hierarchical techniques have been widely used for accelerat-
ing the performance of ray tracing. They are kd-trees and bounding
volume hierarchies (BVHs). kd-trees are constructed by partitioning
the space of a scene and thus are classified as spatial partitioning
trees. On the other hand, BVHs are constructed by partitioning
underlying primitives (e.g., triangles) and thus known as object par-
titioning trees. They have been demonstrated to work well in most
cases 6. We focus on explaining BVHs in this chapter thanks to its 6 Ingo Wald, Sven Woop, Carsten

Benthin, Gregory S Johnson, and
Manfred Ernst. Embree: A kernel
framework for efficient cpu ray tracing.
ACM Trans. Graph., 2014

simplicity and wide acceptance in related fields such as collision
detection.

10.3.1 Bounding Volumes

We first discuss bounding volumes (BVs). A BV is an object that
encloses triangles. Also, the BV should be efficient for performing
an intersection test between a ray and the BV. Given this constraint,
simple geometric objects have been proposed. BVs commonly used
in practice are sphere, Axis-Aligned Bounding Box (AABB), Oriented
Bounding Box (OBB), k-DOPs (Discrete Oriented Polytopes), etc.
(Fig. 10.6).

Spheres and AABBs are fast for checking intersection tests against
a ray. Furthermore, constructing these BVs can be done quite quickly.
For example, to compute a AABB from a soup of triangles, we just
need to traverse those triangles and compute mim and max values
of x, y, and z coordinates of triangles. We then compute the AABB
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Figure 10.7: This figure shows a
BVH with its nodes and AABBs
given a model consisting of
three triangles. Note that two
child AABBs have a spatial
overlap, while their nodes have
different triangles. As a result,
BVHs are classified into an
object partitioning tree.

out of those computed min and max values. Since many man made
artifacts have box-like shapes, AABB works well for those types.
Nonetheless, spheres and AABBs may be too lose BVs, especially
when the underlying object is not aligned into such canonical direc-
tions or is elongated along a non-canonical direction (Fig. 10.6). A single BV type is not always better

than others, but AABBs work reason-
ably well and are easy to use.

On the other hand, OBBs and k-DOPs tend to provide tighter
bounding, but to require more complex and thus slow intersection
tests. Given these trade-offs, an overhead of computing a BV, tight-
ness of bounding, and time spent on intersection tests between a
ray and a BV, it is hard to say which BV shows the best performance
among all those BVs. Nonetheless, AABBs work reasonably well in
models used for games and CAD industry, thanks to its simplicity
and reasonable bounding power on those models.

10.3.2 Construction

Let’s think about how we can construct a bounding volume hierarchy
out of triangles. A simple approach is a top-down construction
method, where we partition the input triangles into two sets in
a recursive way, resulting in a binary tree. For simplicity, we use
AABBs as BVs.

We first construct a root node with its AABB containing all the
input triangles. We then partition those triangles into left and right
child nodes. To partition those triangles associated with a current
node, a simple method is to use a 2 D plane that partitions the
longest edge of the current AABB of the node. Once we compute
triangle sets for two child nodes, we recursively perform the process
until each node has a fixed number of triangles (e.g., 1 or 2).

In the aforementioned method, we explained a simple partitioning
method. More advanced techniques have been proposed including
optimization techniques with Surface Area Heuristic (SAH) 7. The 7 C. Lauterbach, S.-E. Yoon, D. Tuft, and

D. Manocha. RT-DEFORM: Interactive
ray tracing of dynamic scenes using
bvhs. In IEEE Symp. on Interactive Ray
Tracing, pages 39–46, 2006

SAH method estimates the probability that a BV intersects with
random rays, and we can estimate the quality of a computed BVH. It
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has been demonstrated that this kind of optimizations can be slower
than the simple method, but can show shorter traversal time spent on
performing ray-BVH intersection tests.

BVHs suits well for dynamic models,
since it can be refitted or re-computed
from scratch efficiently.

Dynamic models. Many applications (e.g., games) use dynamic
or animated models. As a result, it is important to build or update
BVHs of models as they are changing. This is one of main benefits
of using BVHs for ray tracing, since it is easy to update the BVH of a
model, as the model changes its positions or is animated.

One of the most simple methods is to refit the existing BVH in
a bottom-up manner, as the model is changing. Each leaf node is
associated with a few triangles. As they change their positions, we re-
compute the min and max values of the node and update the AABB
of the node. We then merge those re-computed AABBs of two child
nodes for their parent node by traversing the BVH in a bottom-up
manner. This process has the linear time complexity in terms of the
number of triangle. Nonetheless, this refitting approach can result in
a poor quality, when the underlying objects deform significantly.

To address those problems, many techniques have been proposed.
Some of them is to build BVHs from scratch every frame by using
many cores 8 and to selectively identify a sub-BVH with poor quality 8 C. Lauterbach, M. Garland, S. Sen-

gupta, D. Luebke, and D. Manocha. Fast
bvh construction on gpus. Computer
Graphics Forum (EG), 28(2):375–384, 2009

and rebuild only those regions, known as selective restructuring 9. At

9 Sungeui Yoon, Sean Curtis, and
Dinesh Manocha. Ray tracing dynamic
scenes using selective restructuring.
Eurographics Symp. on Rendering, pages
73–84, 2007

an extreme case, the topology of models can change due to fracturing
of models. BVH construction methods even for fracturing cases have
been proposed 10.

10 Jae-Pil Heo, Joon-Kyung Seong,
DukSu Kim, Miguel A. Otaduy, Jeong-
Mo Hong, Min Tang, and Sung-Eui
Yoon. FASTCD: Fracturing-aware
stable collision detection. In SCA ’10:
Proceedings of the 2010 ACM SIGGRAPH
/ Eurographics Symposium on Computer
Animation, 2010

10.3.3 Traversing a BVH

Once we build a BVH, we now traverse the BVH for ray-triangle
intersection tests. Since an AABB BVH provides AABBs, bounding
boxes, on the scene in a hierarchical manner, we traverse the BVH in
the hierarchical manner.

Given a ray, we first perform an intersection test between the ray
and the AABB of the root node. If there is no intersection, it guar-
antees that there are no intersections between the ray and triangles
contained in the AABB. As a result, we skip traversing its sub-tree. If
there is an intersection, we traverse its sub-trees by accessing its two
child nodes. Among two nodes, it is more desirable to access a node
which is located closer to the ray origin, since we aim to identify the
first intersection point along the ray starting from the ray origin.

Suppose that we decide to access the left node first. We then store
the right node in a stack to process it later. We continue this process
until we reach a leaf node containing primitives (e.g., triangles).
Once we reach a leaf node, we perform ray-triangle intersection
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tests for identifying an intersection point. If it is guaranteed that the
intersection point is the closest to the ray origin, we terminate the
process. Otherwise, we contribute to traverse the tree, by fetching
and accessing nodes in the stack.

Many types of BVHs do not provide a strict ordering between two
child nodes given a ray. This characteristic can result in traversing
many parts of BVHs, leading to lower performance. Fortunately, this
issue has been studied, and improvements such as identifying near
and far child nodes have been proposed 11. 11 C. Lauterbach, S.-E. Yoon, D. Tuft, and

D. Manocha. RT-DEFORM: Interactive
ray tracing of dynamic scenes using
bvhs. In IEEE Symp. on Interactive Ray
Tracing, pages 39–46, 2006

10.4 Visibility Algorithms

In this chapter, we discussed different aspects of ray tracing. At
a higher level, ray casting, a module of ray tracing, is one type of
visibility algorithms, since it essentially tells us whether we can see
a triangle or not given a ray. In this section, we would like to briefly
discuss other visibility algorithms. While the Z-buffer method was con-

sidered as a brute-force method, it is
the de-factor standard in the rasteriza-
tion method thanks to its adoption in
modern GPU architectures.

The Z-buffer method, an fundamental technique for rasteriza-
tion (Part I), is another visibility algorithm. The Z-buffer method is
an image-space method, which identifies a visible triangle at each
pixel of an image buffer by considering the depth value, i.e., Z val-
ues of fragments of triangles (Ch. 7.4). Many different visibility or
hidden-surface removal techniques have been proposed. Old, but
well-known techniques have been discussed in a famous survey 12. 12 Ivan E. Sutherland, Robert F. Sproull,

and Robert A. Schumacker. A characteri-
zation of ten hidden-surface algorithms.
ACM Comput. Surv., 6(1):1–55, 1974

Interestingly, the Z-buffer method was mentioned as a brute-force
method in the survey, because of its high memory requirement.
Nonetheless, it has been widely adopted and used for many graph-
ics applications, thanks to its simple method, resulting in an easy
adoption in GPUs.

Compared with the Z-buffer, ray casting and ray tracing is much
slower, since it uses a hierarchical data structure, and has many
incoherent memory access. Ray casting based approaches, however,
become more widely accepted in movies and games, because modern
GPUs allow to support such complicated operations, and many
algorithmic advances such as ray beams utilizing coherence have
been prosed. It is hard to predict future exactly, but ray casting
based approaches will be supported more and can be adopted as an
interactive solution at some point in future.
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Radiosity

In the last chapter, we discussed ray tracing techniques. While ray
tracing techniques can support various rendering effects such as
shadow and transparency, their performance was identified too slow
to be used for interactive graphics applications. Some of issues of
ray tracing is that we generate many rays whenever we change view-
points. Furthermore, processing those rays take high computation
time, and they tend to have random access patterns on underly-
ing data structures (e.g., meshes and bounding volume hierarchy),
resulting in high cache misses and lower computational performance.

On the other hand, radiosity emerges as an alternative rendering
method that works for special cases with high performance 1. While 1 Cindy M. Goral, Kenneth E. Torrance,

Donald P. Greenberg, and Bennett
Battaile. Modelling the interaction
of light between diffuse surfaces. In
Computer Graphics (SIGGRAPH ’84
Proceedings), volume 18, pages 212–22,
July 1984

radiosity is not designed for handling various rendering effects, it
has been widely used to complement other rendering techniques,
since radiosity shows high rendering performance of specific material
types such as diffuse materials. In other words, radiosiy as well
as ray tracing are two common building blocks of designing other
advanced rendering techniques, and we thus study this technique in
this chapter.

11.1 Two Assumptions

Radiosity has two main assumptions (Fig. 11.1):

• Diffuse material. We assume that the material type we handle for
radiosiy is diffuse or close to the diffuse materials. The ideal dif-
fuse material reflects incoming light into all the possible outgoing
directions with the equal amount of light energy, i.e., the same
radiance, which is one of radiometric quantity discussed in Sec. 12.
Thanks to this diffuse material assumption, any surface looks the
same and has the same amount of illumination level given the
view point. This in turn simplifies many computations.
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Figure 11.1: Radiosity has the
diffuse material assumption
(top) and constant illumination
per surface element (bottom).

• Constant radiance per each surface element. Take a look at a
particular surface (e.g., a wall or a desk in your room). The il-
lumination level typically varies smoothly depending on the
configuration between a point in the surface and position of light
sources. To support this phenomenon, radiosity treats that each
surface is decomposed into surface elements such as triangles.
It then assumes for simplicity that each surface element has a
single value related to the illumination level, especially, radiosity
value (Ch. 12). Simply speaking, radiosity is the total incoming (or
outgoing) energy arriving in a unit area in a surface.

We will see how these assumptions lead to a simple solution to the
rendering problem.

Relationship with finite element method (FEM). As you will see,
radiosity can generate realistic rendering results with an interactive
performance, while dealing only with diffuse materials and light
sources. This was excellent results, when radiosity was proposed
back at 1984. Furthermore, approaches and solution for radiosity
were novel at the graphics community at that time. Nonetheless,
those techniques were originally introduced for simulating heat
transfers and have been well established as Finite Element Methods
(FEM). FEM was realizing its potential benefits around 1960s and 70s,
and was applied even to a totally different problem, physically based
rendering. This is a very encouraging story to us. By studying and
adopting recently developing techniques into our own problem, we
can design very creative techniques in our own field!
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Figure 11.2: The radiosity of a
patch is computed by the sum
of the self-emitted radiosity
from itself and the radiosity
reflected and received from
other patches.

11.2 Radiosity Equation

An input scene to radiosity is commonly composed of triangles.
We first subdivide the scene into smaller triangles such that our
assumption of the constant radiance per each subdivided triangle
is valid. Suppose that there are n different surface elements. We
use Bi to denote radiosity of a patch i. Some of such patches can be
light sources and thus emit some energy. Since we also assume the
light sources to be diffuse emitters, we also use radiosity for such
self-emitting patches, and their emitting energy is denoted by Be,i.

Intuitively speaking, the radiosity of the patch i is the sum of
the self-emitting energy from the patch itself, Be,i, and the energy
reflected from the patch i by receiving energy from all the other
patches (Fig. 11.2. We can then model the interaction between the
patch i and different patches as the following:

Bi = Be,i + ρi ∑
j

BjF(i→ j), (11.1)

where j is another index to access all the surface elements in the
scene, F(i → j) is a form factor that describes how much the energy
from the patch i arrives at another patch j, and ρi is a reflectivity of
the patch i.

Be,i and ρi are input parameters to the equation and given by
a scene designer. The form factor is a term that we can compute
depending on the geometric configuration between two patches i
and j. The form factor can be understood by the area integration
of the rendering equation, which is more general than the radiosity
equation. This is discussed in Sec. 13.2. As a result, the unknown
terms of the equation is the radiosity Bi of n different patches. Our
goal is then to compute such unknown terms. We discuss them in
the next section, followed by the overall algorithm of the radiosity
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rendering method.

11.3 Radiosity Algorithm

Given the radiosity equation (Eq. 11.1), the unknown term is the
radiosity, Bi, per each patch, resulting in n different unknown radios-
ity values for n patches. Since we can setup n different equation for
each patch based on the radiosity equation, overall we have n differ-
ent equations and unknowns. When we represent such n different
equations, we have the following matrix representation:


1− ρ1F(1→ 1) −ρ1F(1→ 2) . . . −ρ1F(1→ n)

...
...

. . .
...

−ρnF(n→ 1) −ρnF(n→ 2) . . . 1− ρnF(n→ n)




B1
...

Bn

 =


Be,1

...
Be,n


(11.2)

The above matrix has the form of AX = B, where X = [B1 . . . Bn]T is a
1 by n matrix containing unknowns.

To compute the unknown X, we can apply many matrix inversion
algorithms including Gaussian elimination that has O(n3) time
complexity 2. This approach, however, can be very expensive to 2 William H. Press, Brian P. Flannery,

Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes in C. Cam-
bridge University Press, Cambridge,
England, 2nd edition, 1993

be used for interactive applications, since the number of surface
elements can be hundreds of thousands in practice.

Instead of using exact approaches of computing the linear equa-
tions, we can use other numerical approaches such as Jacobi and
Gauss-Seidel iteration methods. Jacobi iteration works as the follow-
ing:

• Initial values. Start with initial guesses on radiosity values to
surface patches. For example, we can use the direct illumination
results using Phong illumination considering the light sources as
the initial values for surface patches.

• Update step. We plug those values, i.e., old values, into the right
term of the radiosity equation (Eq. 11.1), and get new values on Bi.
We perform this procedure to all the other patches.

• Repeat until converge. We repeat the update step until radiosity
values converge.

The Jacobi iteration method has been studied well in numerical
analysis, and its properties related to convergence have been well
known 3. 3 William H. Press, Brian P. Flannery,

Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes in C. Cam-
bridge University Press, Cambridge,
England, 2nd edition, 1993

One numerical iteration simulates one
bounce of the light energy from a patch
to another patch.

Effects of numerical iteration. Instead, we discuss how it works in
the context of rendering. While performing the update step of the
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Figure 11.3: This shows a se-
quence of images computed
by different updates, i.e., light
bounces, during the radiosity
iteration process. This is the
courtesy of the wikipedia.

Jacobi iteration, we compute a new radiosity value for each patch
from old values. In this process, we compute the new radiosity value
received and reflected from other patches. Intuitively, the update
step supports one bounce of the light energy from a patch to another
patch.

Fig. 11.3 visualizes how radiosity values change as we have differ-
ent number of update steps, i.e., passes. While only surface elements
that are directly visible from the light source are lit in the first pass,
other surface elements get brighter as we perform multiple update
steps and thus multiple bounces. In a way, this also visualizes how
the incoming light energy is distributed across the scene. In the end,
we see only the converged result, which is the equilibrium state of
the light and material interaction described in the radiosity equation.

Overall algorithm. In summary, we subdivide triangles of the input
scene into smaller surface elements, i.e., patches. We then compute
radiosity values per each patch by solving the linear equations given
by the radiosity equation. For static models, we perform this process
only a single time. At runtime, when a viewer changes a view point,
we then project those triangles whose color. This projection process Radiosity is commonly accelerated by

adopting the rasterization methodis efficiently performed by using the rasterization process in GPUs.
So far, we did not consider view points given by users while

computing radiosity values. This is unnecessary, because we do
not need to consider view-dependent information for radiosity
computation process; note that radiosity algorithm assumes the
diffuse materials and emitters and thus we get the same radiance
value for any view directions. This is one of the main features of
the radiosity algorithm, leading to its strength and weakness of the
method.

The basic radiosity method does not
support glossy materials.Drawbacks of the basic radiosity method. The main benefit of the

basic radiosity method is that we can re-use the pre-computed radios-
ity values, even though the user changes the viewpoint. Nonetheless,
it has also drawbacks. First of all, the radiosity assumes different
materials and emitters, while various scenes have other materials
such as glossy materials. Also, when we have dynamic models, we
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cannot re-use pre-computed radiosity values and thus re-compute
them.

11.4 Light Path Expressions

The radiosity method does support light reflections between diffuse
materials, but does not support interactions between glossy mate-
rials. Can we represent such light paths that the radiosity method
supports? Regular expressions are used to denote

different types of light paths.Heckbert proposed to use the regular expression to characterize
light paths 4. This approach considers light paths starting from the 4 Paul S. Heckbert. Adaptive radiosity

textures for bidirectional ray tracing. In
Forest Baskett, editor, Computer Graphics
(SIGGRAPH ’90 Proceedings), volume 24,
pages 145–154, August 1990

eye, noted E, to the light, denoted, L. Diffuse, specular, and glossy
materials are denoted as D, S, and G, respectively. We also adopt
various operations of regular expressions such as | (or), * (zero or
more), and + (one or more).

The light paths that radiosity method are then characterized by
LD∗E. On the other hand, the classic ray tracing method (Ch. 10)
supports L(DS∗)E, since it generates secondary rays when a ray hits
specular or refractive objects.
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Radiometry

One of important aspects of physically-based rendering is to simu-
late physical interactions between lights and materials in a correct
manner. To explain these physical interactions, we discuss various
physical models of light in this chapter. Most rendering effects that
we observe can be explained by a simple, geometric optics. Based on
this simple light model, we then explain radiometric quantities that
are important for computing colors. Finally, we explain basic material
models that are used for simulating the physical interaction with
lights.

12.1 Physics of Light

Understanding light has drawn major human efforts in physics and
resulted in many profound progress on optics and related fields.
Light or visible light is a type of electromagnetic radiations or waves
that we can see through our eyes. The most general physical model
is based on quantum physics and explains the duality of wave and
particle natures of light.

While the quantum physics explains the mysterious wave-particle
duality, it is rather impossible to simulate the quantum physics for
making our applications, i.e., games and movies, at the current com-
puting hardware. One of simpler light models is the wave model that
treats light like sound. Such wave characteristics become prominent,
when the wavelength of light is similar to sizes of interacting mate-
rials, and diffraction is one of such phenomena. For example, when
we see sides of CD, we can see rainbow-like color patterns, which are
created by small features of the CD surface.

The most commonly used light model used in computer graphics
so far is the geometric optics, which treats light propagation as
rays. This model assumes that object sizes are much bigger than
the wavelength of light, and thus wave characteristics disappear
mostly. This geometric optics can support reflection, refraction, etc.
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Figure 12.1: Solid angles in 2 D
and 3 D cases.

Many rendering methods based on ray tracing assumes the geometric
optics, and we also assume this model unless mentioned otherwise.

Our goal is then to measure the amount of energy that a particular
ray carries or that a particular location receives from. Along this
line, we commonly use a hemisphere, specifically, hemispherical
coordinates, to parameterize rays that can arrive at a particular
location in a surface. We discuss hemispherical coordinates before we
move on to studying radiometry.

Solid angles. We use the concept of solid angles for various inte-
gration on the hemisphere. The solid angle is used to measure how
much an objected located in 3 D space affects a point in a surface.
This metric is very useful for computing shadow and other factors
related to visibility. In the 2 D case (the left figure of Fig. 12.1), a
solid angle, Ω, of an object is measured by L

R , where L is the length
of the arc, where the object is projected to in the 2 D hemisphere (or
sphere). R is the radius of the sphere; we typically use a unit sphere,
where R = 1. The unit of the solid angle in the 2 D case is measured
by radians. The solid angle mapping to the full circle is 2π radians.

The solid angle in the 3 D case is computed by A
R2 , whose unit

is steradians (the right figure of Fig. 12.1). A indicates the area sub-
tended by the 3 D object in the hemisphere. For example, the full
sphere has 4π steradians.

Hemispherical coordinates. A hemisphere is two dimensional
surface and thus we can represent a point on the hemisphere with
two parameters such as latitude, θ, and longitude, ϕ (Fig. 12.2),
where θ ∈ [0, π

2 ] and ϕ ∈ [0, 2π]. Now let’s see how we can compute
the differential area, dA, on the hemisphere controlled by dφ and dθ.
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Figure 12.2: Hemispherical co-
ordinates (θ, ϕ). These images
from slides of Kavita Bala.

In infinitely small differential angles, we can treat that the area is
approximated by a rectangular shape, whose area can be computed
by multiplying its height and width. Its height is given by dθ. On the
other hand, its width varies depending on θ; its largest and minimum
occur at θ = π/2 and θ = 0, respectively.

To compute the width, we consider a virtual circle that touches
the rectangular shape of the hemisphere. Let x be the radius of the
ch ircle. The radius is then compute by sin θ = x

r , x = r sin θ, where
r is the radius of the hemisphere. The width is then computed by
applying the concept of the solid angle, and is r sin θdφ. We then have
the following differentials:

dA = (r sin θdφ)(rdθ). (12.1)

Based on this equation, we can easily derive differential solid angles,
dw:

dw =
dA
r2 (12.2)

= sin θdφdθ. (12.3)

We use these differential units to define the rendering equation
(Ch. 13.1).

12.2 Radiometry

In this section, we study various radiometric quantities that are im-
portant for rendering. Human perception on brightness and colors
depends on various factors such as the sensitivity of photoreceptor
cells in our eyes. Nonetheless, those photoreceptor cells receive pho-
tons and trigger biological signals. As a result, measuring photons,
i.e., energy, is the first step for performing the rendering process.

Power or flux. Power, P, is a total amount of energy consumed
per unit time, denoted by dW/dt, where W indicates watt. In our
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Figure 12.3: Radiance is mea-
sured per unit projected area,
dA⊥, while we receive the
energy on the surface A.

rendering context, it is the total amount of energy arriving at (or
passing through) a surface per unit time, and also called radiant flux.
Its unit is Watt, which is joules per second. For example, we say that
a light source emits 50 watts of radiant power or 20 watts of radiant
power is incident on a table.

Irradiance or radiosity. Irradiance is power or radiant flux arriving
at a surface per unit area, denoted by dW/dA with the unit of W/m2.
Radiant exitance is the radiant flux emited by a surface per unit area,
while radiosity is the radiant flux emitted, reflected, or transmitted
from a surface per unit area; that is why the radiosity algorithm has
its name (Ch. 11). For example, when we have a light source emitting
100W of area 0.1m2, we say that the radiant existance of the light is
1000W/m2. Radiance is one of the most impor-

tant radiometric quantity used for
physically-based rendering.

Radiance. In terms of computing rendering images, computing the
radiance for a ray is the most important radiometric measure. The
radiance is radiant flux emitted, reflected, or received by a surface
per unit solid angle and per unit projected area, dA⊥, whose normal
is aligned with the center of the solid angle (Fig. 12.3):

L(x → Θ) =
d2P

dΘdA⊥
(12.4)

=
d2P

dΘdA cos θ
. (12.5)

cos θ is introduced for considering the projected area.

Diffuse emitter. Suppose that we have an ideal diffuse emitter that
emits the equal radiance, L, in any possible direction. Its irradiance
on a location is measured as the following:

E =
∫

Θ
L cos θdwΘ,

=
∫ 2π

0

∫ π
2

0
L cos θ sin θdθdφ =

∫ 2π

0
dφ
∫ π

2

0
L cos θ sin θdθ

= 2πL
1
2
= Lπ. (12.6)
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Figure 12.4: A configuration
setting for measuring the BRDF
is shown. Ψ and Θ are incom-
ing and outgoing directions,
while ψ is the angle between
the surface normal and Ψ.

where Θ is the hemispherical coordinates, (θ, φ).

12.3 Materials

We discussed the Snell’s law to support the ideal specular (Sec. 10.1.
Phong illumination supports ideal diffuse and a certain class of
glossy materials (Ch. 8). However, some materials have complex
appearances that are not captured by those ideal specular, ideal
diffuse, and glossy materials. In this section, we discuss Bidirectional
Reflectance Distribution Function (BRDF) that covers a wide variety
of materials.

Our idea is to measure an appearance model of a material and to
use it within physically based rendering methods. Suppose the light
and camera settings shown in Fig. 12.4. We would like to measure
how the material reflects incoming radiance with a direction of Ψ
into outgoing radiance with a direction of Θ. As a result, BRDF,
fr(x, Ψ→ Θ), at a particular location x is a four dimensional function,
defined as the following:

fr(x, Ψ→ Θ) =
dL(x → Θ)

dE(x ← Ψ)
=

dL(x → Θ)

L(x ← Ψ) cos ψdwΨ
, (12.7)

where ψ is the angle between the normal of the surface at x and the
incoming direction Ψ, and dwΨ is the differential of the solid angle
for the light. The main reason why we use differential units, not
non-differential units, is that we want to cancel existing light energy
in addition to the light used for measuring the BRDF.

The BRDF satisfies the following properties:

1. Reciprocity. Simply speaking, when we switch locations of the
camera and light, we still get the same BRDF. In other words,
fr(x, Ψ→ Θ) = fr(x, Θ→ Ψ).
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Figure 12.5: These images show
interactions between the light
and materials that BRDF, BTDF,
and BSSRDF. These images are
excepted from Wiki.

2. Energy conservation.
∫

Θ fr(x, Ψ→ Θ) cos θdwΘ ≤ 1.

To measure a BRDF of a material, a measuring device, called
gonioreflectometer, is used. Unfortunately, measuring the BRDF takes
long time, since we have to scan different incoming and outgoing
angles. Computing BRDFs in an efficient manner is an active research
area.

Material appearance varies depending on wavelengths of lights.
To support such material appearance depending on wavelengths of
lights, we can measure BRDFs as a function of wavelengths, and use
a BRDF given a wavelengths of the light.

12.3.1 Other Distribution Functions

So far, we mainly considered BRDF. BRDF, however, cannot support
many other rendering effects such as subsurface scattering.

BRDF considered reflection at a particular point, x. For translucent
models, lights can pass through the surface and are reflected in the
other side of the surface. To capture such transmittance, BTDF (Bi-
direction Transmittance Distribution Function) is designed (Fig. 12.5).
Furthermore, light can be emitted from points other than the point
x that we receive the light. This phenomenon occurs as a result of
transmittance and reflection within a surface of translucent materials.
BSSRDF (Bidirectional Surface Scattering Reflection Distribution
Function) captures such complex phenomenon. Capturing and
rendering these complex appearance models is very important topics
and still an active research area.
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Rendering Equation

In this chapter, we discuss the rendering equation that mathemati-
cally explains how the light is reflected given incoming lights. The
radiosity equation (Ch. 11) is a simplified model of this rendering
equation assuming diffuse reflectors and emitters.

Nonetheless, the rendering equation does not explain all the light
and material interactions. Some aspects that the rendering equation
does not capture include subsurface scattering and transmissions.

13.1 Rendering Equation

The rendering equation explains how the light interacts with materi-
als. In particular, it assumes geometric optics (Sec. 12.1) and the light
and material interaction in an equilibrium status.

The inputs to the rendering equation are scene geometry, light
information, material appearance information (e.g., BRDF), and view-
ing information. The output of the rendering equation is radiance
values transferred, i.e., reflected and emitted, from a location to a
particular direction. Based on those radiance values for primary
rays generated from the camera location, we can compute the final
rendered image.

Suppose that we want to compute the radiance, L(x → Θ), from a
location x in the direction of Θ 1. To compute the radiance, we need 1 For simplicity, we use a vector Θ for

representing a direction based on the
hemispherical coordinates.

to sum the emitted radiance, Le(x → Θ), and the reflected radiance,
Lr(x → Θ) (Fig. 13.1). The emitted radiance can be easily given by
the input light configurations. To compute the reflected radiance, we
need to consider incoming radiance to the location x and the BRDF
of the object at the location x. The incoming radiance can come to x
in any possible directions, and thus we introduce an integration with
the hemispherical coordinates. In other words, the reflected radiance
is computed as the following:

Lr(x → Θ) =
∫

Ψ
L(x ← Ψ) fr(x, Ψ→ Θ) cos θxdwΨ, (13.1)
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Figure 13.1: The radiance,
L(x → Θ), is computed by
adding the emitted radiance,
Le(x → Θ), and the reflected
radiance, Lr(x → Θ).

where L(x ← Ψ) is a radiance arriving at x from the incoming di-
rection, Ψ, cos θx is used to consider the angle between the incoming
direction and the surface normal, and the BRDF fr(·) returns the
outgoing radiance given its input. The rendering equation can be repre-

sented in different manners including
hemispherical or area integration.

We use the hemispherical coordinates to derive the rendering
equation shown in Eq. 13.1, known as hemispherical integration. In
some cases, a different form of the rendering equation, specifically
area integration, is used. We consider the area integration of the
rendering equation in the following section.

13.2 Area Formulation

To derive the hemispherical integration of the rendering equation, we
used differential solid angles to consider all the possible incoming
light direction to the location x. We now derive the area integration
of the rendering equation by considering a differential area unit, in a
similar manner using the differential solid angle unit.

Let us introduce a visible point, y, given the negated direction,
−Ψ, of an incoming ray direction, Ψ, from the location x (Fig. 13.2).
We can then have the following equation thanks to the invariance of
radiance:

L(x ← Ψ) = L(y→ −Ψ). (13.2)

Our intention is to integrate any incoming light directions based on
y. To do this, we need to substitute the differential solid angle by
the differential area. By the definition of the solid angle, we have the
following equation:

dwΨ =
dA cos θy

r2
xy

, (13.3)

where θy is the angle between the differential area dA and the orthog-
onal area from the incoming ray direction, and rxy is the distance
between x and y.

When we plug the above two equations, we have the following
equation:

Lr(x → Θ) =
∫

y
L(y→ −Ψ) fr(x, Ψ→ Θ)

cos θx cos θy

r2
xy

dA, (13.4)
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Figure 13.2: This figure shows
a configuration for deriving
the area formulation of the
rendering equation.

where y is any visible area on triangles from x. In the above equation,
we need to first compute visible areas from x on triangles. Instead,
we would like to integrate the equation on any possible area while
considering visibility, V(x, y), which is 1 when y is visible from x,
and 0 otherwise. We then have the following area integration of the
rendering equation:

Lr(x → Θ) =
∫

A
L(y→ −Ψ) fr(x, Ψ→ Θ)

cos θx cos θy

r2
xy

V(x, y)dA,

(13.5)
where A indicates any area on triangles.

Form factor. The radiosity algorithm requires to compute form
factors that measure how much light from a patch is transferred
to another patch (Sec. 11.2). The area integration of the rendering
equation (Eq. 13.5) is equivalent to a form factor between a point on
a surface and any points on another surface, while a diffuse BRDF is
used in the equation. For the form factor between two surfaces, we
simply perform one more integration over the surface.
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Monte Carlo Integration

In this chapter, we study Monte Carlo integration to evaluate com-
plex integral functions such as our rendering equation. In the next
chapter, we will discuss Monte Carlo based ray tracing techniques
that are specialized techniques for evaluating the rendering equa-
tions.

The rendering equation (Eq. 13.1) is a complex integration func-
tion. First of all, to compute a radiance for a ray starting from a
surface point x, we need to integrate all the incoming radiances that
arrive at x. Moreover, evaluating those incoming radiances requires
us to evaluate the same procedure in a recursive way. Since there
could be an infinite number of light paths starting from a light source
to the eye, it is almost impossible to find an analytic solution for the
rendering equation, except simple cases. Rendering equations can be high

dimensional, since we need to consider
motion blur and many other effects
with time and complex camera lens.

Second, the rendering equation can be high dimensional. The
rendering equation shown in Eq. 13.1 is two dimensional. In practice,
we need to support the motion blur for dynamic models and moving
cameras. Considering such motion blur, we need to integrate radi-
ance over time in each pixel, resulting in three dimensional rendering
equation. Furthermore, supporting realistic cameras requires two or
more additional dimensions on the equation. As a result, the equa-
tion for generating realistic images and video could be five or more
dimensional.

Due to these issues, high dimensionality and infinite number of
possible light paths, deriving analytic solutions and using determin-
istic approaches such as quadrature rules are impossible for virtually
all of rendering environments that we encounter. Monte Carlo inte-
gration was proposed to integrate such high-dimensional functions
based on random samples.

Overall, Monte Carlo (MC) integration is a numerical solution
to integrate high complex and high-dimensional function. Since
it uses sampling, it has stochastic errors, commonly quantified as
Mean Squared Error (MSE). Fortunately, MC integration is unbiased,
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indicating that it gives us a correct solution with an infinite number
of samples on average.

14.1 MC Estimator

Suppose that we have the following integration, whose solution is I:

I =
∫ b

a
f (x)dx. (14.1)

The goal of MC integration is to take N different random samples,
xi, that follow the same probability density function, p(xi). We then
use the following estimator:

Î =
1
N ∑

i

f (xi)

p(xi)
. (14.2)

We now discuss how the MC estimator is good. One of measures
for this goal is Mean Squared Error (MSE), measuring the difference
between the estimated values, Ŷi, and observed, real values, Yi:

MSE(Ŷ) = E[(Ŷ−Y)2] =
1
N ∑

i
(Ŷi −Yi)

2. (14.3)

MSE can be decomposed into bias and variances terms as the
following:

MSE(Ŷ) = E
[(

Ŷ− E[Ŷ]
)2
]
+
(
E(Ŷ)−Y

)2 (14.4)

= Var(Ŷ) + Bias(Ŷ, Y)2. (14.5)

The bias term Bias(Ŷ, Y) measures how much the average value of
the estimator Ŷ is away from its ground-truth value Y. On other
hand, the variance term Var(Ŷ) measures how the estimator values
are away from its average values. We would like to discuss bias and
variance of the MC estimator (Eq. 14.2).

Bias of the MC estimator. The MC estimator is unbiased, i.e., on
average, it returns the correct solution, as shown in below:

E[ Î] = E

[
1
N ∑

i

f (xi)

p(xi)

]

=
1
N

∫
∑

i

f (xi)

p(xi)
p(x)dx

=
1
N ∑

i

∫ f (x)
p(x)

p(x)dx,∵ xi samples have the same p(x)

=
N
N

∫
f (x)dx = I. (14.6)
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Variance of the MC estimator. To derive the variance of the MC
estimator, we utilize a few properties of variance. Based on those
properties, and Independent and Identically Distributed samples
(IID) of random samples, the variance of the MC estimator can be
derived as the following:

Var( Î) = Var(
1
N ∑

i

f (xi)

p(xi)
)

=
1

N2 Var(∑
i

f (xi)

p(xi)
)

=
1

N2 ∑
i

Var(
f (xi)

p(xi)
),∵ xi samples are independent from each other.

=
1

N2 NVar(
f (x)
p(x)

),∵ xi samples are from the same distribution.

=
1
N

Var(
f (x)
p(x)

) =
1
N

∫ ( f (x)
p(x)

− E
[

f (x)
p(x)

])2

p(x)dx. (14.7)

As can be in the above equations, the variance of the MC estimator
decreases as a function of 1

N , where N is the number of samples.

Simple experiments with MC estimators. Suppose that we would
like to compute the following, simple integration:

I =
∫ 1

0
4x3dx = 1. (14.8)

We know its ground truth value, 1, for the integration. We can now
study various properties of the MC estimator by comparing its result
against the ground truth. When we use the uniform sampling on the
integration domain, the MC estimator is defined as the following:

Î =
1
N

N

∑
i=1

4x3
i , (14.9)

where p(xi) = px = 1, since the sampling domain is [0, 1], and
the integration of uniform sampling on the domain has to be one,∫ 1

0 px = 1.
Fig. 14.1 shows how the MC estimator behaves as we have more

samples, N. As can be seen, MC estimators approach to its ground
truth value, as we have more samples. Furthermore, when we mea-
sure the mean and variance of different MC estimators that have
different random numbers given the same MC estimator equation
(Eq. 14.9), their mean and variance shows the expected behaviors;
its mean is same to the ground truth and the variance decreases as a
function of 1

N , respectively.
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Figure 14.1: The top two sub-
figures show the first and sec-
ond MC estimators of

∫ 1
0 4x3dx,

whose ground truth value is 1.
These MC estimators approach
to their ground-truth, as we
have more number of samples.
While these individual MC
estimators have up and down
depending on their randomly
generated values, their mean
and variance measured with
600 estimators show the ex-
pected behavior, as theoretically
predicted in Sec. 14.1. Its source
code, mc_int_ex.m, is available.

14.2 High Dimensions

Suppose that we have an integration with higher dimensions than
one:

I =
∫ ∫

f (x, y)dxdy. (14.10)

Even in this case, our MC estimator is extended straightforwardly to
handle such an two-dimensional integration (and other higher ones):

Î =
1
N ∑

f (xi, yi)

p(xi, yi)
, (14.11)

where we generate N random samples following a two dimensional
probability density function, p(x, y). We see how to generate samples
according to pdf in Sec. 14.4. This demonstrates that MC integration
supports well high dimensional integrations including the rendering
equation with many integration domains, e.g., image positions, time,
and lens parameters.

In addition, MC integration has the following characteristics:

• Simplicity. We can compute MC estimators based only on point
sampling. This results in very convenient and simple computation.

• Generality. As long as we can compute values at particular points
of functions under the integration, we can use MC estimations. As
a result, we can compute integrations of discontinuous functions,
high dimensional functions, etc.
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Example. Suppose that we would like to compute the following
integration defined over a hemisphere:

I =
∫

Θ
f (Θ)dwΘ, (14.12)

=
∫ 2π

0

∫ π
2

0
f (θ, φ) sin θdθdφ. (14.13)

where Θ is the hemispherical coordinates, (θ, φ).
The MC estimator for the above integration can be defined as

follows:

Î =
1
N ∑

f (θi, φi) sin θ

p(θi, φi)
, (14.14)

where we generate (θi, φi) following p(θi, φi).
Now let’s get back to the irradiance example mentioned in

Sec. 12.2. The irradiance equation we discussed in the irradiance
example is to use Ls cos θ for f (θ, φ). In this case, the MC estimator of
Eq. 14.14 is transformed to:

Î =
1
N ∑

Ls cos θ sin θ

p(θi, φi)
. (14.15)

One can use different pdf p(θ, φ) for the MC estimator, but we can
use the following one:

p(θi, φi) =
cos θ sin θ

π
, (14.16)

where the integration of the pdf in the domain is one: i.e.,
∫ 2π

0

∫ π
2

0
cos θ sin θ

π =

1. Plugging the pdf into the estimator of Eq. 14.14, we get the follow-
ing:

Î =
π

N ∑ Ls. (14.17)

14.3 Importance Sampling

In this section, we see how different pdfs affect variance of our MC
estimators. As we see in Sec. 14.1, our MC estimator is unbiased
regardless of pdf employed, i.e., its mean value becomes the ground
truth of the integration. Variances, however, vary depending on
chosen pdf.

Let’s see the example integration, I =
∫ 1

0 4x3dx = 1, again. In the
following, we test three different pdfs and see their variance:

• p(x) = 1. As the simplest choice, we can use the uniform dis-
tribution on the domain. The variance of our MC estimator,
Î = 1

N ∑i 4x3
i is 36

28N ≈
1.285

N , according to the variance equation
(Eq. 14.7).
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• p(x) = x. The variance of this MC estimator, 1
N ∑i 4x2, is 14

12N ≈
1.666

N . Its variance is reduced from the above, uniform pdf!

• p(x) = 4x3. The shape of this pdf is same to the underlying
function under the integration. In this case, its variance turns out
to be zero.

The variance of an MC estimator goes
to zero, when the shape of its pdf is
same to the underlying function under
the integration. We, however, do not
know such a shape of the rendering
equation!

As demonstrated in the above examples, the variance of a pdf
decreases, as the distribution of a pdf gets closer to the underlying
function f (x). Actually, when the pdf p(x) is set to be f (x)∫

f (x)dx = f (x)
I ,

the ideal distribution, we get the lowest variance, zero. This can be
shown as the following:

Var( Î) =
1
N

∫
(

f (x)
p(x)

− I)2 p(x)dx

=
1
N

∫
(I − I)2 p(x)dx

= 0. (14.18)

Unfortunately, in some cases, we do not know the shape of the
function under the integration. Especially, this is the case for the
rendering equation. Nonetheless, the general idea is to generate more
samples on high values on the function, since this can reduce the
variance of our MC estimator, as demonstrated in aforementioned
examples. In the same reason, when the pdf is chosen badly, the
variance of our MC estimator can even go higher. The main idea of importance sampling

is to generate more samples on high
values on the function.

This is the main idea of importance sampling, i.e., generate more
samples on high values on the underlying function, resulting in a
lower variance.

Fortunately, we can intuitively know which regions we can get
high values on the rendering equation. For example, for the light
sources, we can get high radiance values, and we need to generate
rays toward such light sources to reduce the variance in our MC
estimators. Technical details on importance sampling are available in
Ch. 14.3.

14.4 Generating Samples

We can use any pdf for the MC estimator. In the case of the uni-
form distribution, we can use a random number generator, which
generates random numbers uniformly given a range.

The question that we would like to ask in this section is how we
can generate samples according to the pdf p(x) different from the
uniform pdf.

Fig. 14.2 shows a pdf and its cdf (cumulative distribution function)
in a discrete setting. Suppose that we would like to generate samples
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Figure 14.2: This figure shows
a pdf and its cdf. Using the
inverse cumulative distribution
function generates samples ac-
cording to the pdf by utilizing
its cdf.

according to the pdf. In this case, x1, x2, x3, x4 are four events, whose
probabilities are 0.2, 0.1, 0.2, 0.5, respectively. In other words, we
would like to generate those events with the pre-defined pdf. We can use an inverse cumulative

distribution function to generate
samples according to a pdf.

A simple method of generating samples according to the pdf is
to utilize its cdf (Fig. 14.2). This is known to be inverse cumulative
distribution function. In this method, we first generate a random
number α uniformly in the rnage of [0, 1). When the random number
α is in the range [∑i−1

0 pi, ∑i
0 pi), we return a sample of xi.

Let’s see the probability of generating a sample xi in this way to be
pi, as the following:

p(xi) = p(α ∈ [
i−1

∑
0

pi,
i

∑
0

pi])

= p(
i

∑
0

pi)− p(
i−1

∑
0

pi)

= pi, (14.19)

where p0 is set to be zero. So far, we see the discrete case, and we
now extend it to the continuous case.

Continuous case. Suppose that we have a pdf, p(x). Its cdf function,
FX(x), is defined as FX(x) = p(X < x) =

∫ x
−∞ p(x)dx. We then

generate a random number α uniformly in a range [0, 1]. A sample, y,
is generated as y = F−1

X (α).

Example for the diffuse emitter. Let’s consider the following inte-
gration of measuring the irradiance with the diffuse emitter and our
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sampling pdf:

I =
1
π

∫
Θ

dwΘ,

=
1
π

∫ 2π

0

∫ π
2

0
sin θ cos θdθdφ. (14.20)

p(θ, φ) =
sin θ cos θ

π
, (14.21)

where
∫ ∫

p(θ, φ)dθdφ = 1.
Our goal is to generate samples according to the chosen pdf. We

first compute its cdf, CDF(θ, φ), as the following:

CDF(θ, φ) =
∫ φ

0

∫ θ

0

sin θ cos θ

π
dθdφ

= (1− cos2 θ)
φ

2π
= F(θ)F(φ), (14.22)

where F(θ) and F(π) are (1− cos2 θ) and φ
2π , respectively. Since the

pdf is two dimensional, we generate two random numbers, α and β.
We then utilize inverse function of those two separated functions of
F(θ) and F(φ):

θ = F−1(α) = cos−1
√

1− α,

φ = F−1(β) = 2πβ.

(14.23)

The aforementioned, the inverse CDF method assumes that we can
compute the inverse of the CDF. In some cases, we cannot compute
the inverse of CDFs, and thus cannot use the inverse CDF method. In
this case, we can use the rejection method.

Figure 14.3: In the rejection
method, we generate random
numbers and accept numbers
only when those numbers are
within the pdf p(x).

In the rejection method, we first generate two random numbers,
α and β. We accept β, only when α ≤ p(β) (Fig. 14.3). In the ex-
ample of Fig. 14.3, the ranges of α and β are [0, 1] and [a, b]. In this
approach, we can generate random numbers β according to the pdf
p(x) without using its cdf. Nonetheless, this approach can be ineffi-
cient, especially when we do not accept and thus reject samples. This
inefficiency occurs when the value of p(x) is smaller than the upper
bound, which we generate such random numbers up to. The upper
bound of α in our example is 1.



15
Monte Carlo Ray Tracing

In the prior chapters, we have discussed the rendering equation,
which is represented in a high dimensional integral equation (Ch. 13.1),
followed by the Monte Carlo integration method, a numerical ap-
proach to solve such equations (Ch. 14). In this chapter, we discuss
how to use the Monte Carlo integration method to solve the render-
ing equation. This algorithm is known as a Monte Carlo ray tracing
method. Specifically, we discuss the path tracing method that con-
nects the eye and the light with a light path.

15.1 Path Tracing

The rendering equation shown below is a high dimensional inte-
gration equation defined over a hemisphere. The radiance that we
observe from a location x to a direction Θ, L(x → Θ), is defined as
the following:

L(x → Θ) = Le(x → Θ) + Lr(x → Θ),

Lr(x → Θ) =
∫

Ψ
L(x ← Ψ) fr(x, Ψ→ Θ) cos θxdwΨ, (15.1)

where Le(·) is a self-emitted energy at the location x, Lr(x → Θ) is
a reflected energy, L(x ← Ψ) is a radiance arriving at x from the
incoming direction, Ψ, cos θx is used to consider the angle between
the incoming direction and the surface normal, and the BRDF fr(·) re-
turns the outgoing radiance given its input. Fig. 15.1 shows examples
of the reflected term and its incoming radices.

L(x → Θ) of Eq. 15.1 consists of two parts, emitted and reflected
energy. To compute the emitted energy, we check whether the hit
point x is a part of a light source. Depending whether it is in a light
source or not, we compute its self-emitted energy.

The main problem of computing the radiance is on computing the
reflected energy. It has several computational issues:
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Figure 15.1: This figure shows
graphical mapping between
terms of the rendering equa-
tion and images. The right
image represents the incoming
radiance passing through the
hemisphere.

1. Since the rendering equation is complex, its analytic solution is
not available.

2. Computing the reflected energy requires us to compute the in-
coming energy L(x ← Ψ), which also recursively requires us to
computer another incoming energy. Furthermore, there are an
infinite number of light paths from the light sources and to the eye.
It is virtually impossible to consider all of them.

Since an analytic approach to the rendering equation is not an
option, we consider different approaches, especially numerical ap-
proaches. In this section, we discuss the Monte Carlo approach
(Ch. 14) to solve the rendering equation. Especially, we introduce
path tracing, which generates a single path from the eye to the light
based on the Monte Carlo method.

15.2 MC Estimator to Rendering Equation

Given the rendering equation shown in Eq. 15.1, we omit the self-
emitting term Le(·) for simplicity; computing this term can be done
easily by accessing the material property of the intersecting object
with a ray.

To solve the rendering equation, we apply the Monte Carlo (MC)
approach, and the MC estimator of the rendering equation is defined
as the following:

L̂r(x → Θ) =
1
N

N

∑
i=1

L(x ← Ψi) fr(x, Ψi → Θ) cos θx

p(Ψi)
, (15.2)

where Ψi is a randomly generated direction over the hemisphere and
N is the number of random samples generated.

To evaluate the MC estimator, we generate a random incoming
direction Ψi, which is uniformly generated over the hemisphere. We
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Figure 15.2: Top: computing
the outgoing radiance from
x requires us to compute the
radiance from y to x, which is
also recursively computed by
simulating additional bounce
to y. Bottom: this sequence
visualizes rendering results by
considering the direct emis-
sion and single, double, and
triple bounces, adding more
energy to the image. Images are
excerpted from slides of Prof.
Bala.

then evaluate BRDF fr(·) and the cosine term. The question is how
to compute the radiance we can observe from the incoming direction
L(x ← Ψi). To compute the radiance, we compute a visible point,
y, from x toward Ψi direction and then recursively use another MC
estimator. This recursion process effectively simulates an additional
bounce of photon (Fig. 15.2), and repeatedly performing this process
can handle most light transports that we observe in our daily lives.

The aforementioned process uses the recursion process and can
simulate various light transport. The recursion process terminates
when a ray intersects with a light source, establishing a light path
from the light source to the eye. Unfortunately, hitting the light
source can have a low probability and it may require an excessive
amount of recursion and thus computational time.

Many heuristics are available to break the recursion. Some of them
uses a maximum recursion depth (say, 5 bounces) and uses some
thresholds on radiance difference to check whether we go into a
more recursion depth. These are easy to implement, but using these
heuristics and simply ignoring radiances that we can compute with
additional bounces results in bias in our MC estimator. To terminate
the recursion process without introducing a bias, Russian roulette is
introduced.

Russian roulette. Its main idea is that we artificially introduce a
case where we have zero radiance, which effectively terminate recur-
sion process. The Russian roulette method realizes this idea without
introducing a bias, but with an increased variance. Suppose that we
aim to keep the recursion P percentage (e.g., 95%), i.e., cancel the



130 rendering

recursion 1− P percentage. Since we lose some energy by terminating
the recursion, we increase the energy when we accept the recursion,
in particular, 1

P , to compensate the lost energy.
In other words, we use the following estimator:

Îroulette =


f (xi)

P if xi ≤ P,

0 if xi > P.
(15.3)

One can show its bias to be zero, but also show that the original
integration is reformulated as the following with a substitute, y = Px:

I =
∫ 1

0
f (x)dx =

∫ P

0

f (y/P)
P

dy. (15.4)

While the bias of the MC estimate with the Russian roulette is
zero, its variance is higher than the original one, since we have more
drastic value difference, zero value in a region, while bigger values in
other regions, on our sampling.

A left issue is how to choose the constant of P. Intuitively, P is
related to the reflectance of the material of a surface, while 1− P is
considered as the absorption probability. As a result, we commonly
set P as the albedo of an object. For example, albedo of water, ice,
and snow is approximately about 7%, 35%, and 65%, respectively.

Branching factor. We can generate multiple ray Samples Per Pixel
(SPP). For each primary ray sample in a pixel, we compute its hit
point x and then need to estimate incoming radiance to x. The next
question is how many secondary rays we need to generate for esti-
mating the incoming radiance well. This is commonly known as a
branching factor. Intuitively, generating more secondary rays, i.e.,
having a higher branching factor, may result in better estimation of
incoming radiance. In practice, this approach turns out to be less
effective than having a single branching factor, generating a single
secondary ray. This is because while we have many branching fac-
tors, their importance can be less significant than other rays, e.g.,
primary ray. This is related to importance sampling (Ch. 14.3) and is
discussed more there. Path tracing is one of simple MC

ray tracing for solving the rendering
equation. Since it is very slow, it is
commonly used for generating the
reference results compared to other
advanced techniques.

Path tracing. The rendering algorithm with a branching factor of
one is called path tracing, since we generate a light path from the
eye to the light source. To perform path tracing, we need to set the
number of ray samples per pixel (SPP), while the branching factor is
set to be one. Once we have N samples per each pixel, we apply the
MC estimator, which is effectively the average sum of those N sample
values, radiance.
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Figure 15.3: This figure shows
images that are generated with
varying numbers of samples
per each pixel. Note that direct
illumination sampling, gen-
erate a ray toward the light
(Sec. 16.1), is also used. From
the left, 1 spp (sample per
pixel), 4 spp, and 16 spp are
used.

Fig. 15.3 shows rendering results with different number of ray
samples per pixel. As we use more samples, the variance, which is
observed as noise, is reduced.

The theory tells us that as we generate more samples, the variance
is reduced more, but it requires a high number of samples and
long computational time. As a result, a lot of techniques have been
developed to achieve high-quality rendering results while reducing
the number of samples.

Programming assignment. It is very important to see how the ren-
dering results vary as a function of ray samples and a different types
of sampling methods. Fortunately, many ray tracing based rendering
methods are available. Some of well known techniques are Embree,
Optix, and pbrt (Sec. 9.6). Please download one of those softwares
and test the rendering quality with different settings. In my own
class, I ask my students to download pbrt and test uniform sampling
and an adaptive sampling method that varies the number of samples.
Also, measuring its error compared to a reference image is important
to analyze different rendering algorithms in a quantitative manner. I
therefore ask to compute a reference image, which is typically com-
puted by generating an excessive number of samples (e.g., 1 k or
10 k samples per pixel), and measure the mean of squared root dif-
ference between a rendering result and its reference. Based on those
computed errors, we can know which algorithm is better than the
other.

15.2.1 Stratified Sampling

We commonly use a uniform distribution or other probability density
function to generate a random number. For the sake of simple expla-
nation, let assume that we use a uniform sampling distribution on
a sampling domain. While those random numbers in a domain, say,
[0, 1), are generated in a uniform way, some random numbers can be
arbitrarily close to each other, resulting in noise in the estimation.

A simple method of ameliorating this issue is to use stratified sam-
pling, also known as jittered sampling. Its main idea is to partition
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Figure 15.4: The reference im-
age is shown on the leftmost,
while images with and without
stratified sampling are shown
on the right. Images are ex-
cerpted from slides of Prof.
Bala.

the original sampling domains into multiple regions, say, [0, 1/2)]
and [1/2, 1), and perform sampling in those regions independently.

While this approach cannot avoid a close proximity of those
random samples, it has been theoretically and experimentally demon-
strated to reduce the variance of MC estimators. Fig. 15.4 shows
images w/ and w/o using stratified sampling. We can observe that
the image with stratified sampling shows less noise.

Theoretically, stratified sampling is shown to reduce the variance
over the non-stratified approach. Suppose X to be a random variable
representing values of our MC sampling. Let k to be the number of
partitioning regions of the original sampling domain, and Y to be an
event indicating which region is chosen among k different regions.
We then have the following theorem:

Theorem 15.2.1 (Law of total variance). Var[X] = E(Var[X|Y]) +
Var(E[X|Y]).

Proof.

Var[X] = E[X2]− E[X]2

= E[E[X2|Y]]− E[E[X|Y]]2,∵ Law of total expectation

= E[Var[X|Y]] + E[E[X|Y]2]− E[E[X|Y]]2,

= E[Var[X|Y]] + Var(E[X|Y]). (15.5)

According to the law of total variance, we can show that the
variance of the original random variance is equal to or less than the
variance of the random variance in each sub-region.

Var[X] ≥ E(Var[X|Y]) = 1
k

kVar[X|Yr] = Var[X|Yr], (15.6)

where Yr is an event indicating that random variances are generated
given each sub-region, and we assume iid for those sub-regions.
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(a) All the elementary intervals with the volume of 1
16 .

(b) This figure shows sampling patterns of jittered, Sobol, and N-Rooks sam-
plings, respectively from the left.

Figure 15.5: These images are
excerpted from the cited paper.

N-Rooks sampling. N-Rooks sampling or Latin hypercube sam-
pling is a variant of stratified sampling with an additional require-
ment that has only a single sample in each row and column of
sampling domains. An example of N-Rooks sampling is shown
in Fig. 15.5. For stratified sampling, we generate Nd samples for a
d-dimensional space, where we generate N samples for each space.
On the other hand, since it generates only a single sample per each
column and row, we can arbitrary generate N samples when we
create N columns and rows for high dimensional cases.

Sobol sequence. Sobol sequence is designed to maintain additional
constraints for achieving better uniformity. It aims to generate a
single sample on each elementary interval. Instead of giving its exact
definition, we show all the elementary intervals having the volume of
1
16 in the 2 D sampling space in Fig. 15.5; images are excerpted from
1. 1 Thomas Kollig and Alexander Keller.

Efficient multidimensional sampling.
Comput. Graph. Forum, 21(3):557–563,
200215.3 Quasi-Monte Carlo Sampling

Quasi-Monte Carlo sampling is another numerical tool to evaluate
integral interactions such as the rendering equation. The main differ-
ence over MC sampling is to use deterministic sampling, not random
sampling. While quasi-Monte Carlo sampling uses deterministic
sampling, those samples are designed to look random.

The main benefit of using quasi-Monte Carlo sampling is that we
can have a particular guarantee on error bounds, while MC methods
do not. Moreover, we can have a better convergence to Monte Carlo
sampling, especially, when we have low sampling dimensions and
need to generate many samples 2. 2 H. Niederreiter. Random Number

Generation and Quasi-Monte Carlo
Methods. Society for Industrial and
Applied Mathematics, 1992

Specifically, the probabilistic error bound of the MC method
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Monte Carlo

Quasi-Monte Carlo, D = 2

Quasi-Monte Carlo, D = 4

Quasi-Monte Carlo, D = 6

Figure 15.6: This figure shows
error behavior of MC and quasi-
Monte Carlo methods. They
are not aligned in the same
error magnitude. As a result,
only shapes of these curves
are meaningful. The basic
quasi-Motel Carlo shows better
performance than MC on low
dimensional spaces (e.g, two).

reduces O( 1√
N
). On the other hand, the quasi-Monte Carlo can

provide a deterministic error bound of O(
log ND−1

N ) for a well chosen
set of samples and for integrands with a low degree of regularity,
where D is the dimensionality. Better error bounds are also available
for integrands with higher regularity.

Fig. 15.6 shows shapes of two different error bounds of Monte
Carlo and quasi-Monte Carlo. Note that they are not aligned in the
same error magnitude, and thus only their shapes are meaningful.
Furthermore, the one of MC is a probabilistic bound, while that of
quasi-Monte Carlo is a deterministic bound. The quasi-Monte Carlo
has demonstrated to show superior performance than MC on low
dimensional sample space (e.g., two). On the other hand, for a high
dimensional case, say six dimensional case, the quasi-Monte Carlo is
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not effectively reducing its error on a small number of samples.
The question is how to construct such a deterministic sampling

pattern than looks like random and how to quantify such pattern?
A common approach for this is to use a discrepancy measure that
quantifies the gap, i.e. discrepancy, between the generated sampling
and an ideal uniform and random sequence. Sampling methods
realizing low values for the discrepancy measure is low-discrepancy
sampling.

Various stratified sampling techniques such as Sobol sequence is
also used as a low-discrepancy sampling even for the quasi-Monte
Carlo sampling, while we use pre-computed sampling pattern and
do not randomize during the rendering process. In additional to
that, other deterministic techniques such as Halton and Hammersley
sequences are used. In this section, we do not discuss these tech-
niques in detail, but discuss the discrepancy measure that we try to
minimize with low-discrepancy sampling.

For the sake of simplicity, suppose that we have a sequence of
points P = {xi} in a one dimensional sampling space, say [0, 1]. The
discrepancy measure, DN(P, x), can be defined as the following:

DN(P, x) = |x− n
N
|, (15.7)

where x ∈ [0, 1] and n is the number of points that are in [0, x]. Intu-
itively speaking, we can achieve uniform distribution by minimizing
this discrepancy measure. Its general version is available at the book
of Niederreiter 3;see pp. 14. 3 H. Niederreiter. Random Number

Generation and Quasi-Monte Carlo
Methods. Society for Industrial and
Applied Mathematics, 1992

Randomized quasi-Monte Carlo integration. While quasi-Monte
Carlo methods have certain benefits over Monte Carlo approaches,
it also has drawbacks. Some of them include 1) it shows better per-
formance over MC methods when we have smaller dimensions and
the number of samples are high, and 2) its deterministic bound are
rather complex to compute. Also, many other techniques (e.g., recon-
struction) are based on stochastic analysis and thus the deterministic
nature may result in lose coupling between different rendering mod-
ules.

To address the drawbacks of quasi-Monte Carlo approaches,
randomization on those deterministic samples by permutation can be
applied. This is known as randomized quasi-Monte Carlo techniques.
For example, one can permute cells of 2 D sample patterns of the
Sobol sequence and can generate a randomized sampling pattern.
We can then apply various stochastic analysis and have an unbiased
estimator. Fig. 15.7 shows error reduction rates of different sampling
methods; images are excepted from 4. 4 Thomas Kollig and Alexander Keller.

Efficient multidimensional sampling.
Comput. Graph. Forum, 21(3):557–563,
2002
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Figure 15.7: These graphs show
different error reduction rates
of Monte Carlo (MC), jittered
(JS), Latin hypercube (LHS),
and randomized Sobol se-
quence (RDS). These techniques
are applied to four dimensional
rendering problems with direct
illumination.



16
Importance Sampling

In the last chapter, we discussed Monte Carlo (MC) ray tracing,
especially, path tracing that generates a light path from the camera to
the light source. While it is an unbiased estimator, it has significant
variance, i.e., noise, when we have a low ray samples per pixel. To
reduce the noise of MC generated images, we studied quasi-Monte
Carlo technique in Sec. 15.3.

In this chapter, as an effective way of reducing the variance, we dis-
cuss importance sampling. We first discuss an importance sampling
method considering light sources, called direct illumination method.
We then discuss other importance sampling methods considering
various factors of the rendering equation.

(a) Results w/o direct illumination. From the left, 1 spp, 4 spp, and 16 spp are
used.

(b) Results w/ direct illumination.

Figure 16.1: These images are
generated by path tracer w/
and w/o direct illumination.
They are created by using a
path tracer created by Ritchie et
al. http://web.stanford.edu/
~dritchie/path/index.html.

http://web.stanford.edu/~dritchie/path/index.html
http://web.stanford.edu/~dritchie/path/index.html
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Figure 16.2: This figure illus-
trates the factorization of the
reflected radiance into direct
and indirect illumination terms.

16.1 Direct Illumination

Fig. 16.1 show rendering results w/ and w/o direct illumination.
The first row shows rendering results w/o direct illumination under
1, 4, and 16 spp. In this scene, we adopt path tracing and observe
severe noise even when we use 16 spp. This noise is mainly from the
variance of the MC estimator. Note that we use random sampling on
the hemisphere to generate a reflected ray direction, and it can keep
bounce unless arriving at the light source located at the ceiling of the
scene. Furthermore, since we are using the Russian roulette, some
rays can be terminated without carrying any radiance, resulting in
dark colors.

A better, yet intuitive approach is to generate a ray directly to-
ward the light source, since we know that the light source is emitting
energy and brightens the scene. The question is how we can accom-
modate this idea within the MC estimation framework! If we just
generate a ray toward the light source, it will introduce a bias and
we may not get a correct result, even when we generate an infinite
number of samples.

Let’s consider the rendering equation that computes the radiance
L(x → Θ), from a location x in the direction of Θ 1. The radiance is 1 This notation is introduced in Sec. 13.1

composed of the self-emitted energy and reflected energy (Fig. 13.1):

L(x → Θ) = Le(x → Θ) + Lr(x → Θ). (16.1)

For the reflected term Lr(·), we decompose it into two terms:
direct illumination term, Ld(·), and indirect illumination term, Li(·):

Lr(x → Θ) = Ld(x → Θ) + Li(x → Θ). (16.2)

Fig. 16.2 illustrates an example of this decomposition.
Once we decomposed the radiance term into the direct and indi-

rect illumination terms, we apply two separate MC estimators for
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those two terms. For the direct illumination term, we cannot use the
hemispherical integration described in Sec. 13.1, since we need to
generate rays to the light source. For generating rays only to the light
source, we use the area formulation, Eq. 13.5 explained in Sec. 13.2. Rays corresponding to the direct

illumination should be not duplicated
considered for indirect illumination.

For estimating the indirect illumination, we use the hemispherical
integration. The main difference to the regular hemispherical integra-
tion is that a ray generated from the hemispherical integration should
not accumulate energy directly from the light source. In other words,
when the ray intersects with the light source, we do not transfer the
energy emitted from the light source, since the ray in this case is
considered in the direct illumination term, and thus its energy should
not be considered for the indirect illumination to avoid duplicate
computation.

Many light problems. We discussed a simple importance sampling
with the direct illumination sampling to reduce the variance of MC
estimators. What if we have so many lights? In this case, generating
rays to many lights can require a huge amount of time. In practice,
simulating realistic scenes with complex light setting may require
tens or hundreds of thousands of point light sources. This problem
has been known as the many light problem. Some of simple ap-
proaches are to generate rays to those lights with probabilities that
are proportional to their light intensity.

16.2 Multiple Importance Sampling

In the last section, we looked into direct illumination sampling as
an importance sampling method. While it is useful, it cannot be a
perfect solution, as hinted in our theoretical discussion (Sec. 14.3)

There are many other different terms in the rendering equation.
Some of them are incoming radiance, BRDF, visibility, cosine terms,
etc. The direct illumination sampling is a simple heuristic to consider
the incoming radiance, while there could be many other strong
indirect illuminations such as strong light reflection from a mirror.
BRDF of an intersected object and cosine terms are available, and
thus we can design importance sampling methods considering those
factors. Nonetheless, these different importance sampling methods
are designed separately and may work well in one case, but not in
other cases.

Multiple importance sampling (MIS) is introduced to design a
combined sampling method out of separately designed estimators.
Suppose that there are n different sampling methods, and we allocate
ni samples for each sampling method. Given the total number of
samples N, ni = ci N with independent Xi,j samples. The whole
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Figure 16.3: These figures show
rendering results with differ-
ent sampling methods. From
the left, we use sampling light
sources, BRDF, and both of
them w/ multiple importance
sampling.

distribution, p̄(x), combined with those n different methods, is
defined as the following:

p̄(x) =
n

∑
i

ci pi(x), (16.3)

where pi(x) is a i-th sampling distribution. p̄(x) is also called com-
bined sample distribution 2, whose each sample Xi,j has 1/N sam- 2 Eric Veach and Leonidas J. Guibas.

Optimally combining sampling tech-
niques for monte carlo rendering. In
SIGGRAPH, pages 419–428, 1995

pling probability.
By applying the standard MC estimator with the combined sam-

pling distribution, we get the following estimator:

I =
1
N ∑

i
∑
ni

f (Xi,j)

p̄(Xi,j)
. (16.4)

This estimator is also derived by assigning the relative importance,
i.e., probability, of a sampling method among others. In this per-
spective, this is also known as to be derived under balance heuristic.
Surprisingly, this simple approach has been demonstrated to work
quite well as shown in Fig. 16.3; these figures are excepted from the
paper of Veach et al. 3. A theoretical upper bound of the variance 3 Eric Veach and Leonidas J. Guibas.

Optimally combining sampling tech-
niques for monte carlo rendering. In
SIGGRAPH, pages 419–428, 1995

error of this approach is available in the original paper.



17
Conclusion

In this book, our discussions have revolved around two main topics:
rasterization and ray tracing. These two techniques have their own
pros and cons. For example, ray tracing is slower compared to raster-
ization, and is more natural to support a wide variety of rendering
effects. We have mainly explains basic concepts on these topics, and
there are many other advanced topics including scalable techniques
and sub-surface scattering approaches. We plan to cover them in a
coming edition.
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